

George Barmakian Jenine Davignon Adam Ginsburg Sevag Khatchadourian Bethany Quigley

Acknowledgements

D

SSYMCA

- President & CEO,
 Ralph Yohe
- VP of Operations, *Natalie Sheard*
- Former intern,
 - Emily Sutton

Northeastern Faculty

- Prof. Thomas Cullinane
- Prof. Gregory Kowalski
- Prof. Emanuel Melachrinoudis

COLLEGE OF ENGINEERING

Northeastern

Purpose

Hanover

Marshfiel Stoughton The purpose of this project was to complete a facilities location study to determine future expansion strategies for the South Shore YMCA (SSYMCA). The South Shore and Cape Cod regions consist of a large population with limited access to existing YMCA services. The SSYMCA desires an efficient methodology to meet the needs of all potential members.

YMCA Background

- Largest not-for-profit organization in America
- 2,617 locations nationwide, 20.2 million members
- Community Based and Driven
- Variety of Programming for Every Age
- Helping Raise America's Children
- Beyond Health and Fitness
- More than a Gym a Community

Present Locations

- Mill Pond Branch (Hanover)
- Quincy Facility
- Barnstable Branch
- Plymouth Branch (planned facility)

Needs & Requirements

- Identify target customers and areas of need
- Determine relative location and accessibility
- Minimize cannibalization between facilities
- Develop long term strategic vision
- Activities and services

Data Collection

- Determining potential locations
 - Accessibility
 - Reduce distance between potential facilities and demands
 - Traffic data
 - Identified heavy traffic areas
 - 15 minute drive time requirement
 - Validated by membership data and survey
 - Public transportation
 - Insignificant presence in region

Data Collection

- Defining demand
 - Census Segmenting population into census tracts
 - SEER/PMA Studies Establishing market penetration
 - Survey Reasons for joining
 - Member Database Activity enrollment

Research

• Types of Models

- Set covering Minimize facilities to cover all demand
- Accessibility Minimize distance between facility and demand

• Characteristics of the Model

- Network vs. planar mapping
- Capacitated vs. uncapacitated constraint
- Deterministic vs. probabilistic input data
- Inelastic demand, static locations
- Single vs. multiple facility model
- Output vs. input number of facilities

Bi-Objective Minimization Model

Inputs:

w = scaling factor h_j = demand at node *j* d_{ij} = distance from candidate site *i* to demand node *j*

Decision Variables:

$$X_i = \text{candidate site } i$$

 $Y_{ij} = \text{demand node } j \text{ assigned to candidate node } i$

Minimize Objective Function:

$$Z = \sum_{i} wX_{i} + \sum_{i} \sum_{j} h_{j} d_{ij} Y_{ij}$$
(1)

Bi-Objective Minimization Model

Minimize:

Z :	$=\sum_{i} wX_{i} + \sum_{i}$		Y_{ij}	(1)
Subject to:	$\sum_{i} Y_{ij} = 1$	$\forall j$	(2)	
	$Y_{ij} - X_i \le 0$	$\forall i, j$	(3)	
	$\sum_{j} Y_{ij} h_j \le c_i X_i$	$\forall i$	(4)	
	$X_{i} = 0, 1$	$\forall i$	(5)	
	$Y_{ij} = 0, 1$	$\forall i, j$	(6)	

Implementing the Model

Automation and Integration:

- Excel-Data Management
- Lingo-Optimization
 Application
- MapPoint-Data Mapping Software

Variables Total: Nonlinear: Integers:	6012 0 60	Constraints Total: Nonlinear:	6614 0
– Optimizer Statu State: (Objective: Infeasibility: Iterations:	s Global Optimum 13224.6 0 49213	Nonzeros Total: Nonlinear: Generator Memory 228	
Branches: Best IP: IP Bound:	1207 13224.6 13224.6	Elapsed Runtime (00:00	
	Interrupt Solver	Close Update ir	nterval: 2

Model Results

- Four Approaches
 - 1. Maximized Set Covering Approach
 - 2. Weighted Set Covering Approach
 - 3. Weighted Accessibility Approach
 - 4. Maximized Accessibility Approach
- Activity Recommendations
 - Compared to existing regional facilities
 - General suggestions of activities at each facility

Maximized Set Covering Approach

Minimize number of facilities used to cover demand

Locations

- 1. Marshfield
 - Route 3 & Pine Street
- 2. Harwich
 - Route 6 & Route 137

Weighted Set Covering Approach

- Reduce number of facilities while giving some weight to accessibility
- Locations
 - 1. Marshfield
 - Route 3 & Pine Street
 - 2. Falmouth
 - Sandwich Rd & Hayway Rd
 - 3. Harwich
 - Route 6 & Route 137

Weighted Accessibility Approach

- Maximize accessibility to demand nodes with some weight to minimizing facilities
- Locations

 - 1. KingstonRoute 27 & Route 106
 - 2. Cohasset
 - Route 3A & Beechwood St
 - 3. Falmouth
 - Sandwich Rd & Hayway Rd
 - 4. Harwich
 - Route 6 & Route 137

Maximized Accessibility Approach

- Maximize accessibility of facilities to demand nodes
- Locations
 - 1. Kingston
 - Route 27 & Route 106
 - 2. Falmouth
 - Sandwich Rd & Hayway Rd
 - 3. Harwich
 - Route 6 & Route 137
 - 4. Scituate
 - Route 3A & Henry Turner Bailey Rd
 - 5. Randolph
 - Route 139 & Mill Street

Projected Membership & Recommended Services

• Falmouth

Suggested Activities	Total	6054
Adult Fitness	Age	Percentage
Aquatics	O to 9	11.4%
Arts & Humanities	10 to 19	12.3%
Family	20 to 29	7.5%
Teen	30 to 39	13.6%
Teen Fitness	40 to 49	15.4%
Vacation Camp	50 to 59	13.5%
Youth Sports/Fitness	60 to 69	11.5%
	70 to 79	9.9%
	80 and up	4.8%

- Recommended Services
- Projected Membership Demographics
- Relative Facility Size

Recommended Expansion

• Kingston

Suggested Activities	Total	7882
Adult Fitness	Age	Percentage
Aquatics	0 to 9	14.6%
Arts & Humanities	10 to 19	13.9%
Family	20 to 29	8.8%
Gymnastics	30 to 39	15.9%
Teen	40 to 49	17.0%
Teen Fitness	50 to 59	13.6%
Vacation Camp	60 to 69	6.9%
Youth Sports/Fitness	70 to 79	5.4%
	80 and up	4.0%

- Greatest need
- Between Hanover and Plymouth facilities
- Full-scale facility
- Minimal cannibalization potential

Conclusions

- Suggested new facility in Kingston, MA
- Falmouth & Harwich facilities for underserved Cape Cod demand
- Strong cannibalization concerns for Cohasset/Scituate and Randolph regions

Questions?

Bi-Objective Minimization Model

Minimize:

Z :	$=\sum_{i} wX_{i} + \sum_{i}$		Y_{ij}	(1)
Subject to:	$\sum_{i} Y_{ij} = 1$	$\forall j$	(2)	
	$Y_{ij} - X_i \le 0$	$\forall i, j$	(3)	
	$\sum_{j} Y_{ij} h_j \le c_i X_i$	$\forall i$	(4)	
	$X_{i} = 0, 1$	$\forall i$	(5)	
	$Y_{ij} = 0, 1$	$\forall i, j$	(6)	

Weight Factor Table

Weight Coefficient	Number of Additional Facilities	Estimated Solver Run Time
0-40	13	0 - 5 sec
40-85	12	0 - 5 sec
85-135	11	0 - 5 sec
135-215	10	0 - 5 sec
215-230	9	5 - 10 sec
230-265	8	5 - 10 sec
265-335	7	5 - 15 sec
335-400	6	5 - 15 sec
400-700	5	20 sec - 2 min
700-1375	4	50 sec - 6 min
1375-1550	3	5 - 8 min
1550-4000	2	45 sec - 5 min
>4000	1	0 - 50 sec

Survey

YMCA	Demographic Survey
------	--------------------

	Project. They are looki	ing to collect data from	University Engineers on real YMCA members as to n.
Please take a moment	to help these students	s with their project.	
Age: G	ender: M F	(please circle one)	
Town you live in:			
Town you work in:			
Years as an YMCA Me	ember:		
Type of Membership:	Household Ac		th
Where do you travel	from most frequent	tly to use the YMCA?	
School W (please circle d	/ork Home one)	Other:	
How long do you tray	vel to get to the YM(CA: (please circle or	ne)
nom long do you da			
. .	11-20 minutes	21-30 minute	30+ minutes
0-10 minutes	11-20 minutes		
0-10 minutes	11-20 minutes		
0-10 minutes Primary reason for jo	11-20 minutes bining YMCA: (pleas		
0-10 minutes Primary reason for joFamily Frien	11-20 minutes bining YMCA: (pleas adly essible		