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Abstract of the Dissertation

Unified Tasks and Conduits for Programming on Heterogeneous

Computing Platforms

by

Chao Liu

Doctor of Philosophy in Computer Engineering

Northeastern University, December 2017

Dr. Miriam Leeser, Advisor

Computing platforms for high performance and parallel applications have changed from
traditional Central Processing Units (CPUs) to hybrid systems which combine CPUs with accelerators
such as Graphics Processing Units (GPUs), Intel Xeon Phi, etc. These developments bring more and
more challenges to application developers, especially to maintain a high performance application
across various platforms. Traditional parallel programming methods are usually low-level. They
focus more on data distribution and communications, aiming to generate high performance and
scalable applications. The programs are usually closely related to the underlying platform. Once the
platform changes or programs are ported to different environments, lots of effort is needed to modify
or reprogram.

To reduce development effort and improve portability of applications we need a program-
ming method that can hide low-level platform hardware features to ease the programming of parallel
applications as well as maintain good performance. In this research, we propose a lightweight and
flexible parallel programming framework, Unified Tasks and Conduits (UTC), for heterogeneous
computing platforms. In this framework, we provide high level program components, tasks and
conduits, for a user to easily construct parallel applications. In a program, computational workloads
are abstracted as task objects and different tasks make use of conduit objects for communication.
Multiple tasks can run in parallel on different devices and each task can launch a group of threads
for execution. In this way, we can separate an applications’ high-level structure from low-level task
implementations. When porting such a parallel application to utilize different computing resources
on different platforms, the applications’ main structure can remain unchanged and only adopt appro-
priate task implementations, easing the development effort. Also, the explicit task components can

ix



easily implement task and pipeline parallelism. In addition, the multiple threads of each task can
efficiently implement data parallelism as well as overlapping computation and communication.

We have implemented a runtime system prototype of the Tasks and Conduits framework
on a cluster platform, supporting the use of multicore CPUs and GPUs for task execution. To
facilitate muti-threaded tasks, we implement a task based global shared data object to allow a task to
create threads across multiple nodes and share data sets through one-sided remote memory access
mechanism. For GPU tasks, we provide concise interfaces for users to choose proper types of memory
for host/device data transfer. To demonstrate and analyze our framework, we have adapted a set of
benchmark applications to our framework. The experiments on real clusters show that applications
with our framework have similar or better performance than traditional parallel implementations such
as OpenMP or MPI. Also we are able to make use of GPUs on the platform for acceleration through
GPU tasks. Base on our high level tasks and conduits design, we can maintain a well organized
program structure for improved potability and maintainability.
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Chapter 1

Introduction

In the long era of single core processors, the main improvements derived from higher

frequency and more complex micro-architecture. However, after encountering physical hardware

limitations and energy consumption problems, multicore and manycore technology has become the

main path to providing continuing compute ability improvement. With the massive use of multicore

processors and manycore accelerators, we are now in the parallel era.
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Figure 1.1: Processor Development Trend [1]

In the single-core era, applications, which are sequential programs, can benefit from every
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CHAPTER 1. INTRODUCTION

new generation of processor without changing or reimplementing the applications. However, in the

parallel era, developing applications with parallel programming becomes the critical method to benefit

from hardware improvement. Parallel applications allow a user to take advantage of underlying

parallel processing resources; they also bring more challenges to the application developer. Fast-

changing and complicated hardware platforms compel the applications to be modified to adapt to

the platforms’ new features, thus application portability and maintenance becomes a major problem.

Furthermore, the popularity of dedicated processors or accelerators such as GPUs, FPGAs and other

ASIC chips exacerbates this problem. To utilize new devices, lots of development effort is required to

manage these devices and reprogram the application with specific programming methods. For GPUs

for example, a user needs to manually manage the usage of each GPU in the application, and design

and implement the parallel algorithms through GPU supported programming methods. To produce

high-performance parallel applications, more and more device architectures or hardware features

are exposed to the user. User may need to be familiar with GPU architecture to implement high

performing GPU programs, or may need to learn hardware logic in order to program FPGAs. This

brings more burden to application development, especially for domain experts who are not familiar

with computer hardware. Developing applications and running on various ever-changing platforms

with as little modification of the applications as possible is an important goal in the high-performance

parallel computing area.

Accompanying the advancement of parallel computing hardware, there are also various

parallel programming models or methods proposed to facilitate parallel application development.

For single node systems, shared memory programming methods such as threads [4] or OpenMP

[5], are widely adopted. For cluster systems, message passing model (MPI) [6] is the most popular

programming method. With the development of web technology and the emergence of cloud

computing, programming methods on large distributed systems, such as Mapreduce [7] and Scala

[8] are more and more being used in web service applications. These programming methods are

either implemented through a new language or a language directive plus compiler approach, or

they work using a runtime library and supply APIs for use. Compared to new languages and

automatic parallelization through a compiler, library based approaches are more flexible and often

deliver better performance. They require the user to express parallelism explicitly in the programs,

thus also increasing programming effort. However, traditional parallel programming methods,

especially for high-performance computing, are usually low-level programming. They focus more

on data distribution and communication aspects, aiming to generate high performance and scalable

applications. The programs usually are closely related to the underlying platform. Once the platform

2



CHAPTER 1. INTRODUCTION

changes or programs are ported to different environments, lots of effort is needed to modify or

reprogram. Using accelerators requires even more effort to manage the devices, combining different

programming models or methods together in parallel applications. To solve these problems, we

need a programming method that can hide low-level platform hardware features to ease the parallel

application development and improve portability and maintenance. This is where the tasks and

conduits model (TNC) [9] is proposed. TNC provides simple and concise high-level concepts

(tasks and conduits) to abstract the computation and communication workloads. An application

composed of task and conduit components is intended to run across a variety of platforms with little

modification.

The original TNC implementation mainly targeted signal processing applications. The

task and conduit components were adapted to the features of signal processing applications, limiting

the applicability of TNC. Thus it was not easy to extend to support new hardware features. To this

end, we propose a lightweight and flexible framework based on the TNC model. In this framework,

parallel application development is divided into two levels: the higher main structure level, which is

constructed with task and conduit components; and the lower task implementation level, which uses

platform preferred programming methods to realize customized computation. With this framework,

we can explore the balance between program portability, adaptability, and performance. When

porting applications to different platforms, the program main structures stay unchanged and only the

task implementations change, reducing development effort. Task implementation is still low level

and platform related, but with a well-defined interface and glue code, common computations can be

implemented as task templates or libraries for easy reuse. Furthermore, by extending and integrating

different target computing devices into the framework, a user can continue benefiting from new

devices with less effort, mainly focusing on application design and algorithm implementation.

The primary contributions of this dissertation work are:

• Unified Task and Conduit framework: Based on the TNC model, we introduce a lightweight

and flexible parallel programming framework, UTC, which aims to help the user develop

parallel applications on heterogeneous computing platforms with improved portability.

• Framework runtime system: To support the UTC framework, we design and implement a

runtime system on a cluster platform. Through a library based approach and the C++ language,

we create Task and Conduit classes, together with other utility functions, to enable a user to

easily define and instantiate tasks and conduits to construct parallel applications.

3



CHAPTER 1. INTRODUCTION

• Multi-threaded task execution: We design and implement task execution with multiple

threads. This enables users to implement tasks as multi-threaded parallel programs to explore

data parallelism easily, utilizing multicore processors for execution.

• Task-based global shared data object: We implement a task-based global shared data object,

which enables multi-threaded task programs to run on multiple nodes, sharing data sets through

global shared data objects and accessing data with one-sided remote memory access (RMA).

• GPU task support: We extend the framework runtime and implement utilities and glue

functions to control and manage GPUs, supporting users to program GPU kernels with CUDA

and create GPU tasks to make use of GPUs for acceleration. Through CUDA context and

CUDA stream binding, users can utilize a single GPU or GPU clusters effectively. Further,

we provided uniform and simple interfaces to facilitate users choosing and exploring different

types of memory for host/device data transfer when implementing GPU tasks.

• Use of framework for application development: We ported a set of benchmark applications

with the UTC framework to analyze and demonstrate the usability as well as the performance

of the framework and its implementation on a heterogeneous cluster platform.

The remainder of this dissertation is organized as follows: Chapter 2 discusses some back-

ground and related work about parallel computing platform and programming models and methods.

Then Chapter 3 details the framework design and framework implementation on heterogeneous

cluster platforms. We discuss the GPU support in our framework runtime as well as the task based

global shared memory design and implementation. Chapter 4 shows the development of benchmark

applications and experiments and analysis of running these applications on real clusters. Chapter 5

gives a summary and some future work.

4



Chapter 2

Background

2.1 Modern Parallel Computing Platforms

With decades of development of computer architecture and hardware technology, multicore

and manycore processors have become prevalent. Also, coprocessors or accelerators, such as

Graphics Processing Units (GPUs), which in the past were used in limited and specific applications,

are now more and more being used for general computing, due to improvements in software and

hardware techniques [10]. The fast changing and wide use of these new processors has led to the

rapid improvement of parallel computing platforms.

2.1.1 Multicore and Manycore Processors

After encountering physical limitations in designing single core processors, computer

hardware vendors moved to multicore technology. The basic multicore CPU architecture is shown

in Figure 2.1. In a multicore processor, each core has its own instruction fetch unit and execution

unit. L1 cache and L2 cache usually are private for each core and fully coherent, while all the cores

share the L3 cache. All the cores share a common system memory and can execute instructions

in parallel. Today, from high-end server computers to personal desktops or mobile devices, all are

using multicore processors to provide powerful processing capabilities. Current development trends

show that the number of CPU cores will keep increasing. The latest AMD Zen architecture CPU will

comprise up to 32 cores, and can execute 64 logical threads in parallel with hyper-threading [11].

Besides traditional multicore CPUs, coprocessor and accelerator technology also keeps

improving, especially the prevalence of using GPUs for general purpose computing. There are many

5
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Figure 2.1: Simplified Multicore Processor

differences between CPUs and GPUs. A GPU has many more processing cores (called streaming

processors-SPs) than a CPU. For example, the NVIDIA Pascal GPU (GP100) contains up to 3840

SPs. However, the logic complexity of each SP is much simpler than CPU cores and operates at a

lower frequency.

The general architecture of NVIDIA GP100 GPU is shown in Figure 2.2. As shown, it

contains 6 Graphics Processing Clusters (GPCs), and each GPC has 10 Streaming Multiprocessors

(SMs). In each SM, there are 64 SPs, or a total of 64 × 10 × 6 = 3840 cores. All the GPU cores

share a 4MB L2 cache and can access up to 16GB off-chip global memory. For each SM, 64 SPs

share a 64KB L1 cache and 64KB local shared memory which can be explicitly allocated for access

in users’ programs. More detailed features of this GPU architecture are described in [2]. Through

thousands of processing cores, GPUs can perform massively parallel computation and provide

dramatic acceleration. One GP100 GPU can achieve 10 TFlops single precision peak performance.

Another popular recent accelerator is the Intel Xeon Phi coprocessor [12]. In 2006 Intel

initiated its manycore processor development with the Larrabee project [13]. Inheriting from Larrabee,

Intel announced its development of Many Integrated Core (MIC) architectures, based on which Xeon

Phi processors are developed. The first generation of Xeon Phi processor was revealed in 2012,

named the Knights Corner (KNC) processor. Now the second generation of Xeon Phi processor,

named as Knights Landing (KNL), is available. The micro architecture of KNL is show in Figure 2.3.
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NVIDIA Tesla P100 WP-08019-001_v01.1  |  10 

GP100 GPU Hardware Architecture In-Depth 

GP100 was built to be the highest performing parallel computing processor in the world to address the 
needs of the GPU accelerated computing markets serviced by our Tesla P100 accelerator platform. Like 
previous Tesla-class GPUs, GP100 is composed of an array of Graphics Processing Clusters (GPCs), Texture 
Processing Clusters (TPCs), Streaming Multiprocessors (SMs), and memory controllers. A full GP100 
consists of six GPCs, 60 Pascal SMs, 30 TPCs (each including two SMs), and eight 512-bit memory 
controllers (4096 bits total). 

Each GPC inside GP100 has ten SMs. Each SM has 64 CUDA Cores and four texture units. With 60 SMs, 
GP100 has a total of 3840 single precision CUDA Cores and 240 texture units. Each memory controller is 
attached to 512 KB of L2 cache, and each HBM2 DRAM stack is controlled by a pair of memory 
controllers. The full GPU includes a total of 4096 KB of L2 cache.  

Figure 7 shows a full GP100 GPU with 60 SM units (different products can use different configurations of 
GP100). The Tesla P100 accelerator uses 56 SM units. 

 

Figure 7. Pascal GP100 Full GPU with 60 SM Units 
Figure 2.2: GP100 GPU Architecture [2]

It has up to 72 cores which are divided into 32 Tiles connected by a 2D mesh network. Each Tile

includes two cores and shares a 1MB L2 cache. All 72 cores share 16 GB on-package memory and

also can access very large external system memory through 6 DDR4 channels. Every core can have

up to 4 threads active simultaneously, running a total of 288 threads in parallel and providing 6 TFlops

single precision peak performance. Compared to GPU, a key feature of the Xeon Phi processor is

that it aims to provide a general purpose programming environment similar to the traditional CPU

environment. The Xeon Phi processor is ISA compatible with the x86 Intel Xeon CPUs and supports

the common x86 memory order model, therefore it is capable of running applications written in

traditional programming languages such as Fortran or C. Because of its general purpose features, the

Xeon Phi processor can run general operating systems. It can be either used as a PCI-e device in

conjunction with host Xeon CPUs, similar to GPU, or be used as a stand-alone general purpose CPU.

In addition to making use of GPUs or Xeon Phi coprocessors to accelerate general purpose

computing, more and more dedicatedly designed hardware is used for domain specific applications.

For example, in the data center and deep learning areas, FPGAs are recently adopted to increase data

processing speed as well as reduce power consumption [14, 15].
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Figure 2.3: Intel Xeon Phi Knights Landing Micro Architecture [3]
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2.1.2 Heterogeneous Computing Platforms

The use of various processors in a system converts the traditional homogeneous computing

platform to a novel hybrid heterogeneous system. A typical structure of parallel computing platforms

is show as Figure 2.4.

CPU

core0 core1

core3core2

Accelerator

memory

CPU0

CPU1

core0 core1

core3core2
Accelerator1

Accelerator0

Node	n

Main	memory

memory

memory

Node0

Node1

Network

Figure 2.4: Parallel Computing Platform Architecture

In this platform, a compute node may have one or more traditional multicore CPUs that run

the operating system and execute I/O, network and other services, as well as have direct access to main

memory. In addition, there may be one or several accelerators in a compute node which can execute

workloads when a control program running on the CPU assigns work to them. Usually, accelerators

have their own device memory and cannot access main memory directly. Several compute nodes are

connected through a high-speed network fabric, forming a cluster. This platform contains lots of

multicore and manycore processors, providing plenty of parallel computing resources. On the other

hand, the combination of different kinds of processors and complicated memory systems bring more

and more challenges to developing and maintaining high-performance parallel applications on such

platforms.
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2.2 Programming Methods for Parallel Platforms

Targeting parallel computing platforms, there are many parallel programming models and

methods that have been proposed to assist users to design and develop applications that explore the

computing ability of these platforms.

2.2.1 Traditional Parallel Programming Models

Based on the memory accessing features in parallel computing systems, there are two

primary parallel programming models, shown in Figure 2.5: Shared memory and distributed memory.

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory Memory

Shared memory model

Network

Distributed memory model

Figure 2.5: Two Basic Parallel Programming Models

Shared Memory Programming Model

With the shared memory model, parallel jobs run on different cores but share the same

memory address space. Parallel jobs can share information with each other directly through shared

memory, and data communications between parallel jobs occurs implicitly. Therefore there is less

burden for the user to develop parallel applications with this model. The user does need to care

about the consistency of shared data and apply synchronizations properly. However, shared memory

programming models are only suited to single compute nodes, so a user cannot develop applications

to run on multiple nodes.

The most common and widely used parallel programming methods with this model are

POSIX Threads (Pthreads) [4] and OpenMP [5]. Pthreads is a library-based programming method. It

standardizes and implements a set of functions for users to create and manage multiple threads that

run concurrently in the system. With Pthreads, users have full control of every thread, and users need
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to manage threads properly to avoid data races and deadlock. It is a challenge for the user to handle

parallel programs when the number of threads gets very large.

OpenMP, which is implemented based on Pthreads or other threading libraries, uses a set

of compiler directives to assist the compiler in generating parallel programs automatically. It allows

users to insert compiler directives in their C or Fortran programs. And with the help of the compiler

and runtime libraries, groups of threads will be generated for parallel execution. Unlike Pthreads,

threads in OpenMP programs are spawned and managed implicitly, without the users’ attention,

so it is easier for users to develop parallel programs with OpenMP, especially to implement data

parallelism for loop structures.

Distributed Memory Programming Model

For clusters of compute nodes connected by a network, each node has its own memory

and they are physically separated. The distributed memory programming model assists parallel

application development. On such a platform Message Passing Interface (MPI) is the de facto

standard distributed memory programming model. The most critical part of MPI is that it provides a

set of library routines to implement efficient data communications between parallel jobs across a

network. With MPI, users can initialize a group of processes for parallel execution. These processes

can either run on a single node or on a cluster of nodes. Each process has its own memory address

space for data access. Different processes may complete data communication through invoking MPI

send/receive functions no matter whether they are on the same node or not. Through MPI, users can

develop parallel applications running on a large number of compute nodes. However, the performance

of parallel programs usually highly depends on the communication pattern in the programs as well as

the implementation of network data transfer in MPI runtime libraries. Also, because MPI programs

use an explicit two-sided message passing pattern to implement parallel algorithms, developers need

to coordinate the data distribution and movement explicitly in the program. This is harder to program

than the shared memory programming model. Widely used MPI implementations include MPICH

[16], MVAPICH [17] and OpenMPI [18].

Partitioned Global Address Model

Benefiting from improvements in network hardware and software, especially Remote

Memory Access (RMA) techniques, it is possible to virtualize remote memory access operations

as local memory access, using one-sided communication instead of two-sided communication.
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Therefore the Partitioned Global Address Model (PGAS) [19] is proposed. In PGAS, multiple pieces

of distributed memory are virtually mapped to a single memory address space and shared by all the

processing cores as shown in Figure 2.6. Each core can access data in the virtual global space directly

no matter where in memory they are. The PGAS model extends the traditional shared memory

concept to a distributed memory environment, allowing a group of processes to share a virtual global

memory space across multiple nodes. It makes use of one-sided communication mechanisms and

enables users to access remote data from different processes with the same address pointers.

Memory

CPU CPU CPU

Virtually Shared Global Memory

Memory Memory

Network

Figure 2.6: PGAS Model

Currently, the PGAS model is implemented in two manners. One is language-based

implementations, such as Unified Parallel C [20], Titanium [21] and Co-Array Fortran [22]. These

programming languages usually extend C or Fortran and use compiler and runtime libraries to realize

the PGAS memory model implicitly. The other direction is library-based, such as OpenSHMEM

[23]. Similar to MPI, it provides a set of libraries routines to allow users to perform one-sided and

direct data accessing operations.

2.2.2 Programming Languages and Methods for Accelerators

The above parallel programming methods or languages all target CPUs. Due to the archi-

tecture differences between CPUs and accelerators, specific programming methods are introduced to

develop parallel programs for accelerators.

12
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CUDA [24] is one of the most popular programming languages for programming GPUs.

CUDA was developed by NVIDIA for implementing general purpose computing on their GPU

products. By extending the C/C++ grammar and adding a series of functions, CUDA enables users

to initialize GPU devices, transfer data between main memory and GPU memory and launch kernel

programs on GPUs. A GPU kernel program which utilizes a GPU for execution is composed of

tens of thousands of GPU threads. Each GPU thread runs on a GPU core. In order to implement

parallel programs, CUDA introduces a two levels of threads and memory hierarchy pattern to map

the massively parallel GPU program threads to a GPU architecture effectively. The unique features

of GPU architectures make programming GPUs much different from programming CPUs, and lots

of algorithms need to be redesigned and reimplemented. To design a high quality parallel application

on GPUs also requires developers to be well informed about GPU architecture. All these increase the

burden and difficulty of developing parallel applications on GPUs.

OpenCL [25] is another popular programming method for GPU. Unlike CUDA which only

supports NVIDIA GPUs, OpenCL is an open standard for programming manycore architectures.

Both AMD GPUs and NVIDIA GPUs provide implementation support for OpenCL. AMD also

supports running OpenCL programs on their multicore CPUs. OpenCL has a similar threads/memory

hierarchy pattern as CUDA, so parallel algorithms designed with them are similar. In addition

to CUDA and OpenCL, OpenACC [26] is another programming language for GPUs. It adopts

the concepts of OpenMP. By inserting compiler directives in sequential programs, the compiler

will generate the parallel kernels for running on GPUs. This approach reduces the difficulty of

programming on GPUs. However, the performances of programs highly depends on the compiler

and is not always good quality.

2.2.3 Hybrid Parallel Programming

Different parallel programming models or methods have different features and may be

preferable in different situations. Using a mixture of different programming models, also known as

hybrid parallel programming [27], is being explored for better performance. For example, MPI is

used for distributed memory systems. It provides well-defined communication methods for running

parallel programs crossing multiple compute nodes. Meanwhile, it is easier and intuitive to use a

shared memory parallel programming model on a single node with multicore CPUs. Thus “MPI

+ X” hybrid parallel programming methods are used to develop applications on multicore cluster

platforms. The most common experience is mixing MPI and OpenMP [28]. For accelerators such
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as GPUs, CUDA and OpenCL are usually used to develop programs to be run on single GPUs. To

make use of multiple GPUs at the same time, other programming tools are needed. MPI + CUDA or

Pthreads + CUDA are frequently used for programming GPU clusters.

2.3 Task Parallelism and the TNC Model

Traditional parallel programming models or methods are usually low level. They focus

primarily on data distribution and are suitable for implementing data parallelism for a kernel function

in an application. They lack the abstraction of task parallelism. For an application composed of

several workload parts, it is hard to use these parallel programming models to express the applications

using higher level components. Because of the low-level features of traditional programming methods,

when changing from one platform to another, lots of modifications to the application are required

to target a new platform. This increases the burden to develop and maintain parallel applications.

Also using these low-level programming methods, users need to familiarize themselves with the

features of each hardware platform to tune parallel applications. This makes it much harder for

domain experts who lack hardware knowledge or are not familiar with novel processing devices to

produce high quality parallel applications.

ReadFile task:
       Open files;
       Read data from files;
       Put data in a Conduit;
       Close files;

WriteFile task:
       Open files;
       Fetch data from a Conduit;
       Write data to files;
       Close files;

DataProcessing task:
       Fetch data from a Conduit;
       Process the data;
       Put data in a Conduit;

Application:
        /* creating necessary jobs */
        Define a ReadFile task instance task1;
        Define a DataProcessing task intance task2;
        Define a WriteFile task instance task3;
        Define two conduit instance;
       
        /* running jobs */
        Run task1;
        Run task2;
        Run task3;

Figure 2.7: Application with TNC Model

The Tasks and Conduits (TNC) model provides well-defined concepts for implementing

task parallelism in an application. TNC allows a user to express explicit task parallelism easily and

naturally. Using the TNC model as a high-level abstraction for applications was first presented in

[9]. To facility the development of signal processing applications, the authors provided a Parallel
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Vector Tile Optimizing Library (PVTOL) to help developers create portable parallel programs on

multicore platforms and the TNC model is used to design and implement applications. A typical

application using the TNC model is shown in Figure 2.7. In this model, tasks are the abstraction

of computation workloads; conduits are the abstraction of data transfer between different tasks.

Different computationally intensive pieces of an application can be defined as several task objects and

these tasks cooperate through conduits. Inside each task, detailed computational logic is implemented.

In this way, an application’s main structure can be expressed at the task level, which is independent

of the task implementation and execution on a specific platform. The variety of features available in

hardware can be hidden from software applications. This library is also extended to support running

applications with GPUs [29]. However, PVTOL is mainly targeted at signal processing applications.

The task implementation works in a strict SPMD pattern: each parallel job of the task works on its

own data. This restricts the usage of this model. Also, the task and conduit components are not

implemented as a single layer, making it hard to change and extend.

2.4 Related Work

As multicore and manycore processors become prevalent, there is growing research interest

in parallel programming and developing parallel applications. Data parallelism and task parallelism

are the two primary patterns to design and implement parallel applications. To implement data

parallelism, OpenMP and MPI are still the most widely used programming methods in shared

memory and distributed memory systems. Through compiler directives OpenMP provide an easy

way to help users run programs with multiple threads for parallel processing on single node shared

memory system. MPI, on the other hand, maintains a set of high performance communication

methods to enable users to implement and run parallel programs on distributed cluster system.

But the explicit message pattern and distributed memory requires more programming effort. Our

framework implementation combines the shared memory feature and message passing feature

together: a single task can be implemented as a multi-threaded parallel programs in which shared

memory concepts are applied; different tasks communicate and move data through conduits explicitly

which has the message passing feature.

The PGAS model introduces a distributed shared memory space to ease programming

effort with a shared memory model and one-sided communications. Under the PGAS model, memory

blocks on one node can be virtually shared with other nodes through one-sided remote memory access.

This one-sided RMA communication gives users more flexibility to move data sets between parallel
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units and overlap communication with computation. Some PGAS implementations are built upon

GASNet [30]. There is also research for realizing PGAS based on MPI one-sided communications

[31, 32, 33, 34]. In this work we also utilize MPI to carry out the one-sided RMA operation. But

unlike those works which aimed to build up a system wide PGAS memory model, we make use

one-sided RMA to realize distributed shared memory within our task framework, and enable users to

implement data parallelism for a task on a distributed platform easily.

Besides data parallelism, task parallelism is another important path to develop parallel

applications. To support task parallelism, OpenMP3.0 introduces the “#pragma task” directive to

allow the user to identify a code block as a task that can run concurrently with the main program.

OpenMP4.0 [35] introduces the “#pragma target” clause to support offloading code to accelerators.

This ability relies on compiler support, such as Intel OpenMP for Intel Xeon Phi [36]. Some low

level thread libraries can also be used to implement task parallelism. Linux system native thread

library Pthreads is the most widely used. Many programming languages and methods make use of

Pthreads library implement parallel execution. In our work we also use the Pthreads library to create

parallel threads as the basic execution unit. Besides Pthreads other low level thread libraries like Intel

Thread Building Block (TBB) [37], Qthread [38] are also used on different platforms. Using these

low level thread libraries to implement parallel applications requires lots of effort by users. But using

our framework, a user only needs to specify the number of threads when creating a task instance and

the framework runtime system will spawn and launch the required threads for each task correctly and

provide helper functions to do synchronization. So the user can focus on the application logic with

little concern about thread creation and management.

The PGAS model introduces a distributed shared memory space to ease programming

effort with a shared memory model and one-sided communications. It lacks the ability to dynamically

spawn parallel activities, so Asynchronous PGAS (APGAS) [39] is proposed to improve the task

parallel support. X10 [40] is a representative programming language of APGAS. By extending the

Java language, X10 introduces place and async keywords for the user. place stands for an execution

context that contains many ongoing activities, and usually, each node has a place where programs

start running on that node. The runtime system will convert a function declared with async to a task

(an activity) that will be scheduled to run asynchronously. A task can be spawned to run in any place

and cannot migrate once started. Data are transmitted between different places with a one-sided

communication pattern. Each task’s input/output info must be provided by the user and the X10

runtime will use this info to build a data flow graph which is a Directed Acyclic Graph (DAG). Based

on this graph, the task scheduler will schedule and run all tasks for better load balancing. In X10, a
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task can only access the data of its resident place. To access remote data, one needs to first spawn a

task with async on a remote place and then process the data access or transfer. So the programmer

is primarily responsible for decomposing the application’s data across the system and creating and

organizing the asynchronous tasks accordingly. Using the same APGAS runtime infrastructure as

X10, ClusterSs [41], a member of the StarSs program family [42], enables the user to select functions

in a serial program, and run these functions asynchronously and concurrently based on a data flow

driven model with the help of compiler and runtime system. OmpSs [43] is another programming

method that aims to support task or function parallelism as well as high programmer productivity.

OmpSs combines the ClusterSs’s ability of asynchronous task creation and OpenMP’s compiler

directives features. Using directive statements, the compiler automatically generates programs with

asynchronous tasks. Then tasks are scheduled and run on clusters the same as ClusterSs.

These programming methods are trying to help the user express task parallelism in an

application more easily. The tasks created in these methods are usually very lightweight tasks,

such as small functions or several lines of statements in a loop structure, so they are more like

function parallelism. All tasks are run based on their data dependencies, so the compiler analysis

and scheduler is critical to these systems. In our work, we are not focusing on fine-grained task

scheduling and load balancing. Here we introduce a global shared memory mechanism based on

our high level task design to enrich the task capability of expressing data parallelism. The task

parallelism is explicitly expressed by user with the high level task components. We utilize these

high level task abstractions to isolate the low level task implementation from applications’ program

structure for improved potability. Also these programming methods usually relies on their specific

compiler’s support which make them hard to change to fit various systems and platforms. In our

work, programs are composed and compiled with standard C++ language and compiler, and linked

with our framework runtime libraries to run. So it is easier for us to make changes to adapt to the

underlying platforms, such as adding new features due to the improvement of underlying libraries or

support new hardware like GPUs.

Besides parallel programming with traditional CPUs, programming with accelerators,

especially GPUs, attracts a lot of research interest. CUDA and OpenCL are two primary programming

approaches for GPUs. But producing high performed CUDA or OpenCL programs is not easy

and usually require the users to be familiar with GPU hardware features. To ease programming

difficulty, new programming language features and compilers are introduced to help user generate

GPU programs automatically. OpenAcc [26], OpenMP and X10 to CUDA [44] allow users to insert

compiler directives to let a compiler generate GPU programs automatically. But it is hard to guarantee
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the quality of generated code [45]. Along with compiler approaches, library or algorithm template

based approaches also reduce programming difficulty and can provide high performance, for example

cuFFT and the Thrust library [46]. Similar to Thrust, SYCL [47] introduces specifications of a C++

template library and SYCL device compiler, which enable users to run C++ programs on OpenCL

supported heterogeneous platforms. In our work, we adopt a hybrid programming approach to allow

users to mix CUDA implemented computational kernels into specific task implementations to utilize

GPUs for acceleration. Users are responsible for implementing the CUDA kernels, but the GPU

execution environment is already setup by the framework runtime. So it is easy for users to make

use of the available GPUs of a platform for kernel execution. Also, due to the hybrid programming

pattern and task design, users can make use of existed CUDA programs or libraries like cuFFT and

cuBLAS to realize their own kernels efficiently.

Features Pthreads/
OpenMP

MPI OpenSHMEM/
UPC

X10/ClusterSs/
OMPSs

PVTOL UTC

Shared Memory

Distributed  
Memory

One-sided  Remote  
Memory Access

Dynamic Tasks 
Creation/Execution

Fine-grained Task 
Scheduling

High-level Program 
Components

Heterogeneous 
Platform  Support

Easily Extensible

�1

Figure 2.8: Features of Different Programming Tools and Methods

Generally, we introduce a unified tasks and conduits framework and implement a light

weight runtime to help users develop parallel applications on heterogeneous platforms. Under this

framework, the user expresses coarse-grained parallelism with multiple tasks. In each task, a user can

further explore fine-grained data parallelism through multiple threads. We use the C++ language and

implement our framework through a library-based approach, which is easier to extend to add new

features, such as running tasks on GPUs. Compared to existed work, our approach combines different

18



CHAPTER 2. BACKGROUND

features together, like shared memory and message passing, data parallelism and task parallel. Also

we focus more on the portability and maintainability of parallel applications and aim to help user to

develop well structured applications through this framework. A comparison of features of different

programming tools and methods is show as Figure 2.8. No other approach is as comprehensive as

UTC.
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Methodology and Design

This chapter introduces the methodology of designing the Unified Tasks and Conduits

framework. To support the framework, we implement a thin runtime system prototype on hetero-

geneous cluster platforms. We will show the interfaces used to define and create task and conduit

instances and how parallel threads are organized for each task. Also we provide a task based global

shared memory for users to easily develop parallel applications on cluster platforms.

This chapter contains four subsections. 3.1 shows the overall design of the UTC framework

and how parallel applications are organized based on this framework.

Section 3.2 details our implementation of the framework runtime system. We introduce

the basic interfaces and functions provided for users to develop applications through this framework.

We detail the tools and methods to realize parallel execution of tasks and data movement of conduits

for cluster platforms.

In section 3.3 we describe the framework extensions to support creating and running GPU

tasks. We provide an environment for users to invoke and run CUDA implemented GPU kernels to

make use of available GPUs on the platform for acceleration.

Section 3.4 shows the design of task based global shared memory. We implement global

shared data for users to run multi-threaded tasks on distributed platforms and share data sets through

one-sided remote memory access. In this way, a single task is not limited to a single node and is able

to scale to multiple nodes for better performance.
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3.1 Unified Tasks and Conduits Framework

Developing high performance parallel applications on heterogeneous platforms is hard,

and rapidly changing hardware features and platforms makes the situation even worse. The available

parallel programming methods are usually low level. They focus more on data distribution and

communications, aiming to generate high performance and scalable applications on specific platforms.

The programs usually are closely related to the underlying platform. For an application composed of

several workload parts, it is hard to use these parallel programming models to express the application

at a higher level, which abstracts different workload parts as tasks and separates an application’s

high level structure from the lower level task implementations. Due to the low level features of

traditional parallel programming methods, when the platform changes, lots of modifications to the

application are required to target a new platform. Also, users may need to familiarize themselves

with the hardware features of the platform to tune parallel applications. This makes it much harder

for domain experts who lack hardware knowledge or are not familiar with novel processing devices

to produce high quality parallel applications.

Application high level 
structure logic

Task instance

Task instance

Task instance

  

Task implementation libraries

User provided task 
implementations

TnC functions and methods Supported Low- level 
programming methods

Low level computation 
logic

Figure 3.1: TNC Model Based Application

To reduce development effort and improve portability of applications, we need a program-

ming method that can hide or separate low level platform features from the high level application

implementations to ease the programming of parallel applications as well as maintain good per-

formance. This is why the TNC model is introduced. In this model, tasks are the abstraction of

computation workloads while conduits are the abstraction of data transfer between different tasks. A

parallel application is comprised of tasks which are responsible for different computational work

loads and can run in parallel, as shown in Figure 3.1. Through this model, we can decouple the
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application structure from the hardware platform easily and conveniently.

Based on the TNC model and targeting heterogeneous parallel computing platforms, we

propose the Unified Tasks and Conduits (UTC) framework. As shown in Figure 3.2, the UTC

framework includes a series of interfaces/functions and a runtime library. Application developers

define and implement necessary tasks and conduits to form parallel applications with the interfaces

and functions, while the runtime system helps to set up the parallel execution and realize data

movement on target platforms.

Task1 Task2 Task3 TaskN

UTC Interfaces/methods

Application

helper utilities

UTC runtime

Other supporting runtimes/libraries

CPU0

CPU1

core0 core1

core3core2
Accelerator1

Accelerator0

Node1 CPU0
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core0 core1

core3core2

Accelerator1

Accelerator0

Node2

n
etw

o
rk

Main memory Main memory

memory

memory memory

memory

Platform

{    Define Task1, Task2,   , TaskN
     Define Conduit1, Conduit2, ...

Call Task1::run
Call Task2::run

Main structure :

 ..    }

Task1::Impl {...}

Task1::Impl {...}

TaskN::Impl {...}

Task imple mentation :

Figure 3.2: UTC Framework Overview

Using this framework, application development includes two levels. At the high level, the

user mainly focuses on creating the necessary task/conduit components to construct the application,

while at the low level, the user can implement each task through various programming methods based

on the target platforms. Different task implementations can be easily organized in a library for reuse.

In this way, an application’s main structure can be expressed at the task level, which is independent

from the task implementation and execution on a specific platform. For different platforms, we

may have different task implementations. When running or porting such an application to different

platforms, the application main structure can remain unchanged and only adopt appropriate task

implementations, reducing the effort of developing and maintaining parallel applications.
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3.2 Framework Implementation for Cluster Platforms

As described above, the UTC framework defines a set of interfaces/methods and needs a

runtime library to support developing and running parallel applications. In this section, we discuss

the details of framework design and runtime system implementation.

3.2.1 Framework Runtime System Design

Supporting software for framework implementation

Our framework aims to facilitate developing parallel applications, so there are two basic

works we need to implement in this framework: create the parallel execution environment and realize

the data movement for parallel programs. Also, our target platforms are GPU based heterogeneous

cluster platforms, so there are various tools and libraries we can use to build up our framework

runtime system. The overall framework software stack is shown as Figure 3.3.

Applications

Framework interfaces/methods

Framework runtime libraries

Thread Libraries (Pthreads) GPU support runtime(CUDA)

Network communication libraries (MPI)

Linux OS

Figure 3.3: Framework Software Stack

In our design we use threads as the basic execution unit, so we need the support of thread

libraries. Various thread libraries can be used [4, 38, 37]. Here we choose the Pthreads library as our

underlying library runtime. Pthreads is the Linux system’s native supplied standard thread library,

so it is supported by a large number of Linux systems and platforms; it is a low level thread library

and supports system related low level management such as CPU binding. The low level features

also increase the difficulty of using Pthreads directly for application development. However, our

framework runtime will take care of thread creation and management, providing simple methods
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for a user to interact with multiple threads. Further, because we use system native threads as the

basic execution unit, this gives users the flexibility to manipulate the threads for fine-grained low

level operation. In addition to the thread library, we also rely on the CUDA runtime to provide GPU

support in our framework. The CUDA programming language together with NVIDIA GPUs are the

most popular programming method and accelerator in current high performance computers. There

are rich CUDA applications and libraries for users to use for application development. We choose

CUDA as the underlying GPU support software.

Our target platforms are distributed cluster platforms, so we need to be able to execute

programs on multiple nodes and carry out data communication across the network. Several software

packages can be used to accomplish these aims [48, 49]. In our framework implementation we use the

MPI library. MPI is the most popular programming approach for distributed platforms and it fulfills

our requirements. Through the MPI runtime we are able to launch processes on distributed nodes

to initialize parallel execution on multiple nodes at the same time. More important, MPI defines

and provides a rich set of communication methods for us to realize data communication. Based on

MPI runtime, the complex network structure and fabric features are hidden from us, simplifying our

framework runtime implementation.

Runtime design for multicore cluster platform

Based on the underlying software and libraries, we first design and implement a run-

time system prototype for multicore cluster platforms. To provide high level abstract components

(task/conduit) for implementing parallel applications in our framework, we leverage object oriented

programming methods (C++). In object oriented programs, an object is the integration of data and

specific operations on that data. This is well suited to the TNC model where tasks and conduits are

treated as two basic objects. Combining C++ object design and parallel threads, the UTC runtime

overall design is show in Figure 3.4.

In a task object, the data members contain source data and results data that will be accessed

and used for computation, as well as some other necessary arguments. The member functions define

and implement specific computational logic or algorithms. The conduit object works as the bridge

between different task objects, containing internal buffers and providing methods for transferring data

between task objects. The parallel execution flows are represented by multiple threads. Each task

object is bound to one or several threads, and invokes threads to execute certain member functions.

Under this framework, when running an application, N processes (UTC process) are started
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Figure 3.4: UTC runtime overall design

by the system and execute the application program in a SPMD pattern. Every process has a unique id

(from 0 to N-1). In our design, we assign one process to a compute node, thus each process represents

a unique node in the cluster. One UTC process stands for one compute node.

1. When creating a task to run on a single node, a task object is instantiated in the UTC process

of that node. Also one or several threads can be launched in the same UTC process. These

threads serve this task and are bound with the task object, like “taskB” in Figure 3.4.

2. When creating a task to run on several nodes, in each UTC process of these nodes, a task object

is constructed and bound to the demanded number of threads, such as “taskA” in Figure 3.4.

So, in our framework, a task is composed of one or multiple task object instances

and a group of threads which can perform computations in SPMD. Different tasks can perform

parallel computations using the MPMD paradigm. Thus parallel applications can express both data

parallelism and task parallelism easily and naturally in the UTC framework. In a program, the user

needs to provide mapping information that indicates which nodes a certain task will be executed on.

On each node, a thread can use any core for execution depending on the scheduler of the operating

system. By default, multiple threads are not mapped to fixed processing cores. Our framework allows

the user to bind threads to certain cores. With the help of this framework, we can define and create

necessary task and conduit objects, and invoke predefined interfaces and methods to construct the

main structure of an application. Then, in different tasks, we implement the necessary computational

algorithms with supported runtime tools and libraries.
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3.2.2 Basic Interfaces

As discussed above, task object and conduit object are two primary objects used in our

runtime system. Along with them several methods are provided to perform certain operations. Some

basic classes and interfaces defined in UTC are listed in Table 3.1. The user specifies a class which

inherits the UserTaskBase class and realizes computational kernels under certain interfaces. This

class can then be used as a class template (tepmlate T) to create utc task objects. When a utc task is

constructed, a group of threads are also launched waiting for signals to perform the computational

workload. With these classes and methods as well as other complementary utility functions, it is easy

for a user to implement parallel application.

Table 3.1: Basic Classes and Methods

Class/Methods Description

class UtcContext; Construct and initialize UTC environment in program.

class<template T>Task; Create a utc task object with user supplied template T.

Task::init; Signal task threads to execute T::initImpl.

Task::run; Signal task threads to execute T::runImpl.

Task::wait; Wait for task threads’ work complete.

Task::finish; Terminate task threads.

class Conduit; Construct utc conduit object between two tasks.

Conduit::read; Fetch data from conduit object.

Conduit::write; Put data to conduit object.

class UserTaskBase; A interface class for user to implement specific workload.

UserTaskBase::initImpl; Interface for user to implement initial work.

UserTaskBase::runImpl; Interface for user to implement computation kernel work.

3.2.3 Task Implementation

Task creation

In the design of the UTC framework runtime, we start one process (UTC process) on

each compute node and then generate groups of threads in each process to run. To start up multiple

UTC processes executing both locally and remotely, we make use of an MPI library in our framework

runtime. Applications are initialized through the mpirun command which launches a number of
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processes on multiple nodes. Each UTC process has a unique ID number which equals the MPI rank

value of this process. After the UTC processes are started, the user can simply define and create a

task with:

Task<USER TASK> task instance(proc list, ...);

There are two important required arguments:

1. USER TASK: This is a user defined class template, inside of which the user’s specific compu-

tational workloads are implemented. This class must implement certain interfaces, such as

initImpl/runImpl, which are defined in the UserTaskBase interface class. Inside these interfaces,

the user can realize the various computational algorithms. When the runtime instantiates a task

object in a UTC process, an object of this template class (user task object) is also created and

cached in task object.

2. proc list: This is a vector of UTC process IDs. It indicates where and how many threads will

be launched for this task.

After the task is created, all necessary threads are launched and suspended, waiting for commands

from the application to perform a specific execution. There are four basic methods used to send

commands to threads:

• Task::init: Signal threads to execute initImpl;

• Task::run: Signal threads to execute runImpl;

• Task::wait: Wait for threads’ ongoing work to complete;

• Task::finish: Terminate associated threads;

The user invokes these methods to ask all threads bound to the calling task object to perform the

required actions. init/wait/finish are synchronized methods. They will wait for the threads to finish a

certain job. The run method is asynchronous and returns as soon as the command is submitted. So a

user can invoke different tasks to run successively, without waiting for earlier tasks’ completion.

CPU affinity for threads

On a multicore CPU platform, a process or thread can run with any available core and

usually the OS may schedule and migrate a process/thread from one core to another. On a Non-

uniform memory access (NUMA) system the migration may even happens between multiple CPUs.
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By setting the affinity of each process/thread, it will always use the same core or a group of cores for

execution and will not be scheduled and migrated to other cores. There is some research about CPU

affinity setting and impact [50, 51]. Because we use Pthreads as our underlying threads library, and it

allows us to set CPU affinity for threads. In our task creation procedure we also provide several basic

configure options to set task threads’ affinity attribute. We provide the following options:

• bind-to-all: No affinity setting and thread may use any cores of any CPUs on a node;

• bind-to-cpu: A thread can use cores of same CPU;

• bind-to-core: A thread always runs on the same core;

• bind-to-ht: A thread runs with same hyperthread of a core;

When a user defines and creates a task, the affinity options can be set through configuration

arguments and the runtime system will perform the affinity setting for task threads. The effect of

different affinity settings depends on the programs’ characteristics and no one approach is always the

best choice. By default, bind-to-all is set for each task.

Task creation test

Based on our runtime implementation, we use a micro-benchmark to test task creation

performance. In this test, we create a number of tasks; each task has one thread and completes the

same amount of computation. We record total time which includes the time to create all threads

of all tasks and the time for computation. The run time only counts the average value of one task

thread’s computing time. We run the test on a small cluster with 4 nodes where each node has a six

core CPU. The test results are shown in Figure 3.5.

For the single node test, we run all tasks on one compute node. Because one task uses one

thread and the node has a six core CPU, from one task to six tasks the measured time stays about the

same. After six, the time increases as there are no more idle cores for concurrent thread execution. In

the multi-node test, we have at most 6 tasks active on one node, and 24 tasks run on 4 nodes. All

these tasks are able to run concurrently. From the results we see that total time and run time are very

close which means the overhead of task thread creation is very small. When more tasks are launched,

the overhead also increases. This is because the time for managing and synchronizing more threads

increases. If the computational kernel is more time consuming, the overhead should be negligible.
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Figure 3.5: task creation test: (a) single node;(b) multiple nodes (6 tasks per node).

Task pipeline execution

Through UTC, a user can define and create several tasks in an application. These tasks

run independently or cooperatively in parallel. A complex application may includes several parts

or sub-problems. Each part represents a UTC task and can be realized as a parallel program, using

groups of threads running on the cluster. In each UTC task, the concurrent threads are tightly coupled

to implement parallel algorithm logic. Between different UTC tasks, they are loosely coupled. They

may collaborate through exchanging data using a conduit, or just run independently. A special case

occurs when an application includes several consecutive parts. Then it is easy to create multiple tasks

and implement a pipeline running pattern, as shown as Figure 3.6.

Task1.run Task1.run Task1.run
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Task3.run

Application T
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Figure 3.6: Task Pipeline Running
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Figure 3.7: Pipeline Test

Figure 3.7 shows a pipeline execution test. In this test we define an application that has

two steps of work: do some computational work and write result data to a file. We implement the

application in two approaches. First, we use one task to compute and save data to files successively.

Second, we create two tasks: one does the computation and then writes data to a conduit; the other

29



CHAPTER 3. METHODOLOGY AND DESIGN

one reads data from the conduit and saves it to files. From the results we see that for the single

task version, the total time is the same as the summation of data computing and file writing times.

But with pipelining two tasks, the total time is only a little more than the computation time, which

indicates that the file write procedure is hidden by computation.

3.2.4 Conduit Implementation

In UTC, we use conduits for communication between different tasks. A Conduit class is

provided for users to define a utc coduit object to connect two tasks. Then the user can invoke the

read/write methods of the utc coduit object to exchange data. The UTC runtime system supports two

kinds of basic conduits: intra-proc conduit and inter-proc conduit. When constructing a utc coduit

object, the runtime system will automatically decide which kind of conduit is going to be used.

Intra-proc conduit

An intra-proc conduit connects two tasks that run on the same node. Because on each node

we create one UTC process, all tasks in a program that run on the same node live in the same process,

sharing the same address space. For this reason, we implement conduits using the shared memory

mechanism. The intra-proc conduit is show in Figure 3.8.

task1 task2
Data copy

Ptr write

Data copy
LF Queue1

LF Queue2

Figure 3.8: Intra-process Conduit

We set up two buffer queues in an intra-proc conduit, one for each direction of the data

transfer. The two directions can advance at the same time. To reduce data transfer latency, we use

lock-free methods to implement the shared buffer queues. Further, when moving data from one task

to another, for small data sets we copy all the data to the shared buffer; for large data sets we only

pass the source data address to the destination, avoiding memory copy operation.
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Figure 3.9: Inter-process Conduit

Inter-proc conduit

Inter-proc conduits connect two tasks that reside on different nodes. The data movement

happens through the underlying network. As discussed before, we leverage the MPI communication

libraries to achieve data transfer between nodes. When invoking conduit read/write operation to move

data, we forward data set information such as address, size, and type to underlying MPI send/recv

methods to realize inter-proc conduits, as shown in Figure 3.9. There are two issues to be considered

when using MPI:

1. The task comprises a single or a group of threads. It should be safe to use MPI functions in the

multithreaded situation. Most MPI implementations now support ”MPI THREAD MULTIPLE”, so

it is safe to use MPI point-to-point communication in threads. However, there are restrictions and

performance degradation compared to the pure process situations [52, 53].

2. All tasks on the same node have the same MPI process rank value, so they need to be differentiated

when doing inter-proc communication with the same destination. We use MPI message tags to solve

this problem. Every task has a unique task id, which we append to the tag, reserving the lower eight

bits of the tag to store this id, when invoking MPI send/receive functions. In this way, different tasks

are ensured to have different tags, and will correctly support MPI message matching operation.

Data movement between multi-nodes tasks

Intra-node conduits and inter-node conduits support data movement between two tasks that

are either on the same node or different nodes. In both cases, we assume that each task is active on

one node, and there is only one entry point to the conduit for each task. So the data transfer of the

conduit happens between one pair of nodes. However, if the task spans multiple nodes, the conduit
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between such tasks is more complicated.

When source task (S-task) and destination task (D-task) runs on multiple nodes, the source

data may come from any S-task nodes and the destination may be any D-task nodes. Assuming

S-task runs on N nodes, and D-task runs on M nodes, there are a total of N*M different possible

transfer pairs. Usually, different applications may require different transfer schemes, so it is very

hard to build a general node-pair scheme in a conduit which can adapt to any application’s use case.

Here, we provide two solutions for this problem, as shown in Figure 3.10.
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Figure 3.10: Data Movement Approach Between Multi-node Tasks

• Single-entry mode: In this case, for each task, we will select a process as the main process

(Main-proc). Then the conduit is set up between these two Main-procs. Data are always

transmitted between these two processes, which means a pair of designated nodes. Users need

to aggregate data sets from different nodes to the Main-proc node in the S-task and send to the

D-task. Then in the D-task, received data sets will be scattered to the right location. This is

our default approach to choose the proper conduit when creating a conduit for two tasks.

• Free mode: In this case, an explicit two-sided point-to-point communication pattern is con-

ducted. S-task initializes a data transfer to D-task with specific node ID and D-task also issue

a receive call with correct source node ID. Data can transmit between any pair of nodes for

two tasks, and different pairs of nodes can support the transfer concurrently. This process is

the same as traditional MPI send/recv procedure, which makes data communication operations

more complex and lacks the abstraction feature of conduits.
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Conduit performance test

We developed a micro-benchmark to test the data transfer latency using conduits. In this

test, we create two tasks to send and receive data in a ping-pong style. For different size data sets,

we do the transfer a large number of times and calculate the average latency of moving data from

one task to another. We also change the number of task threads in each task instance to see how this

affects the latency. For comparison, we do similar experiments using pure MPI send/recv with two

processes. The results are shown in Figure 3.11 and Figure 3.12.
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Figure 3.11: Intra-node Conduit Latency
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Figure 3.12: Inter-node Conduit Latency

For the intra-node tests, MPI performs a little better than UTC when the data set is small.

Both MPI and our implementation use the shared memory mechanism to realize data movement, thus

the latency is much smaller than inter-node transfer, which depends primarily on network speed. For

inter-node transfers, because the UTC runtime makes use of MPI to implement data communication
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between nodes, the test results are almost the same as MPI. From the results we find that when

increasing the number of threads in a task, the latency also increases. This is because if the task is a

multithreaded parallel program, all threads run in the SPMD pattern. When doing conduit read/write,

we only choose one thread to execute the operation, while other threads will wait and synchronize.

These overheads increase with increasing numbers of threads. However, for large data set transfer or

for inter-node transfer, where the time of moving data overwhelms these overheads, the effect should

be negligible.

3.2.5 Code Sample

Based on the introduced interfaces and runtime libraries we are able to program parallel

applications through the UTC framework. Figure 3.13 shows a sample basic program using our

framework.
 

class DataInput: public UserTaskBase{ 

        initImpl(…){/* some initial work*/ }  

        runImpl(){ 

/* prepare the input dataset; 

     write to destination through cdt; */ 

        } 

        Conduit &cdt;   

}  

class DataOutput: public UserTaskBase{ 

        initImpl(…){/* some initial work*/ }  

        runImpl(…){ 

/* get dataset through cdt;  

    output the data; */  

        } 

        Conduit &cdt;   

}  

class DataAnalysis: public UserTaskBase{ 

        initImpl(…){/* some initial work*/ }  

        runImpl(){ 

/* get dataset through cdt_in;  

     analyze the dataset;  

                     write to destination through cdt_out */  

        } 

        Conduit &cdt_in; 

        Conduit &cdt_out;   

}  

int main(){ 

        //initialize utc context 

        UtcContex ctx(…);   

 

        // creating tasks and conduits 

        Task<DataInput>     dit(proclist, tasktype, …); 

        Task<DataOutput>   dot(proclist, tasktype, …); 

        Task<DataAnalysis>  dat(proclist, tasktype, …); 

        Conduit    cdt1(&dit, &dat); 

        Conduit    cdt2(&dat, &dot); 

 

        //init tasks 

        dit.init(cdt1, …); 

        dat.init(cdt1, cdt2, …); 

        dot.init(cdt2, …); 

 

        //run tasks  

        dit.run(…);  

        dat.run(…);  

        dot.run(…) 

 

        //wait and finish 

        dit.wait();  dat.wait(); dot.wait(); 

        dit.finish();  dat.finish(); dot.finish(); 

        …. 

} 

Figure 3.13: Program Sample Under UTC
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As shown in the sample, in the left part we define and implement 3 different task templates.

In each task class we complete some job under the required interface: initImpl/runImpl. Each task

may also have conduit references that can be used for data transfer between task instances. The right

part shows the main program. In the main program we use the three task class template to instantiate

three task instances. When defining task instances, we can use arguments to tell the runtime how

many threads are required by this task and other useful information. Besides tasks, we also create

conduit instances and the arguments indicate which tasks this conduit connects. After the necessary

tasks and conduits are defined, we can invoke the predefined methods to run these tasks. Finally

we use the wait method to wait for the completion of each task’s work and use the finish method to

terminate the threads spawned for the related tasks.

The program structure is clear and concise. Low level computation logic and parallel

algorithms for each computation kernel are implemented and wrapped in task implementation class

templates. Main programs primarily handle the high level logic and have less relationship to the

underlying hardware platforms compared with traditional parallel programs.

3.3 Runtime Extension for GPU Support

A major benefit of the UTC framework is that it is not limited to specific platforms;

tasks can be either programs running on traditional CPUs, or kernels programmed with special

languages or methods and run on accelerators. Here we target NVIDIA GPUs and make use of

CUDA programming to extend our runtime implementation.

3.3.1 GPU Program Structure and Hybrid Programming

To enable GPU tasks, we need to integrate GPU programs into our task implementation.

CUDA provides a runtime library as well as a variety of functions to implement and run programs on

GPUs. The general GPU program structure is shown in Figure 3.14.

The program is divided into two parts: Host-part and Device-part. The Device-part

comprises actual kernels which are compiled by dedicated compilers and converted to GPU

supported ISAs. The Host-part runs on CPUs and plays the role of the controller: selecting and

initializing the GPU, launching kernels on the GPU and copying necessary data to and from the GPU.

Our current task implementation can be easily adopted to play the role of Host-part for a GPU task.

In our approach, when users implement a GPU task they use a UTC+CUDA hybrid programming
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Host-part:

cudaSetDevice();
…..

…..
cudaMemCopy();

…..
gpu_kernel<<<>>>();

…..

Device-part:
gpu_kernel()  {

{

}

}

/*
* computation 
* logic …
*/

Figure 3.14: CUDA Program Structure

approach to write their code. The code that runs on the CPU behaves the same as a normal CPU task

except that the GPU kernels which are programmed with CUDA will be invoked for running on

GPUs. The interface of creating a GPU task is the same as before, but we add a task configuration

argument to identify the task type: Task<USER TASK> task instance(proc list, “cpu task”, ...);

Task<USER TASK> task instance(proc list, “gpu task”, ...);

As soon as a GPU task is instantiated, the runtime will select and initialize the GPU

execution environment. A GPU task can contain multiple host threads, in which case each host thread

will be bound to one available GPU of the platform. By default, on one node we will select GPUs in

a round robin fashion if there are multiple GPUs on the node. Users only invoke their GPU kernels

in the task codes and there is no need for the user to consider the GPU management process.

GPU task test

Here we show some tests for creating and running GPU tasks. We developed four applica-

tions: Matrix Multiply(MM), 2D Heat Conduction(2Dheat), Heat Image Generation(Heatimage) and

K-means clustering(Kmeans) with both CPU task and GPU task implementations. The CPU task

versions are tested on a four nodes cluster which each node has a 6 core CPU with hyper-threading.

The GPU task versions are tested on a server equipped with a NVIDIA Tesla C2070 GPU. The

applications’ speedup compared to sequential programs is shown in Figure 3.15. The CPU task uses

48 threads for parallel processing on 4 nodes. From the test results, we can clearly see the benefit of

using GPUs for acceleration. For MM, one single GPU’s performance is much better than 48 CPU

threads; For others, one GPU’s performance is comparable or better than 48 CPU threads.
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Figure 3.15: Comparison of GPU/CPU Task Execution

3.3.2 Concurrent Execution on GPU

In early generations of NVIDIA GPUs, only one kernel program can be executed at a time.

Multiple kernels are queued and executed by a GPU sequentially. However, from the Fermi GPU,

NVIDIA supports running multiple kernels at the same time on one GPU if the hardware resources

are available. With the enhancement of single GPU’s computing resources (the NVIDIA GP100

GPU has 3840 CUDA cores), it is common that one kernel cannot exhaust all the resources at a given

time. So running multiple kernels at the same time can make use of GPU resources more efficiently.

In CUDA programming, when initializing a GPU, a CUDA context is created. The

following GPU related operations are associated with this context. There may be several CUDA

contexts for the same GPU at the same time, but only one context is active at one time. A GPU will

switch between these contexts frequently to process each context’s operations. In one CUDA context,

a user can have multiple CUDA streams. A CUDA stream comprises a series of GPU operations,

such as memory copy and kernel execution, and they are executed one by one in a stream. Different

streams of the same context can be processed in parallel. So different GPU operations of different

CUDA streams can be executed simultaneously, as shown in Figure 3.16.

In our GPU task design, each task runs with single or multiple threads asynchronously and

simultaneously. Task threads serve as the host control part for a GPU program and are associated

with a GPU device for later GPU kernel execution. When different task threads are bound to different

GPUs, GPU kernels of different task threads run in parallel. Furthermore, when they are bound to the
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Figure 3.16: GPU Stream for Parallel Execution

same GPU, we can leverage CUDA streams to explore concurrent kernel execution. To make use of

CUDA streams, for each GPU task we define a class GpuContext to record useful information related

to a GPU device as shown below. When a GPU task is created, a GpuContext object is also setup.

class GpuContext{
...
unsigned int gpuId;
cuContext_t cudaCtx;
CudaStream_t streamId;
...
}

In this object, GPU ID indicates which GPU in the system a host thread is bound to. Multiple host

threads may bind to the same GPU. The CUDA context handle (cudaCtx) tells the CUDA runtime

environment the proper CUDA context to activate. The stream handle refers to the unique CUDA

stream for the related GPU task thread. In the GPU task implementation, a user will use this stream

as the argument for GPU operations. To target a single GPU, there are two mapping methods between

a GpuContxt and a CUDA context:

1. One to one mapping: each GpuContxt refers to a unique CUDA context. In this way, each GPU

task will use a different CUDA context and they share a single GPU by context switching.

2. One to many mapping: multiple GpuContxt refers to the same CUDA context on a single GPU.

However, different GpuContxt still use different CUDA streams. So different GPU tasks can
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execute on a single GPU concurrently with the help of multiple streams. This is the default

configuration.

Based on task asynchronous execution and multiple streams binding, we can easily run GPU kernels

in parallel on either a single GPU or multiple GPUs.

Test of concurrent task on a single GPU

Here we use a Nbody simulation application as the test program and run on a NVIDIA Tesla

K40m GPU. In Nbody simulation, when the total number of bodies is small, one GPU kernel can not

consume all the computing resources of one GPU and multiple kernels can execute simultaneously.
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Figure 3.17: Nbody Concurrent GPU Kernel Execution

Figure 3.17 shows the program run time results, noticing that the time is plotted on a

logarithmic scale. We create different numbers of GPU tasks and run, giving each task the same

number of bodies. When the number of GPU tasks doubles, the total computation workload of the

application also doubles. As 4K bodies are 4 times larger than 1K bodies, the GPU kernel under 4K

bodies consume more GPU resources and fewer GPU tasks are able to execute in parallel. Our test

results reflect this relationship: for 1K Bodies, the run time starts increasing noticeably after 8 GPU

tasks; While for 4K bodies the run time starts growing after about 2 tasks.
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3.3.3 Uniform Data Allocation for Data Transfer

A GPU is used as an accelerator (device) and usually connected to the system (host) by

PCI-e. It has its own memory for accessing data while running programs. So any GPU application

has two primary phases shown in Figure 3.18: (1) transfer required input data and results between

system main memory (host memory) and GPU memory (device memory); (2) execute GPU kernels

with GPU processing units. Targeting NVIDIA GPUs and with the help of the CUDA runtime system,

users can allocate three different types of memory in a system for communication between host and

device through PCI-e: pageable memory, pinned memory and unified memory.

Host 
Memory

Device 
Memory

*P-Host *P-Dev

Allocate space 
on host side;

Allocate space 
on device side;

Copy data H2D;

Copy data D2H;

Run GPU kernel;

Figure 3.18: GPU Program Procedure

1. Pageable memory allows users to allocate memory blocks in virtual address space, and

the allocated memory size can be larger than the available physical RAM size. The OS manages user

allocated memory through the memory page mapping mechanism: when a program accesses a virtual

address that is not mapped to physical RAM, a memory page will be mapped and transfer the data to

physical RAM (page-in); when a memory page on physical RAM is not accessed for a while, it will

be unmapped from physical RAM and the data cached on disk (page-out). So pageable memory is

also called non-locked memory, which means it may not constantly reside in physical RAM. The

drawback of using pageable memory for host/device transfer is that the communication procedure

needs CPU involvement and possible page-in/page-out operations introduce extra overhead. So the

bandwidth of the PCI-e bus that connects GPU to host is not fully exploited.

2. Pinned memory which can be allocated by CUDA utilities cudaMallocHost or cuda-

HostAlloc is locked memory, which means it cannot be swapped out (page-out) from physical RAM

once it is allocated. Because it resides in physical RAM permanently, data transfer between host

and device can be carried out by DMA (Direct Memory Access) operations. This can enhance the
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bandwidth utilization of PCI-e and speed up the data transfer process. However, physical RAM is a

limited resource. Allocating too much pinned memory could consume too much available physical

memory and affect other programs or the entire system performance negatively. Figure 3.19 shows

host/device and device/host memory copy bandwidth using pageable memory and pinned memory

respectively. We can see that pinned memory has a better bandwidth performance than pageable

memory.

0

2000

4000

6000

8000

10000

12000

1k 4k 16k 64k 256k 1M 4M 16M 64M

Ba
nd

w
id
th
(M

B/
s)

DataSize	(Bytes)

H2D	Pageable
H2D	Pinned
D2H	Pageable
D2H	Pinned

Figure 3.19: GPU Host/device Bandwidth with Pageable/Pinned Memory

3. In addition to pageable and pinned memory, starting from CUDA 6.0, unified memory

has been introduced. Unified memory is memory blocks allocated using the cudaMallocManaged

function. With the previous two types of memory, host and device have different address pointers

and explicit data transfer operations are needed. In contrast, the unified memory system creates and

manages a pool of memory blocks that are shared between CPU and GPU. There is only one address

pointer exposed to the user and both programs on host and device can use this pointer to access

data. Data transfer between host and device happens implicitly in the underlying CUDA runtime.

Unified memory frees a user from tedious host/device memory creation and management, easing

GPU programming. But unified memory management is not always as efficient as explicit memory

transfer assigned by a user manually.

As described above, different kinds of memory can be used in a GPU program, and no

single approach is the best choice all the time. Pinned memory provides better bandwidth usage, but

we should avoid using it too much. Unified memory eases programming, but may not deliver the best

performance. Also, using different types of memory requires different operations. The allocation and
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management of more and more different types of memory blocks is error prone and burdensome.

Therefore, to facilitate GPU task implementation and enable a user to explore different types of

memory freely and conveniently, we provide a simple and uniform interface to be used in GPU task

implementations. In general, we defined following classes:

enum class MemType_t{
pageable,
pinned,
unified
}

template <typename T>
class GpuMem{

...
MemType_t m_memType;
T *m_hostPtr;
T *m_devPtr;
...
}

int GpuMem::getH();
int GpuMem::getD();
int GpuMem::putH();
int GpuMem::putD();
void GpuMem::Sync();
...

When we need to allocate memory for a data set that is used on a GPU, we can create a

GpuMem object with the desired memory type (pageable, pinned or unified). The object contains

two pointers. When the memory type is pageable or pinned, the two corresponding pointers have

different values and refer to host memory and device memory separately. When memory type is

unified, these two pointers have the same value. Along with the object, we have different methods to

get proper pointers and complete host/device data synchronization. Through these helper classes and

methods, we can create a GPU task with appropriate memory type arguments to make use of different

memory schemes. Once the GPU task program is implemented, users are able to try different types

of memory for execution through an argument in task creation, without changes to the existing task

implementation.

Task<USER TASK> task instance(...,gpu task, MemType t::pinned, ...);
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3.4 Task Based Global Shared Memory on Cluster Platform

As discussed in 3.2.1, a UTC task can be a multi-threaded program that runs on multiple

nodes. When a task is instantiated, a number of user task objects are created and a group of threads

are launched in the system. Each node in the task’s span holds one user task object and a sub-group

of threads. We call all threads created for a task global thread group and call a sub-group of threads

on the same node local thread group as shown in Figure3.20. From the perspective of a single thread,

local thread group and global thread group there are three different data scopes in a task:

• private scope: data accessed by single thread and not shared

• local shared scope: data accessed and shared by local thread group

• global shared scope: data accessed and shared by global thread group

Task<USER_TASK>   taskA;

Task object instance Task object instance

Local shared data Local shared data

thread 
private 

data

Task 
thread0

thread 
private 

data

Task 
thread1

thread 
private 

data

Task 
thread2

global shared data

node1 node2

local_thread_group

global_thread_group

Figure 3.20: Data Scopes in a Task

Local shared data can be easily implemented in our design. Because local thread group is

associated with the same task object on one node, all the data sets defined in this task object will be

shared by local threads. We implement global shared data based on one-sided RMA operation. In

this way we provide a hybrid local and global shared memory mechanism to enable users to explore

data parallelism for task implementation on both single node and multiple node platforms easily.

The key point to implementing global shared data is to leverage one-sided RMA operation

to complete inter-node communication. In this work we use MPI-3 to achieve this. As discussed
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above, we have one process running on one node and different tasks assigned to the same node will

reside in the same process and use different threads for parallel processing. MPI treats a process as

the basic parallel processing unit. Using threads in MPI processes requires coordinating message

passing procedure carefully to avoid conflicts and errors. We implement a global shared data object

to hide the error prone procedure of managing MPI processes, windows and communicators together

with threads context, providing concise methods to use RMA functions in task threads.

3.4.1 Remote Memory Access Through MPI One-sided Communication

One-sided communication in MPI-3

There are several network communication tools or libraries we can use for RMA, such as

GASNet [30] which is a low-level network data transfer library used by many PGAS programming

runtime systems or OpenSHMEM [23] which provides high-level one-sided communication methods

for data transfer. Here we choose MPI as our main communication substrate to realize the global

shared data feature. This is mainly because MPI is the de-facto communication standard and most

popular parallel programming method for distributed platforms. It is supported by various network

hardware and can deliver good inter-node communication performance. In addition, we already

make use of MPI to implement the conduit behavior, and using the same underlying tool can simplify

our runtime implementation and avoid possible inconsistency of mixing different communication

libraries.

MPI standard 2 (MPI-2) started supporting one-sided communication patterns and in MPI

standard 3 (MPI-3) this ability is further improved. In MPI one-sided communication, the critical

concept is MPI Window. By creating MPI Window within an associated communicator, each MPI

process in this communicator can expose a block of memory region to all other processes of the

communicator for RMA. Based on the communication synchronization semantics, MPI supports two

different RMA modes, Passive and Active[54]:

• Active mode: Using Post/Start/Wait/Complete (PSWC) to start and end RMA period. Under

this mode, process A calls Post to expose its memory region to process B and B calls Start

as a response to the beginning of this RMA period; B can then access A’s exposed memory

region. After a serious of RMA operations, B calls Complete to end this RMA period and A

will call Wait to finish. By conforming to this complete PSWC process, MPI can ensure the

data integrity and correctness of RMA operation.
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• Passive mode: Using MPI window Lock/Unlock or LockAll/UnlockAll to start and end a

RMA period. Under this mode, one process (caller) can call Lock or LockAll to start a RMA

period for target processes within a specified communicator. After the RMA operations, the

caller process will invoke Unlock or UnlockAll to close this RMA period. During the period,

users can use flush functions to ensure the completion of RMA operations.

Compared to Active mode, Passive mode does not require the target process to participate explicitly.

Therefore, Passive mode is closer to the shared memory semantic concept and we use the Passive

MPI one-sided communication pattern in this work to realize the global shared memory feature.

Task based MPI window and shared space creation

When creating a task instance, there is a node list indicating which node and how many

threads are required for this task. Because we have a one to one mapping between nodes and MPI

processes, the node list just shows the MPI processes a task spans on. Different tasks on the same

node will shared the same MPI process. When two threads of different tasks invoke MPI runtime

for communication at the same time, message and operation mismatching may happen. To solve

this problem, we make use of an MPI communicator to separate different tasks’ communication

contexts even if they are in the same MPI process. When initializing a task, we also create a MPI

communicator, which includes the processes the task runs on, and cache this communicator handle

in each task object (see Figure 3.21). This communicator handle will later be referenced to create

an MPI window and carry out RMA operations. With the communicator, we can differentiate

communication requests of different tasks in the underlying MPI runtime system correctly and enable

them to progress concurrently.

Figure 3.22 shows the overall procedure flow of creating global shared memory for a task.

Once the communicator is created, the next critical step is to create an MPI window and allocate

memory space for each task. Similar with MPI communicator, different tasks have their own MPI

window objects and memory blocks associated with corresponding MPI communicators. In order

to support dynamically creating global shared data objects we adopt a memory reservation and

sub-space reallocation approach: along with an MPI window, we allocate a block of memory by

calling the OS’s default memory allocation function. This memory region is bound with a task’s

MPI window and exposed as global shared memory space. In the task implementation program,

whenever it defines a global shared data object, we will reallocate a sub memory block from the
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Process0 Process1 Process2 Process3

t-1-0 t-1-1 t-2-2

t-2-3
t-3-0

t-3-2 t-3-3 t-3-4

Task1: communicator1 Task2: communicator2

t-2-0 t-2-1

t-3-1

Task3: communicator3

Figure 3.21: Task Based MPI Communicator

previously reserved memory region. This sub-space reallocation is accomplished through a set of

non-OS managed memory allocation functions.

Initialize task 
object on 

required nodes

Create task 
based mpi 

communicator

Create task based 
MPI window and 

reserve shared space

Setup RMA period 
with MPI_LockAll

Execute user 
task program

Do RMA 
operations

Finish user 
task program

Closs  RMA 
period

Closs  RMA 
period with 

MPI_UnlockAll

Destroy MPI window 
and free reserved space

Destruct 
task objects

Figure 3.22: Shared Memory Setup/Finish Flow in a Task

When the task based MPI window and global shared memory spaces are ready, we can

setup the RMA environment for a task. Based on Passive mode, we will invoke MPI LockAll to

expose the memory region of one process to all other processes of a task to start the RMA period.

Then users can do RMA operations safely and correctly during the execution of a task. After a

task finishes execution, we will use MPI UnlockAll to end the RMA period as well as freeing and

recycling all the resources we have created.

3.4.2 Global Shared Data Object

We defined a simple interface to create a global shared data object as needed in task

implementations:

template <typename T>
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class GlobalScopedData{
int size;
size_t offset;
T *data_ptr;
MPI_Comm *taskComm;
MPI_win *taskWin;
...
}

taskComm and taskWin refer to the MPI communicator and window we create for a task in

a MPI process and will be used in RMA operations. The data ptr points to the sub-memory block

allocated for a shared data object. The offset indicates the distance between the sub-memory block’s

starting address and base address of global shared space. Several methods are also implemented for

accessing data stored in this shared data object:

• load/store: accessing data stored locally on one node.

• rload/rstore: accessing data stored on a remote node.

• barrier/quiet: synchronizing or waiting for completion of data movement

When using rload/rstore methods, the remote node id and accessed data size are needed. In

our implementation, rload is a blocking method, which means when the function call returns, the data

sets are moved from the remote node to the local node and are ready for use; rstore is a non-blocking

method in which the function call return only means the data sets are ready to be delivered to the

remote node, but whether the data movement is finished is unknown. To ensure the completion of

rstore, the user needs to call synchronization methods explicitly. Using this shared data object and

related methods, one can share data sets among multiple node easily and conveniently.

A task may have multiple threads in the same MPI process and these threads share the

same shared data object. To avoid the conflict of concurrent access we also make use of a mutex to

guard a shared object. Then one thread of a task at one time only can utilize a shared data object.

Also, because threads in a process share the same data space, a user only needs to ask one task thread

to do the RMA operation for a shared data object and the result can be seen by other threads.

In addition to sharing data sets within a task between different nodes through one-sided

RMA operation, we also provide a set of utilities for collective communication behavior within a

task. Based on the task-based MPI communicator we have built up, realizing task scoped collective

communication is straight forward. We wrap up the collective communication information and
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forward to the underlying MPI runtime to complete these collective communications. Currently we

provided some frequently used collective operations like:

int TaskBcastBy<type,..>(dataptr, count, ...);
int TaskGatherBy<type,..>(dataptr, count, ...);
int TaskScatterBy<type,..>(dataptr, count, ...);
int TaskReduceSumBy<type,..>(dataptr, count, ...);

Shared memory for GPU support

Based on our framework design, we also support creating and running GPU tasks. For a

GPU task, each task thread is associated with a CUDA stream on a selected GPU, playing a controller

role and executing the host code of a GPU program. Since GPU memory is separated from system

main memory it is impossible to use a RMA method to access remote GPU’s memory directly.

Depending on the topology of multiple GPUs in the system, there are two situations we need to

consider:

1. Benefiting from recent GPU hardware and software improvement, especially CUDA unified

virtual address (UVA) and unified memory [55] feature, we can use a single memory address

pointer for data accessed by different GPUs as well as CPUs. The data synchronization and

consistency can be properly maintained by the user and the underlying CUDA runtime. As we

use multiple threads to manage and control multiple GPUs on a single node, we can easily

share the same address pointer between threads and accomplish data sharing between GPUs.

2. Programs running on one node usually cannot access GPU memory of the remote node directly,

so we have to use system main memory to create an intermediate buffer to complete data

sharing between distributed GPUs. As we already implement global shared data object in

system main memory for inter-node data sharing, a user can use the shared data object as

the intermediate buffer to transfer data explicitly between distributed GPUs. However, RMA

operation only get/put data sets from/to remote node’s main memory. To make the data

available on GPUs, local side or remote side still needs another main-memory/device-memory

movement operation.

3.4.3 Global Shared Data Performance

We first used a micro benchmark to test the one-sided communication latency of the global

shared data object. There are two basic RMA operations: reading data from remote memory(get/load)
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and writing data to remote memory(put/store). As discussed earlier, remote write operation is an

asynchronous non-blocking method, so we will do an explicit synchronize after we do remote write

to ensure the completion of data movement. We also run similar tests with MPI send/recv, and

MPI native put/get. OpenMPI includes an implementation of OpenSHMEM, so we also tested the

latencies of using OSH put/get one-sided RMA. The results are shown in Figure 3.23. The Y axis is

the latency in microseconds normalized with log2.
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Figure 3.23: Remote Memory Access Latency

We can see that explicit MPI two sided communications (send/recv) usually have the

loweast latency results, especially for small size of message. This is mainly because with two sided

send/recv, the receiver side can actively perform a quicker response compared to the one-sided pattern

where there is no explicit receiver and depends on passive communication progress on the remote
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node. The global shard data object has similar performance to using MPI get/put directly, which

indicates that we did not add much overhead to make use of the underlying MPI functions. OSH get

operation has the worse performance, though it uses the same underlying communication substrate

as MPI.

In the UTC framework we introduced a hybrid shared memory mechanism based on

our high-level task design to help users develop parallel applications on heterogeneous platforms.

Leveraging the one-sided remote memory access ability of MPI-3, we implemented a task scoped

global shared data object to enable sharing data sets on distributed memory systems through onesided

RMA. With this shared data object, a user can implement and create a multi-threaded task running on

either a single node or multiple nodes, and threads from distributed nodes can share and communicate

through the global shared data object conveniently.
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Experiments and Results

To demonstrate the usability and performance of our framework and the implemented

runtime system, we extened and ported a set of parallel applications based on the UTC framework.

In this chapter, we show the details of the application development and use these applications to do

experiments on real cluster platforms for analysis.

4.1 Benchmark Applications Development

4.1.1 Choosing Applications

There exist a number of different benchmark suites developed for testing and evaluating

real systems. SPEC benchmarks [56] contain a series of benchmarks targeting different systems,

such as SPEC Cloud for cloud computing, SPEC CPU for single CPU performance evaluation, SPEC

MPI and SPEC OMP for testing parallel computing systems. However, these benchmarks are deeply

tuned and programmed for their target systems and not convenient for reprogramming and porting.

Also they are for commercial use and not open source projects. NPB [57] is a popular open source

benchmark for high performance computing systems. It comprises several kernel applications both

with sequential and parallel patterns. However, most of the programs are implemented in the Fortran

language and limited to solving numerical computation problems. High Performance Linkpack (HPL)

[58] is often used to evaluate the performance and efficiency of supercomputer systems. Besides

benchmarks for traditional CPU systems, there are also many benchmarks developed for accelerator

systems, especially GPUs, such as the Rodinia benchmarks [59].

All these benchmarks and included applications are usually designed to test various aspects
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of the target system, such as the memory system, network system, power consumption, system

scalability and so on. However, in this work, we not only focus on application performance or

the speedup we can get, we also consider the programmability and usability when porting and

reprogramming applications with our framework. Many full scale applications or benchmarks are

well optimized and tuned programs. They are strictly bundled to the original programming models or

methods, not easy and suitable to rewrite with a new programming method or language.

Table 4.1: Benchmark applications

Application Domain

Image Rotation(Rotate) Image Processing

Color Conversion(YUV) Image Processing

Ray tracing(Raytrace) Computer Graphics

MD5 Calculation(MD5) Cryptography

Breadth First Search(BFS) Graph Algorithm

Matrix Multiply(MM) Linear Algebra

2D Heat Conduction(HC) Linear Algebra

K-means Clustering(Kmeans) Data Mining

N-body simulation(Nbody) Astrophysics Simulation

Integral calculation(MC) Linear Algebra

In this work, we take Starbench [60] and some other benchmarks [61, 59] as references

and currently port ten applications to UTC as shown in Table 4.1. These applications covers various

domains including image processing, linear algebra, simulation etc. Some applications are suitable

for parallel processing and some are not. Each application usually contains a primary computing hot

point which we implement as a task for parallel execution.

4.1.2 Application Implementations Summary

Our framework aims to facilitate users to develop parallel applications on heterogeneous

computing platforms. Based on the task/conduit abstractions, low level task implementations are

separated from application’s high level structure, helping users to keep application programs modular

and well organized for better portability. Here we will show some statistical information of programs’

code line counts. We also implement these benchmark applications using other parallel programming

methods such as Pthreads, OpenMP or MPI for tests and analysis.
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Table 4.2: Application Total Code Line Information

Apps Sequential omp Pthreads mpi CPU Task sGPU Task mGPU Task
Rotate 368 377 521 x 446 523 538
YUV 276 282 381 x 366 412 456

Raytrace 437 448 541 x 512 734 755
MD5 457 466 534 x 499 510 566
BFS 194 207 290 x 277 398 464
MM 132 x x 220 280 355 393
HC 152 x x 268 297 351 450

Kmeans 324 x x 415 453 483 544
Nbody 556 x x 616 646 888 954

MC 72 x x 130 150 208 220

Table 4.2 shows the total number of lines of codes (LOC) for each application implemented

through different programming methods. We realized three different versions through the UTC

framework: CPU Task, in which we implemented a multi-threaded task running on a signle node or

multiple nodes; sGPU Task, in which we implemented a GPU task that uses one GPU for acceleration

on a single node; mGPU Task, in which we implemented a GPU task that make use of multiple GPUs

for acceleration. Five of the ten applications (Rotate, YUV, Raytrace, MD5, BFS) are not suitable for

running on multiple nodes, so they do not have an MPI version. For the remaining five applications,

we programmed with MPI to run on cluster platforms and do not include OpenMP and Pthreads

versions.

We can see that for different versions of parallel implementation, OpenMP versions usually

have the fewest code lines. When using openMP, we only need to insert several compiler directives

in sequential programs and the compiler helps implement and transform sequential programs to

multi-threaded parallel programs. Our CPU Task version uses threads for parallel implementation,

but we use explicit multiple threads to design and realize the parallel algorithms and therefore more

code is needed. However, the CPU Task version has fewer code lines comparing to the explicit

Pthreads version. This is mainly because the creation and management of multiple threads are all

completed by our framework runtime, and users only focus on the algorithm implementation through

our explicit multiple threads paradigm.

The CPU task version has slightly more code lines than the MPI version. This is mainly

because the ported programs are multi-threaded on distributed platforms. In addition to coordinating

threads on the same node, we also need to coordinate threads on different nodes. This is more like
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MPI+thread programming and more code may be needed for synchronization and data management.

Besides, these kernel applications usually do not contain complex or large amount of communication

operations, so we may not be able to see the advantage of the one-sided RMA communication

pattern through global shared data. For the GPU task versions, because we need to implement

computation kernels through CUDA programming and mix CUDA programs with normal CPU

programs, generally the GPU task versions have more code than traditional CPU programs. Also we

use an Object Oriented programming approach to develop applications and these small applications

may not reflect the benefits of OO programs.

Table 4.3: Task Code Line Information

Apps CPU Task sGPU Task mGPU Task
Total Main Task Total Main Task Total Main Task

Rotate 446 94 132 523 110 170 538 114 189
YUV 366 93 68 412 108 109 456 112 126

Raytrace 512 104 245 734 125 326 755 128 341
MD5 499 95 237 510 114 367 566 118 392
BFS 277 105 95 398 129 156 464 134 209
MM 280 105 90 355 115 136 393 118 165
HC 297 109 134 351 116 154 450 122 212

Kmeans 453 119 178 483 130 206 544 136 252
Nbody 646 207 166 888 220 363 954 229 414

MC 150 78 55 208 86 90 220 88 105

Table 4.4: LOC Increment of Main Programs Between Different Versions

Apps CPU Task to sGPU Task to
sGPU Task mGPU Task

Rotate 16 4
YUV 15 4

Raytrace 21 3
MD5 19 4
BFS 24 5
MM 10 3
HC 7 6

Kmeans 11 6
Nbody 13 9

MC 8 2

In Table 4.3 and Table 4.4, we elaborate the LOC information of each program’s main
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structure part, task implementation part and LOC changes of main part between differet versions.

From CPU task version to single GPU task version and multiple GPUs task version, we can find there

are few code line changes in a program’s main part and the code line variations mainly derive from

specific task implementations. This demonstrated that our high-level task and conduit design can

help us implement well structured modular parallel applications, reducing the modifications when

porting to different platforms.

4.2 Tests and Results with CPU/GPU Tasks

4.2.1 Test Platforms

In the following sections we show results from running on real systems with the benchmark

applications. We ran these tests on the Discovery Cluster [62]. The cluster has various partitions

with different hardware configurations. The partitions we have run programs on are:

• CPU partition: Each node has two 12 core CPUs with hyper-threading

• GPU-1 partition: Each node has a NVIDIA Tesla K20m GPU

• GPU-3 partition: 8 NVIDIA Tesla K80 GPUs on one node

The supported network backplane is 10 Gb/s TCP/IP ethernet. The underlying MPI implementation

used is OpenMPI [18]. More platform hardware information can be found here [62].

4.2.2 Running on a Single Node

We first test different applications under the single node scenario. Targeting a single node

multicore CPU platform, we create multi-threaded tasks for parallel processing. The tested CPU

platform has two 12 core CPUs with hyper-threading, so we can run at most 48 threads without

oversubscribing hardware resources. For the GPU platforms, if there is only one GPU on one node,

we launch one thread in a GPU task to use the GPU for acceleration; If there are mutiple GPUs

on one node, we will launch multiple threads and each thread controls and uses a unique GPU. As

discussed above, we use five of the benchmark applications (Rotate, YUV, Raytrace, MD5, BFS) to

test on single node platforms. We also ran the corresponded OpenMP implementation on the same

platform. The speedup values in figures are normalized with log2.

Figure 4.1 shows applications’ total run time speedup compared to sequential programs

with different number of threads for parallel processing. We can see that different applications
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Figure 4.1: OpenMP and UTC CPU Task Execution Speedup to Sequential on Single Node
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have different parallel processing performance. Some applications such as Raytrace and MD5

which contain little communication or synchronization procedures and can be highly parallelized,

achieving speedup of more than 30 times in our test. But BFS which is data dependent and needs

synchronization for every iteration only gets speedup up to 8 using all possible cores of one node.

We can usually get higher speedup using more threads when there are idle hardware

resources. On our test platform, we have 24 cores with hyper-threading on one node and we are

able to run as much as 48 threads in parallel. When we use 64 threads and oversubscribe the

hardware resources, we get little or no speedup improvement compared with other cases. Also, the

multi-threaded tasks have better performance than OpenMP implementations with the same number

of threads. This is probably because OpenMP programs’ parallelizations are done automatically by

the compiler. Our framework runtime create required number of threads for the user to implement

data parallelism explicitly in a multi-threaded task. The automatic parallelization of OpenMP may

not be as good as explicit multi-threaded task implementations.
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Figure 4.2: Execution Speedup with UTC GPU Task on Single Node

Figure 4.2 shows the speedup of using various number of GPUs on a single node compared

to sequential programs. A GPU has independent memory for data access when executing GPU

kernels, so the overhead of data movement between system main memory and GPU memory is a

concern when porting applications to GPU. From the test results we find that when using more than

four GPUs, we do not see much improvement for each application. With more GPUs, each GPU’s

computation workload decreases, so the data movement overhead as well as extra synchronizations

for managing multiple GPUs may out weigh the benefit of using multiple GPUs for acceleration.

Compared to Figure 4.1, we can see that one GPU’s speedup performance is already better than or
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the same as running 64 threads on CPUs for each application except for BFS. So on platforms that

are equipped with GPUs, user should leverage GPUs to accelerate applications to achieve overall

better performance.

4.2.3 Running on a Cluster

Next, we use another five applications (MM, HC, Kmeans, Nbody and MC) to test dis-

tributed cluster platforms. For CPU platforms, we run each application from 1 node to 32 nodes and

on each node we run 24 parallel processes for MPI implementation and 24 task threads for CPU-task

implementation. Each node of our test platform has two 12 core CPUs and when we run more than

24 processes on one node the intra-node MPI communication time would increase a lot. So we only

run 24 parallel jobs on each node and ignore the hyper-threading effect. Figure 4.3a and Figure 4.3b

show the strong scaling performance of multiple node execution for MPI implementations and CPU

tasks respectively. The GPU platform we use has one GPU on one node and we scaled up to 16

nodes to make use of 16 GPUs for acceleration (see Figure 4.4).

From the test results we learn that MC and Nbody have better scaling performance than

other applications when running on CPU cluster platforms due to the low amount of communication

between parallel execution units. Especially in MC there is only one gather call needed. Other

applications have more communication; in MM, kmeans and Nbody the total communication amount

will increase along with more and more nodes being used. Further when more and more parallel jobs

are created, each job’s computational workload decreases and communication/synchronization time

percentage of total execution time increases. This effect is even more critical while using GPUs. GPUs

accelerate the computation a lot but other costs (inter-node data transfer, host/device data movement

and synchronizations) may eliminate the acceleration benefits. We take MM and HC as examples to

show the communication percentage variation with increasing number of nodes(Figure 4.5). GPU

tasks run on at most 16 nodes, so there are no results for 32 nodes and host/device data transfer time

is also included for the GPU case. We can see that the communication percentage of each program

keeps growing and the GPU case is even worse. However, with our distributed multi-threaded task

design and communication with global shared data, there is only one process on each node. This can

help reduce inter-node and inter-process communications compared to pure MPI programs. This is

why our scaling results of CPU tasks are better than the MPI tests.

Our test platforms use a common 10 Gb/s ethernet for network communication and our

experiments are carried out under the real world scenario where there are lots of other users running

58



CHAPTER 4. EXPERIMENTS AND RESULTS

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32

Ex
ec

u
ti

o
n

 S
p

ee
d

u
p

 t
o

 S
in

gl
e 

n
o

d
e

Number of Nodes

MM-mpi HC-mpi Kmeans-mpi

Nbody-mpi MC-mpi

(a) MPI Test(24 processes per node)

0

2

4

6

8

10

12

14

1 2 4 8 16 32

Ex
ec

u
ti

o
n

 S
p

ee
d

u
p

 t
o

 S
in

gl
e 

n
o

d
e

Number of Nodes

MM-cputask HC-cputask

Kmeans-cputask Nbody-cputask

MC-cputask

(b) CPU Task Test(24 threads per node)

Figure 4.3: Test Showing Scaling Performance on CPU Cluster
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Figure 4.4: Test Showing Scaling Performance on GPU Cluster
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jobs on the cluster. So the low speed network and possibly heavy traffic and congestion may cause

the applications to have a lower scaling performance. If testing on platforms with a high speed

dedicated network, we should see better scaling behavior especially for GPU tasks.

4.3 Memory Exploration for GPU Tasks

4.3.1 GPU Tasks Performance

In Section 3.3 we have discussed there are three different types of memory (Pageable,

Pinned, Unified) that one can use for host/device data transfer when implementing GPU tasks. Here

we do experiments with the benchmark applications to check the effect of using different types of

memory. Because we have implemented uniform interfaces for user to create memory blocks that

will be used for host/device data movement, we only need to change the memory type options for

GPU tasks to experience different memory without touching the existing task implementations. For

each application, we prepare three different sizes of workload in our experiments, which are referred

to as Small, Medium and Large (S, M, L) in following figures.
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Figure 4.6: Applications speedup of different workloads on Tesla K20m with Pageable Memory

Figure 4.6 shows the general speedup of each application on a NVIDIA Tesla K20m GPU

using pageable memory. Both time costs of data transfer between host/device and kernel execution

are counted to calculate speedup. We can see that by using GPUs for acceleration we are able to get

speedup, but outcomes of different applications vary a lot, ranging from 4 times faster for BFS to as

large as 600 times for MM. Also, for each application, the speedup trend for different workload size is

not consistent. There are many factors leading to this variation, such as GPU hardware characteristics,

parallel algorithm design, device memory access pattern, host/device memory transfer and so on.
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Therefore, great effort is required to develop a high performing implementation on a GPU platform.

By designing and developing applications based on our high level task paradigm, we can keep a

better program structure for porting and tuning applications on different platforms.

4.3.2 Pageable/Pinned/Unified Memory Usage

In this part we try each kind of memory with our benchmark applications. With the

assistance of uniform memory interfaces, we only need to pass different memory type arguments to

adjust and experience various types of memory for the application. Figure 4.7 shows the speedup

results of kernel applications running on a Tesla K20m GPU.

From the results we can see that, for Rotate, YUV and MD5, pinned memory performs

better than pageable or unified memory. And for large workloads pinned memory is the best. For MM

and BFS, using pinned memory is also preferable. However, for large workloads, the performance

improvement by using pinned memory is not as good as for small and medium workloads. So

considering the scarcity of pinned memory, pageable or unified may be a wise choice for applications

with a large amount of data to process. For the rest of the applications, performance of the different

types of memory are very close under all three workloads. If we want to save pinned memory usage

we can use pageable memory for these applications, or use unified memory for program simplicity if

you are not using our framework.

To further understand the characteristics of these kernel applications, we record time costs

of both host/device communication and GPU computation. Figure 4.8 shows the this information as

a percentage of total time using pageable memory for each application. We can see that host/device

communication time of HC, K-Means, Nbody and Raytrace are much smaller compared to other

applications. This is also why these four applications change less when adopting different types of

memory. For MM and BFS, from small workloads to large workloads, we can see the time percentage

of host/device communication reduced. So for large workloads, using pinned memory for them does

not get much improvement.

Figure 4.9 shows the host/device communication improvement when changing pageable

memory to pinned memory for some of the benchmark applications. The pinned memory im-

provement in BFS reduces a lot for medium and large workloads mainly because the application

implementation has an iterative structure, and during every iteration a flag value is transmitted to and

from GPU device memory, but the amount of data transmitted is very small. This procedure does not

dominate the communication time for small workloads, but for large workloads it is the primary part.
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Figure 4.7: Applications Speedup of Using Different Types of Memory on Tesla K20m
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Figure 4.8: Computation/Communication Time Cost Percentage Using Pageable Memory
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Figure 4.9: Host/Device Communication Improvement from Pageable to Pinned Memory
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Due to the small size of transferred data, even with pinned memory, the bandwidth use ratio is still

too low to get much advantage.

From these tests, we conclude that pinned memory can improve host/device communication

performance significantly. For applications where memory transfer takes up a substantial amount of

total runtime, using pinned memory can improve overall performance a lot. But memory transfer

percentage may change with respect to the workload, like MM in our tests, so we should choose the

memory type accordingly. Also, we cannot use pinned memory randomly. In some applications,

choosing different memory types carefully depending on data size is a wise approach to improving

overall performance. For choosing between different types of memory, with our interface it saves the

user extra programming efforts, thus making the exploration of different design choices easier.

4.4 Multiple Tasks Use Case

In the above, we show experiments and results on various platforms with our benchmark

applications. These applications usually contains one primary computation procedure, so they are

kernel applications. Here we utilize our current kernel applications to compose a multiple task

parallel application to study the usability of our framework for developing more comprehensive

applications.

The application we constructed has three computation procedures: ray-tracing, YUV color

convert and image rotation. The overall processing flow is shown as Figure 4.10. We will refer to

this application as raytrace-yuv-rotate(RYR).

scene 
description

Ray 
tracing

YUV 
convert

Rotate Write 
to filegenerate

image
Rotate

Rotate

image Y

image U

image V

Write 
to file

Write 
to file

processing 
loop

go on for next round

Figure 4.10: Work Flow for Raytrace-YUVconvert-Rotate(RYR)

We first read a scene description file to prepare the parameters for the ray tracing process.

Then we enter the main processing loop: do ray tracing to generate image data sets; use generated

image data to do YUV convert and produce three new images; then do rotate operation for each
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image we get and write the final rotated image data sets to separate files on disk. We implement the

sequential program, then test and calculate the processing rate(the number of frames completed per

second) regarding different sizes of image for the application. The results are shown in Table 4.5.

The bigger image we process, the more computation there is and the lower processing rate we will

get. Also we can see that the ray tracing procedure takes up most of the total processing time.

Table 4.5: RYR Sequential Execution Information

Image Processing rate Time cost percentage in total time

size (frames per second) raytrace YUV rotate output

512*512 1.137 78.02 3.51 9.81 8.65

1024*1024 0.291 78.91 3.42 9.69 7.98

2048*2048 0.077 76.29 3.64 10.75 9.32

4096*4096 0.020 76.23 3.71 11.00 9.07

In addition to implementing the sequential program, we have produced five different

versions of the program under the UTC framework. Table 4.6 shows the differences of various

implementations. ryr-seq is the sequential implementation and does not has any tasks. ryr-v1 is a

basic UTC version for this application. We create 4 tasks, one for each of the 4 different computation

procedures and for each task we use one thread for execution. Between different tasks, we define

necessary conduits for data communication.

In version ryr-v2, we launch 10 threads for the raytrace task to do parallel processing.

Other tasks are the same as ryr-v1. Benefitting from our framework design, we only need to change

the parameters in task creation to launch more threads for a task. As shown in Figure 4.10, the YUV

procedure produces three new images for following processing, so in ryr-v3 we create 3 rotate tasks

and output tasks accordingly. Each pair is responsible for one image’s processing. In ryr-v4 and

ryr-v5, we use a GPU task instead of a CPU task for the ray trace procedure. The main differences

between ryr-v4 and ryr-v5 are: each YUV and rotate tasks in ryr-v4 use 1 thread, while in ryr-v5 we

associate 3 threads for each of YUV and rotate tasks for parallel processing.

Figure 4.11 shows the processing rate of different implementations with image size of

1024*1024. We can see that from sequential implementation to multi-threaded tasks and GPU task

implementation, we get higher and higher processing rates. For ryr-v1, we use four single threaded

tasks to carry out the computations one by one. So the entire process is similar to the sequential

program. But due to the pipeline execution pattern, described in Section 3.2.3, we can still get a
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Table 4.6: Brief Info of Different RYR Implementations

Version Total Task Implementations of Each Procedure

codelines raytrace YUV rotate output

ryr-seq 860 x x x x

ryr-v1 1202(Basic task version)
1 CPUtask 1 CPUtask 1 CPUtask 1 CPUtask

/1 thread /1 thread /1 thread /1 thread

ryr-v2 1202(no new code lines)
1 CPUtask 1 CPUtask 1 CPUtask 1 CPUtask

/10 threads /1 thread /1 thread /1 thread

ryr-v3 1224(20 new code lines)
1 CPUtask 1 CPUtask 3 CPUtasks 3 CPUtasks

/10 threads /1 thread /3 threads /3 threads

ryr-v4 1344(120 new code lines)
1 GPUtask 1 CPUtask 3 CPUtasks 3 CPUtasks

/1 thread /1 thread /3 threads /3 threads

ryr-v5 1344(no new code lines)
1 GPUtask 1 CPUtask 3 CPUtasks 3 CPUtasks

/1 thread /3 threads /9 threads /3 threads
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Figure 4.11: Processing Rate of Different RYR Implementations

better processing rate than sequential program.

In Table 4.7 we detail the execution time information for each version. We record the total

run time as well as each computation procedure’s execution time. For the sequential program, the

total time is a summation of the four sub-procedures’ time cost. For ryr-v1, the total run time is a

little larger than raytrace’s time, which indicate that other tasks’ run time is hidden due to the pipeline

67



CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.7: RYR Execution Time of 50 Rounds(seconds)

Version Frames per Total Raytrace YUV Rotate Output

second run time time time time time

ryr-seq 0.292 171.86 130.56 5.88 16.65 13.71

ryr-v1 0.396 126.24 123.24 15.02 22.82 13.71

ryr-v2 2.028 24.65 14.07 9.83 18.68 14.36

ryr-v3 2.340 21.37 14.27 10.09 7.71 5.73

ryr-v4 4.048 12.35 0.98 9.83 8.74 6.45

ryr-v5 5.475 9.13 0.96 4.68 5.25 7.82

execution effect. For ryr-v2, because raytrace task uses 10 threads for parallel processing, we can

see that both the raytrace time and total time reduced a lot. In ryr-v3, we create 3 rotate tasks and 3

output tasks and they can execute in parallel, so the rotate time and output time keeps decreasing.

But the total time does not reduce much. This is probably due to increased synchronization overhead

with more and more threads. Also with more threads on the fly in the system, thread scheduling and

cache behavior may have more effect on the overall parallel applications’ performance.

For ryr-v4 and ryr-v5, benefiting from the powerful parallel processing capability of GPU,

raytrace time reduces greatly and the other three procedures become the primary time consuming part.

Generally, through multi-threaded tasks and GPU tasks we are able to achieve nearly 20 times speedup

compared to sequential execution. More important, with the help of our task/conduit design and

framework runtime, a user can easily create multiple tasks to construct parallel applications. Through

multi-threaded tasks and GPU tasks, users are able to explore task parallelism, data parallelism and

pipeline parallelism at same time without much modification to the whole application implementation.
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Conclusion and Future work

5.1 Conclusion

In this dissertation I present a lightweight and flexible framework, Unified Tasks and

Conduits(UTC), to facilitate parallel application development on heterogeneous computing platforms.

In this framework, an application is constructed from high level task/conduit components, and each

task can be either a sequential program, multi-threaded parallel program or kernel program that

runs on CPUs or GPUs. When porting such a parallel application to utilize different computing

resources on different platforms, the application’s main structure can remain unchanged and only

adopt appropriate versions of task implementations, reducing the development effort and improving

program portability.

To support the framework, we have implemented a thin runtime system on a cluster

platform, supporting the use of multicore CPUs and NVIDIA GPUs for tasks’ parallel execution. To

help develop GPU tasks, we provide a simple and effective interface for allocating and transferring

data that enables users to flexibly choose pageable memory, pinned memory or unified memory for

data communication between host main memory and GPU memory. To enable running tasks on

distributed platforms, we leverage the one-sided remote memory access mechanism to implement a

task scoped global shared data object. With this shared data object, a user can implement and create

a multi-threaded task running on either a single node or multiple nodes, and threads from distributed

nodes can share and communicate through the global shared data object conveniently.

We have ported and developed a set of benchmark applications based on our framework

interfaces and runtime system. We use these applications to test on various platforms. The test

results on a single node show that our multi-threaded task implementations have better performance
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compared to OpenMP’s automatic parallelization. By running applications from a single node up

to 32 nodes, we find that the multi-threaded task implementations have better scaling performance

compared to traditional, MPI-realized programs due to the hybrid shared memory mechanism.

Further, through CUDA kernel integration we can create GPU tasks for each application to make use

of GPUs of the tested platform to achieve better performance.

Generally, with the help of our framework and runtime implementation, users are able to

develop parallel applications to explore task parallelism, data parallelism and pipeline parallelism

flexibly and efficiently. Meanwhile, based on the high level task/conduit design, parallel applications

maintain a well organized structure for improved portability and maintainability, reducing the effort

of tuning application implementations for various platforms.

5.2 Future Work

Currently, our framework runtime system implementation focuses more on the correctness

and functionality aspects and less effort has been dedicated to performance. There are several

directions we can consider for future work:

1. Threads and MPI process interaction

In our framework runtime design, we only launch one process on one node and make use of

multiple threads for parallel processing on a single node. But the MPI library is process based.

Using multiple threads in one MPI process and invoking MPI communication methods may

suffer performance degradation and restrictions. Currently we make use of message tags to

differentiate threads in the same process to avoid mismatch and errors. In future work, we may

consider other approaches like [52] to deal with the usage of threads in an MPI environment

and still keep good performance.

2. User-level and other threads libraries

Currently, we make use of the Pthreads library to create and manage multiple threads. Pthreads

is the Linux native threads library. The threads’ creation, scheduling and management usually

are OS kernel-level operations, and may be too heavy weight when thread count are very large.

Using a user-level threads library is a preferred approach. With a user-level threads library

we can change thread scheduling mechanisms dynamically and complete large amounts of

thread management work with less overhead compared to system-level threads. There is some

research about using a user-level threads library for better performance [38, 63]. Also, using
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other threads library like Intel TBB [37] may get better performance when running on Intel

CPUs. So providing support for other threads libraries in our framework runtime is another

research direction.

3. Conduit implement improvement

Conduits are used for data communication between different tasks. Our current conduit

implementation supports both intra-node and inter-node communication of two tasks. However,

a conduit instance is only used by two task instances. So it is a point-to-point conduit and

for each different pairs of tasks, we need to create a dedicated conduit instance for them to

transfer data sets. In future work, we will consider enhancing the conduits’ capability, enabling

a group of tasks to share the same conduit instance. Through shared conduits, multiple tasks

can communicate with each other through a message publish-subscribe pattern. In this way,

users can have more flexibility to design and implement applications with tasks/conduits.

4. Support of other accelerators

Our current framework runtime implementation supports creating and running tasks on mul-

ticore CPUs and NVIDIA GPUs. Supporting other new accelerators such as FPGAs is also

a direction of the future work. Benefiting from the power efficiency and parallel processing

ability, FPGAs are more and more being used to accelerate applications. By extending the

framework runtime, we will be able to interact with FPGA environment and launch tasks that

are running on FPGAs for better performance.

5. Application development

We have ported a series of applications with our framework and completed tests on cluster

platforms. Next, we need to port and develop more applications (both small kernel applications

and bigger real world applications) with our framework and test on various platforms to explore

the performance bottleneck about our runtime implementations, demonstrating the advantages

and improving our framework design and implementations.
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Appendix A

Information of Data Sets Used for

Application Tests

In Chapter 4 we have done various experiments with our benchmark applications. Different

sizes of computation workload produce different test results for each application. Here we show the

detailed information of data sets we used in our application tests respected to each tested results.

Table A.1: Data sets used for Figure 4.1

Application Data Sets Description Data Type

Rotate 8192 * 8192 pixels Float

YUV 8192 * 16384 pixels Float

Raytrace 2048 * 2048 pixels Float

MD5 512K buffers with 16K bytes per buffer Char

BFS 8M vertices with about 40M edges Int

Table A.2: Data sets used for Figure 4.2

Application Data Sets Description Data Type

Rotate 8192 * 8192 pixels Float

YUV 8192 * 16384 pixels Float

Raytrace 4096 * 4096 pixels Float

MD5 512K buffers with 16K bytes per buffer Char

BFS 4M vertices with about 20M edges Int
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Table A.3: Data sets used for Figure 4.3

Application Data Sets Description Data Type

MM 7680*8192 and 8192*7680 matrices Float

HC 4096*92160 matrix Float

Kmeans 6144000 objects with 16 attributes per object Float

Nbody 61440 bodies Double

MC 15360M iterations Double

Table A.4: Data sets used for Figure 4.4

Application Data Sets Description Data Type

MM 16K*16K and 16K*16K matrices Float

HC 8K*64K matrix Float

Kmeans 8M objects with 16 attributes per object Float

Nbody 128K bodies Double

MC 32G iterations Double

Table A.5: Small Workload for All Tests in Chapter 4.3

Application Data Sets Description Data Type

Rotate 320*200 pixels Float

YUV 320*200 pixels Float

MM 256*256 and 256*256 matrices Float

HC 128*128 matrix float

MD5 2K buffers with 4K bytes per buffer Char

Kmeans 8K objects with 16 features per object Float

Nbody 1k bodies Double

Raytrace 128*128 pixels Float

BFS 64K vertices with about 160K edges Int
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Table A.6: Medium Workload for All Tests in Chapter 4.3

Application Data Sets Description Data Type

Rotate 2K*1K pixels Float

YUV 2K*1K pixels Float

MM 1K*1K and 1K*1K matrices Float

HC 512*512 matrix float

MD5 32K buffers with 8K bytes per buffer Char

Kmeans 128K objects with 16 features per object Float

Nbody 8k bodies Double

Raytrace 512*512 pixels Float

BFS 27K vertices with about 740K edges Int

Table A.7: Large Workload for All Tests in Chapter 4.3

Application Data Sets Description Data Type

Rotate 8K*3K pixels Float

YUV 8K*3K pixels Float

MM 4K*4K and 4K*4K matrices Float

HC 2K*2K matrix float

MD5 256K buffers with 16K bytes per buffer Char

Kmeans 2M objects with 16 features per object Float

Nbody 32k bodies Double

Raytrace 2K*2K pixels Float

BFS 1M vertices with about 5M edges Int
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Application Example and Basic

Framework Interfaces

B.1 Application Code Example

Here we show an application’s code snippet using UTC framework. The application is the

RYR(Raytace-YUV-Rotate) application which we used for test in Chapter 4.4 and we only list the

main part of the application.

1

2 /*

3 * ryr_main.cc

4 *

5 * Raytrace-YUV-Rotate application

6 *

7 */

8 #include "../../common/helper_getopt.h"

9 #include "../../common/helper_timer.h"

10 #include "../../common/helper_printtime.h"

11 #include "Utc.h"

12 #include "UtcGpu.h"

13 #include "common.h"

14 #include <fstream>

15 #include <iostream>

16 #include <cstdlib>

17 #include <cstdio>

18 #include <cmath>
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19 #include <cstring>

20 #include <cstdint>

21

22 using namespace iUtc;

23

24 /*

25 * task implementations for different tasks

26 */

27 #include "task.h"

28 #include "cpu_task/ray_task.h"

29 #include "cpu_task/yuv_task.h"

30 #include "cpu_task/rotate_task.h"

31 #include "cpu_task/output_task.h"

32 #include "gpu_task/c-ray_task_sgpu.h"

33

34 #define MAX_THREADS 64

35 FTYPE aspect = 1.333333;

36

37 int main(int argc, char** argv){

38 bool printTime = false;

39 char* infile_path = NULL;

40 int xres=800;

41 int yres=600;

42 int rays_per_pixel=1;

43 int loop = 100;

44

45 int nthreads=1;

46 int nprocess=1;

47

48 MemType memtype = MemType::pageable;

49 int mtype = 0;

50

51 /* initialize UTC context */

52 UtcContext &ctx = UtcContext::getContext(argc, argv);

53

54 /* Parse command line options */

55 int opt;

56 extern char *optarg;

57 extern int optind;

58 while ( (opt=getopt(argc,argv,"w:h:i:l:vt:p:m:"))!= EOF) {
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59 switch (opt) {

60 case ’v’: printTime = true;

61 break;

62 case ’t’: nthreads=atoi(optarg);

63 break;

64 case ’p’: nprocess = atoi(optarg);

65 break;

66 case ’m’: mtype = atoi(optarg);

67 break;

68 case ’i’: infile_path=optarg;

69 break;

70 case ’w’: xres = atoi(optarg);

71 break;

72 case ’h’: yres = atoi(optarg);

73 break;

74 case ’l’: loop = atoi(optarg);

75 break;

76 case ’:’:

77 std::cerr<<"Option -"<<(char)optopt<<" requires an operand\n"<<std::endl

;

78 break;

79 case ’?’:

80 std::cerr<<"Unrecognized option: -"<<(char)optopt<<std::endl;

81 break;

82 default:

83 break;

84 }

85 }

86 int procs = ctx.numProcs();

87 int myproc = ctx.getProcRank();

88 if(nprocess != procs){

89 std::cerr<<"process number not match with arguments ’-p’ !!!\n";

90 return 1;

91 }

92 // used for GPU tasks to configure memory for host/device copy

93 if(mtype==0)

94 memtype = MemType::pageable;

95 else if(mtype==1)

96 memtype = MemType::pinned;

97 else if(mtype ==2)
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98 memtype = MemType::unified;

99 else

100 std::cerr<<"wrong memory type for -m !!!"<<std::endl;

101

102 /*

103 * read input scene file

104 */

105 global_vars g_vars;

106 g_vars.xres = xres;

107 g_vars.yres = yres;

108 g_vars.rays_per_pixel = rays_per_pixel;

109 g_vars.aspect = aspect;

110 sphere_array_t obj_array_for_gpu;

111 vec3_t lights[MAX_LIGHTS];

112 Task<SceneInit> sceneConfig(ProcList(0));

113 sceneConfig.run(infile_path, &obj_array_for_gpu, &g_vars, lights);

114 sceneConfig.wait();

115 sphere2_t *obj_array_for_cpu = new sphere2_t[g_vars.obj_count];

116 for(int i = 0; i < g_vars.obj_count; i++){

117 obj_array_for_cpu[i].mat = obj_array_for_gpu.mat[i];

118 obj_array_for_cpu[i].pos = obj_array_for_gpu.pos[i];

119 obj_array_for_cpu[i].rad = obj_array_for_gpu.rad[i];

120 }

121 uint32_t *pixels_array = (uint32_t*)malloc(xres * yres * sizeof(uint32_t) *

loop);

122

123

124 /*

125 * Create necessary task/conduit instances

126 * Execute tasks

127 * Wait for tasks complete

128 */

129

130 /*

131 * Raytrace task

132 *

133 * running on node 0 using 10 threads

134 */

135 double ray_runtime[MAX_THREADS][3];

136 int plist1[10] = {0,0,0,0,0,0,0,0,0,0};
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137 Task<crayCPUWorker> raytrace(ProcList(10, plist1), TaskType::cpu_task);

138 //Task<craySGPU> raytrace(ProcList(1, plist1), TaskType::gpu_task, memtype);

139

140 /*

141 * YUV task

142 *

143 * running on node 0 using 3 threads

144 */

145 double yuv_runtime[MAX_THREADS][3];

146 int plist2[3] = {0,0,0};

147 Task<YUVconvertCPUWorker> yuv(ProcList(3, plist2), TaskType::cpu_task);

148 /*

149 * conduit between raytrace task and YUV task

150 */

151 Conduit cdt1(&raytrace, &yuv);

152

153 /*

154 * rotate task

155 *

156 * tree rotate task, each use 3 threads for running

157 *

158 * each rotate task has a conduit to YUV task

159 */

160 double rotate_runtime[MAX_THREADS][3];

161 int plist3[3] = {0,0,0};

162 Task<RotateCPUWorker> rotate(ProcList(3, plist3), TaskType::cpu_task);

163 Conduit cdt2(&yuv, &rotate);

164 Task<RotateCPUWorker> rotate2(ProcList(3, plist3), TaskType::cpu_task);

165 Conduit cdt22(&yuv, &rotate2);

166 Task<RotateCPUWorker> rotate3(ProcList(3, plist3), TaskType::cpu_task);

167 Conduit cdt23(&yuv, &rotate3);

168

169 /*

170 * output task

171 *

172 * tree output task, each use 1 threads for running

173 *

174 * each has a conduit to one rotate task accordingly

175 *

176 */
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177 double output_runtime[MAX_THREADS][3];

178 int plist4[1] = {0};

179 Task<OutputWorker> output(ProcList(1, plist4), TaskType::cpu_task);

180 Conduit cdt3(&rotate, &output);

181 Task<OutputWorker> output2(ProcList(1, plist4), TaskType::cpu_task);

182 Conduit cdt32(&rotate2, &output2);

183 Task<OutputWorker> output3(ProcList(1, plist4), TaskType::cpu_task);

184 Conduit cdt33(&rotate3, &output3);

185

186 /*

187 * initialize all defined tasks

188 */

189 raytrace.init(g_vars, obj_array_for_cpu, pixels_array, lights, &cdt1);

190 //raytrace.init(g_vars, obj_array_for_gpu, pixels_array, lights, &cdt1);

191

192 std::vector<Conduit*> cdts;

193 cdts.push_back(&cdt2);

194 cdts.push_back(&cdt22);

195 cdts.push_back(&cdt23);

196 yuv.init(xres, yres, 5, loop, &cdt1, cdts);

197

198 rotate.init(xres, yres, &cdt2, &cdt3);

199 rotate2.init(xres, yres, &cdt22, &cdt32);

200 rotate3.init(xres, yres, &cdt23, &cdt33);

201

202 Timer timer;

203 timer.start();

204

205 /*

206 * run all the tasks

207 *

208 */

209 raytrace.run(ray_runtime, loop, 1);

210 //raytrace.run(ray_runtime, memtype, loop);

211

212 yuv.run(yuv_runtime);

213

214 rotate.run(rotate_runtime, loop);

215

216 double tmptime[MAX_THREADS][3];
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217 rotate2.run(tmptime, loop);

218

219 double tmptime2[MAX_THREADS][3];

220 rotate3.run(tmptime2, loop);

221

222 output.run(loop, &cdt3, output_runtime, 0);

223

224 double tmptime3[MAX_THREADS][3];

225 output2.run(loop, &cdt32, tmptime3, 1);

226

227 double tmptime4[MAX_THREADS][3];

228 output3.run(loop, &cdt33, tmptime4, 2);

229

230 /*

231 * wait for task finishing computation

232 */

233 raytrace.wait();

234 //std::cout<<"ray finish wait"<<std::endl;

235 yuv.wait();

236 //std::cout<<"yuv finish wait"<<std::endl;

237 rotate.wait();

238 rotate2.wait();

239 rotate3.wait();

240 //std::cout<<"rotate finish wait"<<std::endl;

241 output.wait();

242 output2.wait();

243 output3.wait();

244 //std::cout<<"output finish wait"<<std::endl;

245

246

247 /*

248 * print timing info

249 */

250 ctx.Barrier();

251 double totaltime = timer.stop();

252

253 if(myproc == 0){

254 std::cout<<"Test complete !!!"<<std::endl;

255 std::cout<<"\tTotal time: "<<std::fixed<<std::setprecision(4)<<totaltime<<"(

s)"<<std::endl;
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256 std::cout<<"\traytrace time: "<<std::fixed<<std::setprecision(4)<<

ray_runtime[0][1]<<"(s)"<<std::endl;

257 std::cout<<"\tyuv time: "<<std::fixed<<std::setprecision(4)<<yuv_runtime

[0][1]<<"(s)"<<std::endl;

258 std::cout<<"\trotate time: "<<std::fixed<<std::setprecision(4)<<

rotate_runtime[0][1]<<"(s)"<<std::endl;

259 std::cout<<"\toutput time: "<<std::fixed<<std::setprecision(4)<<

output_runtime[0][1]<<"(s)"<<std::endl;

260 }

261

262 ctx.Barrier();

263 return 0;

264 }

B.2 Basic classes/methods in Framework Runtime Implementation

1

2 /*

3 * initialize UTC context

4 */

5 static UtcContext& UtcContext::getContext(int &argc, char** &argv);

6

7

8 /*

9 * task constructors and methods

10 */

11 template<class T>

12 class Task: public TaskBase{

13 public:

14 // constructors

15 Task();

16 Task(ProcList rList);

17 Task(ProcList rList, TaskType tType);

18 Task(T* userTaskObj, ProcList rList, TaskType tType);

19 Task(std::string name);

20 Task( std::string name , ProcList rList);

21 Task(std::string name, ProcList rList, TaskType tType);

22 Task(std::string name, ProcList rList, TaskType tType, long shmemSize);

23 Task(ProcList rList, TaskType tType, long shmemSize);
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24 Task(ProcList rList, TaskType tType, int bind_mode);

25 Task(ProcList rList, TaskType tType, long shmemSize, int bind_mode);

26

27 // task init method

28 template <typename... Args>

29 void init(Args... args);

30

31 // task run method

32 template <typename... Args>

33 void run(Args... args);

34

35 // task wait method

36 void wait();

37

38 // task finish method

39 void finish();

40

41 };

42

43 /*

44 * conduit constructors and methods

45 */

46 class Conduit{

47 public:

48 // constructors

49 Conduit(TaskBase* srctask, TaskBase* dsttask);

50

51 // write mthods

52 int Write(void* DataPtr, DataSize_t DataSize, int tag);

53 int WriteBy(ThreadRank_t thread, void* DataPtr, DataSize_t DataSize, int tag);

54

55 // read methods

56 int Read(void* DataPtr, DataSize_t DataSize, int tag);

57 int ReadBy(ThreadRank_t thread, void* DataPtr, DataSize_t DataSize, int tag);

58

59 };

60

61

62 /*

63 * uniform GPU data interface used in GPU task implementation
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64 */

65 template<typename T>

66 class GpuData{

67 public:

68 // constructors

69 GpuData(MemType memtype = MemType::pageable);

70 GpuData(unsigned long size, MemType memtype = MemType::pageable);

71 GpuData(unsigned long size_x, unsigned long size_y, MemType memtype = MemType

::pageable);

72 GpuData(unsigned long size_x, unsigned long size_y, unsigned long size_z,

MemType memtype = MemType::pageable);

73

74 // get memory address

75 T *get();

76 T *getH();

77 T *getD();

78

79 // sync host/device memory

80 T *sync();

81 T *syncH();

82 T *syncD();

83

84 // put data to inside buffer

85 void put(const T *src);

86 void putH(const T *src);

87 void putD(const T *src);

88

89 // fetch data from inside buffer

90 void fetch(T *dst);

91 void fetchH(T *dst);

92 void fetchD(T *dst);

93 };

94

95

96 /*

97 * global scoped data and related methods

98 */

99 template<typename T>

100 class GlobalScopedData: public GlobalScopedDataBase{

101 public:
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102 // constructors

103 GlobalScopedData(long size=1);

104

105 // get datablock’s base address

106 T *getPtr();

107

108 // single element load/store from local

109 T load(int index=0);

110 void store(T value, int index=0);

111

112 // datablock load/store from local

113 int loadblock(T* dst, int startIdx, int blocks);

114 int storeblock(T* src, int startIdx, int blocks);

115

116 // single element load/store from remote

117 T rload(int remotePE, int index=0);

118 void rstore(int remotePE, T value, int index=0);

119

120 // datablock load/store from remote

121 int rloadblock(int remotePE, T* dst, int startIdx, int blocks);

122 int rstoreblock(int remotePE, T* src, int startIdx, int blocks);

123

124 // wait for remote operation complete

125 void quiet();

126

127 // synchronization method

128 void barrier();

129

130 };

131

132

133 /*

134 * base interface class for user to implement when user want to

135 * implement specific tasks for their needs

136 */

137 class UserTaskBase{

138 public:

139 /* necessary methods must be implemented */

140 virtual void initImpl();

141
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142 virtual void runImpl();

143

144 /* pre-defined useful data members*/

145 static thread_local int __localThreadId;

146 static thread_local int __globalThreadId;

147 static thread_local int __processIdInWorld;

148 static thread_local int __processIdInGroup;

149 int __numLocalThreads=0;

150 int __numGlobalThreads=0;

151 int __numWorldProcesses=0;

152 int __numGroupProcesses=0;

153

154 };
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