
Privacy Preserving Computations Accelerated using FPGA Overlays

A Dissertation Presented

by

Xin Fang

to

The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Engineering

Northeastern University

Boston, Massachusetts

August 2017

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10623795

10623795

2017

To my family.

i

Contents

List of Figures v

List of Tables vi

Acknowledgments vii

Abstract of the Dissertation ix

1 Introduction 1
1.1 Garbled Circuits . 1

1.1.1 An Example: Computing Average Blood Pressure 2
1.2 Heterogeneous Reconfigurable Computing . 3
1.3 Contributions . 3
1.4 Remainder of the Dissertation . 5

2 Background 6
2.1 Garbled Circuits . 6

2.1.1 Garbled Circuits Overview . 7
2.1.2 Garbling Phase . 8
2.1.3 Evaluation Phase . 10
2.1.4 Optimization . 11

2.2 SHA-1 Algorithm . 12
2.3 Field-Programmable Gate Array . 13

2.3.1 FPGA Architecture . 13
2.3.2 FPGA Overlays . 14
2.3.3 Heterogeneous Computing Platform using FPGAs 16
2.3.4 ProceV Board . 17

2.4 Related Work . 17
2.4.1 Garbled Circuit Algorithm Research . 17
2.4.2 Garbled Circuit Implementation . 19
2.4.3 Garbled Circuit Acceleration . 20

ii

3 System Design Methodology 23
3.1 Garbled Circuit Generation System . 24
3.2 Software Structure . 26

3.2.1 Problem Generation . 26
3.2.2 Layer Extractor . 30
3.2.3 Problem Parser . 31
3.2.4 Host Code Generation . 32

3.3 Simulation of Garbled Circuit Generation . 33
3.3.1 FPGA Overlay Architecture . 33
3.3.2 Garbled Circuit AND Overlay Cell . 34
3.3.3 Garbled Circuit XOR Overlay Cell . 36
3.3.4 Embedded Memory . 38
3.3.5 Workload Dispatcher and Data Controller 39

3.4 Heterogeneous Computing System using ProceV Board 42
3.4.1 Communicating between Host and FPGA 42
3.4.2 Accessing DDR Memory On Board . 44
3.4.3 Accessing On-Chip Registers . 47
3.4.4 Workload Dispatcher and Data Controller 47
3.4.5 AND and XOR Overlay Cells . 48

3.5 Architecture Improvement . 49
3.5.1 Hybrid Memory Hierarchy . 49
3.5.2 Host to FPGA Communication . 52
3.5.3 AND and XOR Overlay Cells . 54
3.5.4 System Parameters . 56

4 Experiments and Results 57
4.1 System Workflow . 57
4.2 Problem Analysis . 60
4.3 Simulation Results . 60

4.3.1 Testbench Generation . 60
4.3.2 Performance Results . 61

4.4 Heterogeneous Computing System Results . 63
4.4.1 Problem Analysis . 64
4.4.2 Performance Results . 66

5 Conclusion and Future work 72
5.1 Conclusion . 72
5.2 Future Work . 73

5.2.1 Performance Improvement within one Node 73
5.2.2 Map Garbled Circuit Problem onto Multiple Nodes 74
5.2.3 Other Platform Exploration for Garbled Circuit 74

A Example of Garbled Circuit with Garbled Values 76

B Interface Between Host and ProceV Board 83

iii

List of Acronyms 84

Bibliography 86

iv

List of Figures

2.1 Yao’s Protocol . 9
2.2 A Garbled AND Gate . 11
2.3 ALM Architecture for Stratix V Family FPGAs [1] 14
2.4 FPGA Overlay Architecture . 15
2.5 ProceV Block Diagram [2] . 18

3.1 A Garbled Circuit Generation System . 24
3.2 Software Workflow . 27
3.3 Layer Extractor Output Visualization . 31
3.4 Garbled Circuit Problem Parser . 32
3.5 Overlay Architecture for Garbled Circuit . 34
3.6 A Garbled AND Overlay Cell . 35
3.7 Optimized Garbled AND Overlay Cell . 37
3.8 A Garbled XOR Overlay Cell . 38
3.9 A Standard RAM Interface . 39
3.10 Workload Dispatcher and Data Controller Timing information 41
3.11 Garbled Circuit AND Gate Operations Sequence 41
3.12 Garbled Circuit XOR Gate Operations Sequence 42
3.13 Heterogeneous Computing System with DDR Memory 43
3.14 ProceV Board DDR Memory Interface . 46
3.15 Coarse Granularity CPU and FPGA Communication 48
3.16 Hybrid Memory System . 50
3.17 Data transmission for XOR Operation without Check using BRAM 53
3.18 Reduce of Number of Registers . 54
3.19 Fine Granularity CPU and FPGA Communication 55

4.1 System of Garbled Circuits . 58
4.2 SHA-1 Message Padding . 61

v

List of Tables

1.1 Garbled Circuit Time Information . 3

2.1 Comparison among Different Approaches . 21

4.1 Problem Switching Time . 59
4.2 Size of the Examples . 62
4.3 Clock Cycle Comparison . 62
4.4 Speedup compared with FlexSC . 63
4.5 Resource Utilization . 63
4.6 Gate Information for Problems . 64
4.7 Wire Information for Problems . 65
4.8 Wire Percent for Problems . 66
4.9 3 AND 1 XOR Overlay Cells Realization for Garbled Circuit 67
4.10 Increase Number of AND Overlay Cells . 67
4.11 Results for Removing Host XOR Operation Check 68
4.12 Directly-Used Policy using Register and DDR Hybrid Memory 68
4.13 Directly-Used Policy using BRAM and DDR Hybrid Memory 69
4.14 Most-Frequently-Used Policy . 69
4.15 Influence of Clock Frequency of Hardware . 69
4.16 Influence of Number of Gates . 70
4.17 Using 2 Address Registers for 3 Addresses . 70
4.18 Speedup Results . 71

vi

Acknowledgments

I want to express my appreciation to those who have supported me during the process of my

Ph.D. study at Northeastern University. Ph.D. study is a marathon which requires the determination

and endeavors to face the challenge in research and every life. Without the help and encouragement

from them, I cannot think of finishing this journey while enjoying it. So I thank them at the beginning

of this dissertation.

First and foremost, I want to thank my research advisor Prof. Miriam Leeser who I have

been working with for the last six years. Several projects are successfully finished with the help

of her, including open-source variable precision floating point library, side-channel analysis and

countermeasure and privacy-preserving computation using FPGA overlays. Looking back, I am

deeply thankful for all the time that Prof. Leeser spends on my projects. She is very knowledgeable

in many areas and so helpful that she does not hold back any things to help me improve. She comes

up with insightful ideas during every one-on-one meeting. She is always there to help me. Words are

powerless to express my gratitude to her.

I am very thankful that Prof. Stratis Ioannidis is my co-advisor for this project. He is an

expert on secure function evaluation and has made significant contributions to the garbled circuit

platforms including GraphSC and applications in data mining. Exploring the area where nobody has

been reached before is sometimes confusing and he is always there to help. He is invaluable to me

and to this project and I can not imagine this project without him.

I want to thank Prof. Yunsi Fei for being my committee member. She is my co-advisor for

side-channel analysis and countermeasure project for about two years. She is an expert on hardware

security and I enjoy the timing working with her. Thank you for the guidance and support.

I also want to express my appreciation to Dr. Nina Taft who is a scientist at Google. She is

an expert on secure function evaluation and gave me many valuable suggestions during my proposal

which makes my work after the proposal easier.

vii

I would like to thank Kartik Nayak and Xiao Wang from University of Maryland, College

Park for discussing with me about the FlexSC platform for this project.

I want to say thank you to my colleagues and friends along the way for their encouragement

and help: Chao Liu, Kai Huang, Ben Drozdenko, Mahsa Bayati, Leiming Yu, Saoni Mukherjee,

Chao Luo, Zhen Hang Jiang, Pei Luo, Yu Han, Liwei Zhang and all my friends who are invaluable to

me during the journey.

Most importantly, I want to say thank you to my beloved parents, my mother Lianhong

Shan and my father Xianjin Fang. They not only raise me up with their unconditional love but also

encourage and support me along the way. I am so lucky to have you as my parents. Thank you for

everything.

viii

Abstract of the Dissertation

Privacy Preserving Computations Accelerated using FPGA Overlays

by

Xin Fang

Doctor of Philosophy in Electrical and Computer Engineering

Northeastern University, August 2017

Dr. Miriam Leeser, Advisor

Secure Function Evaluation (SFE) has recently received considerable attention due to the

massive collection and mining of personal data over the Internet, but remains impractical due to

its large computational cost. Garbled Circuits (GC) is a protocol for implementing SFE which can

evaluate any function that can be expressed as a Boolean circuit and obtain the result while keeping

each party’s input private. Recent advances have led to a surge of garbled circuits implementations

and applications in software to secure evaluation of a variety of different tasks. Due to the high

computational complexity in garbled circuits, these implementations are inefficient and therefore

GC is not widely used, especially for large problems. This research investigates, implements and

evaluates secure computation generation using a heterogeneous computing platform featuring FPGAs.

Unlike traditional FPGA design, overlay architecture on FPGAs is adopted since the SFE problem

is too large to map to a single FPGA. The system leverages hardware acceleration to tackle the

scalability and efficiency challenges inherent in SFE. To that end, we designed and implemented a

generic, reconfigurable architecture as a coarse-grained FPGA overlay. On the host side, tools include

SFE problem generator, parser and automatic host code generation tool are provided. Compared

with tailored approaches that are tied to the execution of a specific SFE structure, and require full

reprogramming of an FPGA with each new execution, our design allows re-purposing an FPGA to

ix

evaluate different SFE tasks without the need for reprogramming, and fully explores the parallelism

for any GC problem. Our system demonstrates significant speedup compared with existing software

platforms.

x

Chapter 1

Introduction

1.1 Garbled Circuits

Garbled Circuits (GC) originate from Andrew Yao’s paper [3] which introduced a two party

Secure Function Evaluation (SFE) protocol. Through Yao’s protocol, two parties can jointly evaluate

a function over private inputs, learning only the final outcome of this computation. In particular,

neither party learns anything about the other party’s input, other than what can be inferred from the

outcome of the evaluation. Thus the computation is accomplished without sacrificing privacy. Yao’s

GC protocol can be extended to multiple party SFE and attain the above properties for the secure

evaluation of any function that can be represented as a Boolean circuit.

The statistical analysis of data pertaining to human subjects, e.g. through experimentation,

survey, monitoring, etc, has a long history in academic disciplines including sociology and behavioral

economics. Internet companies like Google, Amazon and Facebook routinely monitor and explore

a broad array of behavioral information from their users. The massive collection of user data is of

considerable business value to online companies for targeted advertising and personalized product

recommendations [4]. It is also beneficial to society: detecting medical emergencies or the spread of

disease [5], accessing political opinions [6], assessing terrorist threats [7], etc. On the other hand,

the massive collection and analysis of behavioral data has given rise to significant privacy concerns.

Privacy threats have been extensively documented by researchers [8, 9, 10, 11, 12, 13, 14, 15] as well

as the popular press [4, 16], and have drawn the attention of consumer advocacy groups, legislative

bodies, and the general public. Such concerns are only likely to further increase with the emergence

of the “Internet of Things”, as wearable devices and home automation sensors connected to the

Internet proliferate.

1

CHAPTER 1. INTRODUCTION

Secure function evaluation is the solution. SFE will guarantee the privacy of sensitive data

while still providing the functionality needed and are needed where data privacy is obligatory. The

implementations of SFE include but are not limited to secure data mining, secure IoT systems, online

auctions, financial transactions, genomic computation, etc.

Particularly in secure data mining, a series of recent research efforts [17, 18, 19, 20, 21, 22]

have attempted to address the privacy problems through cryptographic means and through SFE. SFE

allows one party to evaluate any desirable function over private data from multiple owners while

revealing only the final results and obtaining no information about any data. SFE can thus enable,

e.g., a data analyst, or a statistician to conduct a study of sensitive data without jeopardizing the

privacy of the participants.

However, challenges exist. SFE over private data comes at a considerable additional

computational cost compared with execution in the clear. Any algorithm to be executed in SFE,

especially GC, needs to be highly efficient and scalable. The function to be evaluated is first converted

to a binary circuit which is “garbled” in such a way that an evaluator of the circuit learns only the

values of its output gates. Prior work has made positive steps in this direction, showing that a variety

of important data mining algorithms [17, 18, 19] can be computed using Yao’s garbled circuits in

a parallel fashion. Execution of this circuit is subsequently parallelized, e.g., over threads [18] or

across a cluster of machines [19]. Nevertheless, further speed-up is needed for garbled circuits.

1.1.1 An Example: Computing Average Blood Pressure

Here is the an example of evaluating a function derived from a real life problem. A

researcher wants to find the average blood pressure within a group of people in a public health project.

The key computation which needs each people’s blood pressure reading is the sum operation. In

order to use the data securely without letting the researcher knows the exact reading for each person,

garbled circuits can be applied in this situation. Table 1.1 shows the timing information of doing a

sum of 1000 32-bit values. Using Java in clear mode, running this function takes 12 us. However,

using FlexSC, it takes 2 seconds, which is more than 1 million times slower than the clear mode.

However, clear mode suffers from the privacy issue since each individual has to reveal their own data.

Our system can accelerate the operation to 300 ms, which is much faster than using FlexSC, and

brings such secure function evaluation into the realm of the possible.

2

CHAPTER 1. INTRODUCTION

Table 1.1: Garbled Circuit Time Information

Sum 1000 32-bit Value Time Information
Clear Mode 12 us

FlexSC 2s
Our System 300 ms

1.2 Heterogeneous Reconfigurable Computing

The heterogeneous reconfigurable computing means using FPGAs as an accelerator inside

traditional data center for speedup. This has been demonstrating to have better performance, energy

efficiency, overall cost, compared with traditional multi-core CPUs or other heterogeneous computing

platforms such as GPUs for same applications. FPGAs in the cloud is becoming a trend in both

industry and academia [23, 24, 25]. However, there are lots of concerns and obstacles that hamper

FPGAs in the data center being used for a broader domain of applications. Problems still remain

such as what kind of operation is suitable for FPGA acceleration, how to manage the interface

between FPGAs and the host, how to divide hardware and software for different problems, tools

for mapping a problem onto hardware. In this research, we evaluate the performance of the system,

exploit different hardware architecture of accelerating SFE on FPGAs for better performance, and

improve host communication, synchronization and control.

We accelerate garbled circuit generation using an FPGA overlay architecture on a heteroge-

neous computing platform for garbled circuits. This approach provides a new hardware architecture

for garbled circuit generation and tackles the performance bottleneck. The results of this research

can also act as a guide for general heterogeneous computing platforms featuring FPGAs. An FPGA

overlay architecture consists of a circuit design on FPGA fabric and the user circuit is mapped onto

that overlay circuit. Since garbled circuits problem sizes are often too large to map onto FPGAs and

the operations are limited by two garbled circuits cores (Garbled Circuit AND and XOR gates), the

overlay architecture is perfect for mapping different SFE problems. Results show significant speedup

compared with existing software platforms for various of garbled circuit problems.

1.3 Contributions

The goal of this research is to accelerate garbled circuit generation using an FPGA coarse-

grained overlay architecture in a heterogeneous computing platform. We provide hardware archi-

tecture and software tools for any garbled circuit and still maintain small communication overhead

3

CHAPTER 1. INTRODUCTION

between hardware and software. Specifically, the contributions of this dissertation are:

• We design and develop a heterogeneous reconfigurable computing platform for acceleration

of garbled circuit generation. We provide a complete workflow to map any garbled circuit

problem to the garbled circuit overlay cells on FPGAs. On the hardware side, unlike the

tailored approaches that are tied to the execution of a specific SFE structure, which requires

full reprogramming of an FPGA with each new execution, our design allows re-purposing an

FPGA to evaluate different SFE tasks without the need for reprogramming, and fully explores

the parallelism for any GC problem. Host side tools include SFE problem generator, parser and

automatic tools for host code generation. Those tools will generate the host program based on

the structure of a problem so that it can be accelerated to the most. We also provide analytical

tools to show the different characteristics of a problem. Results demonstrate significant speedup

compared with current realizations of GC. This is the first heterogeneous computing system

using FPGAs for accelerating garbled circuit problems.

• For reconfigurable hardware, we design and implement this system for secure function evalua-

tion using FPGA overlay architecture for the execution of arbitrary garbled circuit topology.

This overlay architecture supports 1) the mapping of large problems in GC and 2) all kinds of

GC problems. We solve the problem when the amount of computation required to evaluate a

garbled circuit for an application is too large to fit in a single FPGA, due to the extremely high

computation complexity. Tailored approaches that are tied to the execution of a specific SFE

structure, and require full reprogramming of an FPGA with each new execution, cannot be

applied efficiently to new types of SFE problems. In our system, FPGA is programmed only

once for all garbled circuit problems. Wiring and instantiation are determined at execution

time through writing to registers and memory by the host, and this allows us to support many

different problems. This overlay architecture is scalable and it enables the users to avoid the

long design and deploy time on FPGAs for new problems compared with traditional FPGA

system. The overhead for re-purposing the FPGA is kept very low, which is simply transferring

the initial data to device memory.

• Software tools include layer extractor, problem parser and host code generator. Eventually, the

tools will generate host code and enable users who do not have specific knowledge of FPGAs

in heterogeneous computing platform to accelerate any garbled circuit operation. We integrate

our implementation with FlexSC [26] which uses ObliVM [27] as the backend for any garbled

4

CHAPTER 1. INTRODUCTION

circuit operation. ObliVM is a privacy preserving computation framework that allows one or

multiple organizations to perform secure data analysis without disclosing their private data.

The following tools will analyze the problem and extract the parallelism within it which later

can be mapped to our FPGA overlay architecture for best performance.

• We simulate the performance of the overlay architecture for different GC problems [28, 29]

and later map the whole garbled circuit generation onto a heterogeneous computing platform

featuring a Stratix V FPGA. We tackle different aspects of performance bottlenecks and

alleviate them, such as the levels of parallelism using different numbers of FPGA overlay cells,

optimize the host to FPGA communication pattern via PCIe, hybrid memory system, etc. We

compare the performance of the improvement for various problems with different sizes in our

system.

1.4 Remainder of the Dissertation

Chapter 2 covers background information including garbled circuit systems and garbled

circuits generation and evaluation. It also explains the general heterogeneous computing platform

featuring FPGAs, including ProceV board from Gidel. Related work is discussed in Section 2.4.

Our design methodology is presented in Chapter 3. We will demonstrate the methodology of how

we tackle the garbled circuit problem from simulation to heterogeneous reconfigurable system. We

alleviate the bottleneck in the system to improve performance. Experiments and the corresponding

results are in Section 4. The dissertation ends in Chapter 5 with the conclusion and future research

directions.

5

Chapter 2

Background

In this chapter, we first introduce background on garbled circuits including the terminolo-

gies and communication protocols. Next is a brief description of the SHA-1 algorithm adopted by

our implementation. The FPGA architecture, overlay architecture and heterogeneous computing

platform using FPGAs are described the following background. This chapter ends with related work

in the garbled circuit research area.

2.1 Garbled Circuits

Yao’s protocol (a.k.a. garbled circuits) [30] is a generic cryptographic protocol for secure

function evaluation using cryptographic primitives. It enables two mistrusting parties jointly evaluate

a function over their own private inputs. The two parties is called the garbled and the evaluator. At

the end of the computation, neither of them will know each other’s input and only know the output of

the function.

An SFE protocol should have the following characteristics. Validity is the first one. Given

the same input, any method that realizes an SFE protocol should produce the same result as the

insecure one. This guarantees the correct functionality for any problem under SFE protocol.

The second characteristic is privacy. An SFE protocol should prevent a party from learning

about the input data from a different party. Notice that this definition of privacy does not include

situations where other participants may guess the input based on the final output. For example, if the

operation is a bitwise AND operation, and one party has an input of ’1’. If the output is ’1’, then

he/she can easily deduce that the other party also holds a ’1’ value. Otherwise, the output will not be

’1’. The situation above does not affect the definition of privacy.

6

CHAPTER 2. BACKGROUND

Last, for sharing the output among parties, there also should be a mechanism to distribute

it, which is the characteristic of fairness. Semi-honest adversary model will guarantee that one cannot

deny or fake the output to the other party (or parties) by modifying or declining to do so.

2.1.1 Garbled Circuits Overview

In the variant we study here (adapted from [31, 32, 18]), Yao’s protocol runs between (a)

a set of private input owners (e.g., Google’s users), (b) an Evaluator, (e.g., a data analyst working

for Google), that wishes to evaluate a function over the private inputs, and (c) a third party called

the Garbler, that facilities and enables the secure computation. Formally, let n be the number of

input owners, and let xi ∈ {0, 1}∗ denote the private input of individual i, 1 ≤ i ≤ n, represented

as a binary string. Finally, let f : ({0, 1}∗)n → {0, 1}∗ be the function that the Evaluator wishes to

compute over the private data. The protocol satisfies the following property: at the conclusion of the

protocol, the Evaluator learns only the value f(x1, x2, . . . , xn) and nothing else about x1, . . . , xn,

while the Garbler learns nothing.

A critical assumption behind Yao’s protocol is that the function f can be expressed as a

Boolean circuit, and, more specifically, as a directed acyclic graph (DAG) of AND and XOR gates.1

The structure of the circuit – and, thus, the function to be computed – is known to all participants:

e.g. the circuit could be computing the sum or the maximum among all inputs xi.

Overall, Yao’s protocol consists of three phases:

1. Garbling Phase. During the garbling phase, the Garbler prepares (a) a set of encrypted (i.e.,

“garbled”) truth tables for each binary gate in the circuit, as well as (b) a set of random strings,

termed keys, one for each possible binary value in the string set representing the inputs. At the

conclusion of this phase, the Garbler sends to the Evaluator the garbled truth tables; each such

table is referred to as a “garbled gate”, and all gates together constitute the “garbled circuit”.

2. Oblivious Transfer Phase. Subsequently, the Evaluator, Garbler, and the input owners engage

in a proxy oblivious transfer [33, 34, 31]. Through this, the Evaluator retrieves the input keys

from the Garbler that correspond to the true input binary values held by the owners. Oblivious

transfer ensures that, although the Evaluator learns the correct keys, the clear-text input values

are never revealed to either the Garbler or the Evaluator.
1Recall that any Boolean circuit can be represented using only ANDs and XORs.

7

CHAPTER 2. BACKGROUND

3. Evaluation Phase. Finally, the Evaluator uses these input keys to “evaluate” the gates of the

circuit, effectively decrypting the garbled gates. The Evaluator has access to a copy of the

circuit used by the Garbler; this is due to the fact that the function being computed is known to

all parties. The Evaluator implements similar parallelism to the garbler; gates are decrypted in

a breadth-first manner. Each such decryption reveals a new key that allows the Evaluator to

ungarble/decrypt subsequent gates connected to it. Ungarbling the output gates reveals the

value f(x1, . . . , xn).

The above three phases are illustrated in Fig. 2.1. The execution flow (as well as the

opportunity for parallelism) is determined by the circuit representing function f . Both the “garbling”

of the gates, that occurs at the Garbler, and the “ungarbling/evaluation”, that occurs at the Evaluator,

are computationally intensive tasks; these are precisely the operations that we propose to implement

using FPGAs. For the sake of completeness, we describe the garbling and evaluation phases in more

detail below. As the proxy oblivious transfer is not as computationally intensive as the other two

phases and does involve hardware acceleration, we do not describe it in detail; we refer the interested

reader to [33, 34, 31] for a formal description and implementation.

The Evaluator wishes to evaluate a function f , represented as a binary circuit of AND and

XOR gates, over private user inputs x1, x2, . . . , xn. In Phase I, the Garbler “garbles” each gate of

the circuit, outputting (a) a “garbled circuit”, namely, the garbled representation of every gate in

the circuit representing f , and (b) a set of keys, each corresponding to a possible value in the string

representing the inputs x1, . . . , xn. In Phase II, through proxy oblivious transfer, the Evaluator learns

the keys corresponding to the true user inputs, while the Garbler learns nothing. In the final phase,

the Evaluator uses the keys as input to the garbled circuit to evaluate the circuit, ungarbling the gates

in breadth-first order. At the conclusion of Phase III, the Evaluator learns f(x1, . . . , xn).

2.1.2 Garbling Phase

We now describe how gates are garbled in Yao’s protocol. As illustrated in Fig. 2.2, each

binary gate in the DAG representing the circuit is associated with three wires: two input wires and

one output wire. At the beginning of the garbling phase, the Garbler associates two random strings,

k0wi
and k1wi

, with each wire wi in the circuit. Intuitively, each kbwi
is an encoding of the bit-value

b ∈ {0, 1} that the wire wi can take. For each gate g, with input wires (wi, wj) and output wire wk,

the Garbler computes the following four cyphertexts, one for each pair of values bi, bj ∈ {0, 1}:

8

CHAPTER 2. BACKGROUND

GARBLER EVALUATOR USERS

TRANSMIT

PROXY OBLIVIOUS TRANSFER
x1, x2, . . . , xn

Private Inputs

G
AR

BL
E

Keys

Garbled Circuit

EVALUATE

f

f(x1, x2, . . . , xn)

PH
AS

E
I

PH
AS

E
II

PH
AS

E
III

Figure 2.1: Yao’s Protocol

9

CHAPTER 2. BACKGROUND

Enc
(k

bi
wi

,k
bj
wj

,g)
(k

g(bi,bj)
wk) = SHA(kbiwi

‖kbjwj‖g)⊕ k
g(bi,bj)
wk , (2.1)

where SHA represents the hash function, ‖ indicates concatenation, g is an identifier for the

gate, and ⊕ is the XOR operation. The “garbled” gate is then represented by a random permutation

of these four ciphertexts. An example of a garbled AND gate is illustrated on Fig. 2.2. Observe

that, given the pair of keys (k0wi
, k1wj

) it is possible to successfully recover the key k1wk
by decrypting

c = Enc(k0wi
,k1wj

,g)(k
1
wk

) through2:

Dec(k0wi
,k1wj

,g)(c) = SHA(kbiwi
‖kbjwj‖g)⊕ c. (2.2)

On the other hand, the other output wire key, namely K0
wk

, cannot be recovered. More generally, it is

worth noting that the knowledge of (a) the ciphertexts, and (b) keys (kbiwi
, k

bj
wj) for some inputs bi

and bj yields only the value of key k
g(bi,bj)
wk ; no other input or output keys of gate g can be recovered.

2.1.3 Evaluation Phase

Having described how gates are garbled, we turn our attention to how the garbled circuit

is evaluated. The output of the garbling process is (a) the garbled gates, each comprising a random

permutation of the four ciphertexts representing each gate, and (b) the keys (k0wi
, k1wi

) for every

wire wi in the circuit. At the conclusion of the first phase, the Garbler sends all garbled gates to the

Evaluator. It also provides the correspondence between the garbled value and the real bit-value for

the circuit-output wires (the outcome of the computation): if wk is a circuit-output wire, the pairs

(k0wk
, 0) and (k1wk

, 1) are given to the Evaluator. Finally, the Garbler discards all random wire keys

except for the keys corresponding to input wires (i.e., wires at the first layer of the circuit).

To transfer the garbled values of the input wires, the Garbler engages in a proxy oblivious

transfer with the Evaluator and the users, so that the Evaluator obliviously obtains the garbled-circuit

input value keys kbwi
corresponding to the actual bit b of input wire wi. Proxy OT ensures that (a) the

Garbler does not learn the user inputs and that (b) the Evaluator can only compute the function on

these inputs alone.

Having the garbled inputs, the Evaluator can “evaluate” each gate, by decrypting each

ciphertext of a gate in the first layer of the circuit by applying equation (2.2): only one of these
2Note that the above encryption scheme is symmetric, as Enc,Dec are the same function.

10

CHAPTER 2. BACKGROUND

wi

wj

wk

bi bj g(bi, bj) Garbled value
0 0 0 Enc(k0wi

,k0wj
,g)(k

0
wk

)

0 1 1 Enc(k0wi
,k1wj

,g)(k
1
wk

)

1 0 1 Enc(k1wi
,k0wj

,g)(k
1
wk

)

1 1 1 Enc(k1wi
,k1wj

,g)(k
1
wk

)

Figure 2.2: A Garbled AND Gate

decryptions will succeed3, revealing the key corresponding to the output of this gate. Each output

key revealed can subsequently be used to ungarble/evaluate any gate that uses it as an input. The

evaluator can thus proceed ungarbling gates in breadth first order over the DAG until finally obtaining

the keys of gates at the last layer of the circuit. Using the table mapping these keys to bits, the

Evaluator can learn the final output.

We note that, in Yao’s protocol, communication costs are dominated by the transfer of the

garbled gates from the Garbler to the Evaluator. The oblivious transfer occurs only at the beginning

of the evaluation phase to transfer inputs (the first layer of the circuit); as such, its communication

cost is typically several orders of magnitude smaller than the Garbler to Evaluator transfer.

2.1.4 Optimization

Several improvements over the original Yao’s protocol have been proposed recently, that

lead to both computational and communication cost reductions. These include the point-and-permute

[35], row reduction [31], and Free-XOR [36] optimizations, all of which we implement in our

design. Free-XOR in particular significantly reduces the computational cost of garbled XOR gates:

XOR gates do not need to be encrypted and decrypted, as the XOR output wire key is computed

through an XOR of the corresponding input keys. In addition, the free-XOR optimization fully

eliminates communication between the Garbler and the Evaluator for XORs: no ciphertexts need to

be communicated between them for these gates. Our implementation takes advantage of all of these

3This can be detected, e.g., by appending a prefix of zeros to each key kb
wk

, and checking if this prefix is present upon
decryption.

11

CHAPTER 2. BACKGROUND

optimizations; as a result, the circuit for computing AND gate, illustrated in Fig. 3.6, differs slightly

from the AND gate garbling algorithm outlined above.

2.2 SHA-1 Algorithm

Secure Hash Algorithm 1, known as SHA-1 [37] is a cryptographic hash function published

by National Institute of Standards and Technology (NIST). It has an output size of 160 bits known as

the message digest. The block size is 512 bits, and 80 rounds are needed for one SHA-1 operation.

The applications of SHA-1 crypto operation include message authentication code, digital

signature, etc, which ensures the data integrity for data sharing over the internet. The reason is that

a hash function will ensure that the same input will always provide the same message digest; it is

impossible to find two messages with the same digest and derive the message input from the digest;

finally, a small change will generate a totally different digest which is known as the avalanche effect.

There are 80 iterations for SHA-1 operations. Each operation is the same and will update

five variables representing the current state of the cipher. With different message input and constant

round value, the digest will be unique for different message inputs.

There are two popular modes defined for block cipher operations. The simplest encryption

mode is the Electronic Codebook (ECB) mode. The message is divided into several same size

blocks, each of which is encrypted or hashed separately. Each message digest is independent of

any other parts. The second mode is Cipher Block Chaining (CBC), where each block of message

input is XORed with the output of a previously computed message digest before entering a new hash

primitive. This is more secure compared with the ECB mode with the tradeoff of not being able to

perform parallelization.

In our implementation of the garbled circuits protocol, the input bit width is less than the

largest bit width allowed for one SHA-1 encryption. ECB mode with one hash primitive is suitable.

There are several alternate computation algorithms that yield the same results. An implementation of

the standard SHA-1 algorithm can be obtained from the open-course projects [38].

Here is a discussion of the security of the system using SHA-1. SHA-1 is not considered

safe for attacks like brute-force attack, collision attack, and side channel attack. Collision attack

means that attackers can forge two distinct documents with the same SHA-1 hash within a practical

amount of time. Collision attack is becoming applicable as the computing power of computers

increases every year observed by Moore’s law. Side channel attack is a way of using side channel

information while a cipher is running and later analyzing the secret information along with other

12

CHAPTER 2. BACKGROUND

known information. These attacks are very powerful and practical, and includes power traces,

electrical magnetic signals, fault attacks, etc. Even the newest Hash algorithm Keccak (Standard

SHA-3 Scheme) is also vulnerable [39, 40, 41, 42]. While SHA-1 itself is no longer considered

secure, we claim that using SHA-1 is safe for garbled circuit because for each new operation, the

system will generate new random variables for garbled value and keys which cannot be deducted

by the previously observed information or any collision attack attempt. This makes any attack

meaningless even it is successful.

2.3 Field-Programmable Gate Array

2.3.1 FPGA Architecture

Field Programmable Gate Array (FPGA) is a hardware architecture which can be con-

figured after manufacturing. The application of FPGAs varies from ASIC prototyping, consumer

electronics, signal processing, wireless communication, high-performance computing, aerospace

and defense, medical devices, security, etc. Circuits can be described using Hardware Description

Languages (HDL) or higher level languages using high-level synthesis. FPGAs are a good platform

for application acceleration because of their flexibility, low development time and cost compared

with Application Specific Integrated Circuits (ASICs) and low power consumption compared with

Graphics Processing Units (GPUs) and CPUs.

The basic components of FPGAs are programmable logic blocks (Adaptive Logic Modules

in Altera FPGAs and Configurable Logic Blocks in Xilinx FPGAs), massive programmable intercon-

nections between those logic blocks, Digital Signal Processor (DSP) blocks, clocking, I/O, memory,

etc. The LookUp Table (LUT) in programmable logic blocks contains memory cells to implement

small logic functions.

For Altera which we target, each ALM supports up to eight inputs, contains four one bit

registers, two dedicated full adders, a carry chain, a register chain and a 64-bit LUT mask. Fig. 2.3

shows the micro-architecture of one ALM in Stratix V family devices. Also, Stratix V devices contain

two types of memories: enhanced Memory Logic Array Blocks (MLABs) with 640 bits and M20K

memory blocks with 20K bits. MLABs are enhanced memory blocks that are configured from dual

purpose Logic Array Blocks (LABs) and are optimized for implementation of shift registers for DSP

applications, wide shallow FIFO buffers, and filter delay lines. M20Ks are the dedicated memory

resources on Stratix V FPGAs. The M20K blocks are ideal for larger memory while providing a

13

CHAPTER 2. BACKGROUND

Figure 2.3: ALM Architecture for Stratix V Family FPGAs [1]

large number of independent ports and supporting more complicated memory modes than MLABs.

2.3.2 FPGA Overlays

As FPGAs have become denser and capable of holding a large number of gate equivalents,

there has been an increased interest in FPGA overlay architectures [43, 44, 45, 46, 47, 48, 49]. An

FPGA overlay consists of two parts: (1) a circuit design implemented on the FPGA fabric using the

usual design flow, and (2) a user circuit mapped onto that overlay circuit. Fig. 2.4 is show the overlay

architecture on FPGAs.

Overlays are in general used for two purposes. The first is to create FPGA designs that are

independent of the specific structures on a particular FPGA and therefore to make designs portable,

or, in other words, able to be mapped to FPGAs from different vendors and to different devices

from the same vendor. This class of FPGA overlay designs [43, 44] creates basic FPGA structures,

such as Look-Up Tables (LUTs) and routing, built on top of those provided in silicon on the target

14

CHAPTER 2. BACKGROUND

FPGA

Overlay
Cell

Figure 2.4: FPGA Overlay Architecture

FPGA chip. The second purpose is to reduce the amount of time to translate a design to an FPGA

implementation.

Components of a circuit follow a generic structure, an overlay approach that does not

reprogram FPGAs “from scratch”, but simply reroutes connections between elementary components

leads to important efficiency improvements. Building tradition architecture on FPGAs offer a great

deal of reconfigurability and flexibility; however, this comes at the cost of programming. Generating

designs that run efficiently on FPGAs can be challenging for the end user. In addition, the compilation

process for a high-end FPGA design can take several hours. Here compilation refers to the complete

set of steps from the specification (in a hardware description language (HDL) or high-level language)

to generating a bit stream to download to the FPGA. These steps include synthesis, place-and-route

and bit stream generation for the target FPGA. A big advantage of implementing the garbler (and

evaluator) as an overlay architecture is that it eliminates the lengthy place and route times incurred

when using an FPGA. Different pieces of the same problem, as well as different problems, can

easily be mapped to the overlay without incurring this expense. Examples of this style of FPGA

overlay architecture include Network on a Chip (NoC) overlays [45, 46] and instruction set extension

overlays [47]. In these cases, structures are built on the FPGA and the overlay architecture provides

flexible routing among them. Overlay architecture enables us to get rid of those traditional FPGA

15

CHAPTER 2. BACKGROUND

deployment steps for every new problem. Instead, using overlay architecture, the overhead is simply

loading input to the memory on FPGAs and providing different control signals to feed the overlay

cells. In chapter 3, we discuss the feasibility of mapping GC using the second type of FPGA overlays.

2.3.3 Heterogeneous Computing Platform using FPGAs

There are emerging heterogeneous computing platform using FPGAs in recent years. Here

is an introduction of those platforms. Later we will show the ProceV Board which we use in this

project.

FPGA as an accelerator in computer clusters can be traced back to the beginning of

this century. In October 2004, the Cray XD1 range incorporated Xilinx Virtex-II Pro FPGAs for

application acceleration. With 12 CPUs in a chassis, and up to 12 chassis installable in a rack, XD1

systems can hold multiple 144-CPUs in multirack configurations. The operating system used on the

XD1 is a customized version of Linux, and the machine’s load balancing and resource management

system is an enhanced version of Sun Microsystems.

Later some popular platforms includes QP[50] and Novo-G[51]. QP (for ”Quadro Plex”)

is developed at National Center for Supercomputing Applications at University of Illinois Urbana-

Champaign. It includes 16 AMD CPUs and two types of accelerators: FPGAs from Xilinx and GPUs

from NVIDIA. They are connected via InfiniBand and Ethernet and this system is very flexible since

there are both FPGAs and GPUs. The Novo-G board is a reconfigurable computing cluster based at

the University of Florida. The system features 96 Altera Stratix-V FPGAs in 24 networked servers.

It is based on PCI Express FPGA cards by Gidel which we will discuss on 2.3.4.

Recent years saw the emergence of FPGAs in large heterogeneous computing platform.

Internet companies including Microsoft, Amazon, Baidu, etc are involved in it. Microsoft Catapult

project[23, 24] demonstrates an evolving system from one FPGA to multiple FPGAs per node for

accelerating Bing searches and streaming data processing, etc. Amazon Web Services (AWS) cloud

EC2 F1 server[25] let users run customizable FPGA hardware for their needs, featuring two different

instance types. Under the AWS cloud infrastructure, users will have the necessary tools as a Hardware

Development Kit (HDK) for better portability and user’s designs will be registered as Amazon FPGA

Images (AFI) for future reuse.

16

CHAPTER 2. BACKGROUND

2.3.4 ProceV Board

We use the ProceV board from Gidel as our platform. This board is also widely used in

Novo-G cluster. Fig. 2.5 shows the components of the ProceV board. It is a Stratix V FPGA-based

platform along with two DDR3 external memories each of which can support 8GB. It provides

high-speed communication between host and FPGA via a PCIe generation 3 bus which makes the

system suitable for high-performance computing and low latency networking projects. There are 8

lanes on board each of which supports 8 Giga transmissions per second. Thus the throughput of this

interface is 7.88 GB/s in each direction. The ProceV system enables high-bandwidth computation

and networking, and unique flexibility to achieve diverse algorithm architectures. It is supported by

Gidel’s ProcWizard software and IP, which can shorten the development time. Altera’s Stratix V

FPGA provides high capacity and high speed for many architectures.

2.4 Related Work

Research on secure function evaluation using garbled circuits can be classified into three

categories. First is the optimization of protocols and reduction of overhead at the algorithmic level.

Researchers in this area focus on improving the algorithms of garbled circuits via cryptographic and

mathematical deduction, reducing the size of the transmitted data, exploiting different variation of

protocols for different adversary modules, etc. The second category is the development of platforms to

implement garbled circuits, which includes algorithm libraries, custom compilers, and new languages.

Garbled circuits remained purely theoretical until Fairplay [52] proved its feasibility in 2004. Ever

since then, there have been more than a dozen platforms developed for garbled circuit applications.

The focus of the third category is the accelerations of garbled circuits via specific hardware, including

GPUs, FPGAs, and ASICs, etc.

2.4.1 Garbled Circuit Algorithm Research

Although garbled circuits were proposed nearly three decades ago [53, 30], it is only in

the last few years that the research community has made progress in improving their efficiency,

bringing their application closer to practicality. Several improvements over the original protocol

have been proposed. Point-and-permute [35] is an optimization method to reduce evaluation time by

adding a selection bit after ciphertexts, which ensures that only one rather than all four ciphertexts

are needed for decryption. Row reduction [31] reduces the size of the transmitted garbled table

17

CHAPTER 2. BACKGROUND

Stratix V
FPGA

PCIe x 8 Gen 3 BridgeJTAG
Connector

(J16)
Power

Connector
(J2)

PCIe
Slot

115*

BANK CBANK B

PSDB
Connector

(J4)

External I/Os
(J3)

DDR3
SODIMM
4GB/8GB
1600 MHz

(J12)

72 72

12

12

8 HS_B Inter-board
Connector (J6),

4 HS_C Inter-board
Connector (J7),

DDR3
SODIMM
4GB/8GB
1600 MHz

(J11)

* 115 fast single-ended lines or
24 Tx, 28 Rx, 2 clk LVDS lines

BANK E

36

DDRII SRAM
36 Mb or 144 Mb,

450 MHz (optional)
BANK D

36

DDRII SRAM
36 Mb or 144 Mb,

450 MHz (optional)

RJ45 (J8)
(optional)

SFP+ (J18)
(optional)

SFP+ (J18)
(optional)
CXP+ (J1)
(optional)

Figure 2.5: ProceV Block Diagram [2]

18

CHAPTER 2. BACKGROUND

by 25% by enabling one of the garbled value to be always zero instead of generating it randomly.

The Free-XOR [36] optimization is a big step toward the wide adoption of garbled circuits for real

world problems, especially large ones. It proves that all the garbled circuit XOR operations are

“free”, meaning without the involvement of any encryption. Garbling with a fixed-key AES [54]

will garble efficiently while still supporting row reduction and free-XOR. The two halves make a

whole method [55] further reduces the number of cryptographic operations per AND gate to two,

while still being compatible with free-XOR gates. The disadvantage is that for the evaluation step,

two cryptographic operations are needed per AND gate. Clearly, research at this algorithmic level

establishes the mathematical models via proofs, a cornerstone of garbled circuits.

2.4.2 Garbled Circuit Implementation

Based on the protocol improvements and optimizations at the algorithmic level, there

has been a surge of programming frameworks for garbled circuits which can be divided into three

categories.

The first is the garbled circuit arithmetic library for general purpose programming language

such as Java. FastGC [56] is the first library-based garbled circuit platform introduced in 2011. Users

can define the components in the library in an optimized way and also add new operations easily

into the library. However, library-based approaches have no global optimization and require manual

adjustment. Memory management also gets complicated for large problems. VMCRYPT [57] is a

fully customized Java-based library which has a very small memory footprint, uses no disk storage

and supports dynamically constructing and deconstructing circuits. It is also completely transparent

to developers. The garbage collection overhead of VMCrypt caused by instantiating a new object

for each gate is solved with less memory by [58]. ObliVM [27] is a privacy-preserving computation

programming framework written in Java which can reduce the development process and effort, while

still maintaining competitive performance for large problems like data mining, graph algorithms, and

genomic data analysis. It has several different optimization levels of the garbled circuits algorithm,

including the regular garbled circuits, offline and the half AND GC. ABY [59] is a mixed-protocol

programming framework to evaluate operations using homomorphic encryption for arithmetic circuits

(i.e. additions and multiplications) and garbled circuit operations for Boolean circuits. GraphSC [19]

is a framework that supports graph-based algorithms including data mining and machine learning

and also can execute in parallel with small communication overhead.

Second is the custom compiler for garbled circuits. Fairplay [52] is a compiler based

19

CHAPTER 2. BACKGROUND

platform from 2004 which can transform a high-level procedural language SFDL (Secure Function

Definition Language) into a circuit description language SHDL (Secure Hardware Description

Language). The generator and evaluator can then process the SHDL circuit with garbled circuits.

TASTY [60] is a compiler for both homomorphic encryption and garbled circuits. It allows the user

to automatically generate, benchmark and compare the performance with a semi-honest model. The

first compiler with the scalability to billions of gates in malicious adversary mode is introduced

in [61]. It can generate large circuits with fewer resources and can take advantage of the parallelism

of the malicious model of Shelat and Shen’s protocol [62]. PCF (Portable Circuit Format) [63] is

a compiler that can optimize the program with the goal of producing a smaller circuit. A portable

interpreter is responsible for loading PCF program and execution for different SFE security models.

In this approach, it is not necessary to unroll loops until the protocol runs, leading to more compact

representations which can scale to arbitrary circuit size. CBMC-GC [64] is the first ANSI C compiler

for SFE which translates C programs as an input into equivalent Boolean circuits. Frigate [65] in

2016 is an efficient compiler and fast circuit interpreter for secure function evaluation with large

improvement on compilation time, interpretation time and execution time.

The third is new languages specifically for garbled circuits. One example is SHDL of

Fairplay [52]. However, it largely follows the standard of the C and Pascal programming languages.

The L1 intermediate language [66] implements mixed protocol SFE. It supports secret shares,

homomorphic encryption, and garbled circuits. WYSTERIA [67] supports mixed mode which can

switch between normal and secure computation, but hiding lower level details and is not limited to

two parties.

2.4.3 Garbled Circuit Acceleration

Acceleration of garbled circuits has become a hot research area in the SFE field. Re-

searchers use different parallel models and hardware platforms for better speed up. These platforms

include CPU/MIPS, GPUs, and FPGAs. This sections shows the current stages and the comparison.

Table 2.1 shows the comparison for different methods in the hardware acceleration area.

The standards include parallelism exploitation, customized circuit or general circuit and the ease of

translating a problem to a specific architecture. Compared with current state-of-art, our approach is

the only one that has all three desirable properties.

20

CHAPTER 2. BACKGROUND

Table 2.1: Comparison among Different Approaches

Property ObliVM GPUs TinyGarble MIPS Standard FPGA Ours
Parallel N Y Y N Y Y

Customized Circuits N N Y N Y Y
Fast SW Transition Y Y&N N Y N Y

2.4.3.1 CPU/MIPS

JustGarble [54] shows that using AES-NI (Advanced Encryption Standard New Instruction)

can garble and evaluate a circuit much faster than the traditional software method. Intel AES-NI is a

new encryption instruction set that improves AES operations in the Intel Xeon and Core processor

family. TinyGarble [68] uses techniques from hardware design to implement GCs as sequential

circuits and then optimizes these designs. The circuits can be optimized to reduce the non-XOR

operations using traditional high-level synthesis tools and simulation. In the technology library, the

area of an XOR gate is set to 0 while the area of non-XOR a non-zero value. The offline circuit

synthesis will provide a ready-to-use circuit description for any garbled circuit platform. They also

propose a 32-bit MIPS architecture specifically implemented to support for Private Function-SFE.

However, there is only a proof-of-concept using the Hamming Distance example. GarbledCPU [69]

is a MIPS-based general purpose sequential processor which enables the high-level description of

garbled circuits in hardware. Problems to be evaluated securely are compiled to MIPS assembler

and then run securely on their garbled MIPS processor. The goal of this project is to fabricate the

MIPS core; FPGAs are used for prototyping the design. Using MIPS assembly code to represent the

problem being evaluated alleviates the problem of lengthy FPGA place and route cycles.

2.4.3.2 GPUs

Recent studies have also used GPUs for hardware implementations of garbled circuits.

Fastplay [70] has Fairplay as the frontend which provides SHDL as the input and uses a GPU

architecture to accelerate ECC related arithmetic operations and achieve a 35 to 40 times acceleration

over a serial implementation. [71] implements a protocol based on cut-and-choose of garbled circuits

for malicious situation using GPUs. [72] implements free-XOR, pipeline, and OT extension on GPUs

which exploit some of the embarrassingly parallel nature of many tasks. It shows the difference

between implementations on Single Instruction Multiple Data (SIMD) architecture of GPUs and on

Multiple Instruction Multiple Data (MIMD) architectures of multi-core CPUs.

21

CHAPTER 2. BACKGROUND

2.4.3.3 FPGAs

[73] describes the first FPGA implementation of GC. Their implementation, while generic

and able to support a wide range of hardware implementations, implements one encryption core and

there is no parallelism. Two FPGA-based prototypes are proposed. A system-on-chip with access

to a hardware cryptographic accelerator core and a stand-alone hardware implementation targeting

ASICs. Another implementation involving FPGAs is the modified platform using MIPS discussed

above which use FPGAs as a proof-of-concept. However, they use many fewer encryption cores

and running code on a MIPS processor creates an extra level of overhead. The FPGA is not used as

efficiently as in our proposed implementation. Our architecture uses much more parallelism than

other FPGA implementations of garbling. For starters, we implement four SHA-1 cores in hardware

for each AND and XOR gate, while others use one encryption core serially [73]. In addition, we

implement as many garbled AND gates as we can keep busy at the same time, and implement garbled

circuits directly on top of an efficient overlay. Details are provided in section 3.

22

Chapter 3

System Design Methodology

This chapter will introduce the methodology of designing garbled circuit generation on

FPGAs from scratch. Our aim is to present an FPGA coarse-grained overlay architecture for a

heterogeneous computing system along with corresponding software for general garbled circuit

problems. We will show the tools to support mapping different kinds of garbled circuit problems

onto the hardware architecture and leverage the interaction between hardware and software while

maintaining small communication and memory access overhead.

This chapter contains three main parts: garbled circuit generation system, software struc-

ture, and hardware architecture.

Section 3.1 shows our garbled circuit generation system as a whole.

Section 3.2 discusses the software structure needed for working with the hardware architec-

ture. Depending on different assumptions and characters of the hardware architecture, the software

configurations for generating host code will be different. The system performance will also vary.

Corresponding results with each proposed architecture will be presented in Chapter 4.

For the hardware architecture, we elaborate the way that we tackle this new challenge

on FPGAs, which includes three sections: the design and simulation of garbled circuit generation

in Section 3.3, garbled circuit hardware in the heterogeneous system design methodology using

ProceV board in Section 3.4, and different levels of architecture improvement for best performance

in Section 3.5. We first tackle this problem via simulation-based hardware design and later move to

the heterogeneous system. For the real system, we show the different levels of bottlenecks which

hamper the performance and give solutions. Different architecture exploration is conducted so that

the best performance is achieved for general garbled circuit problems.

23

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

CPU HostFPGA Accelerator Interconnection

Garbled Circuit Generation System

Any GC Problem
Description

GC Hardware
Architecture

Figure 3.1: A Garbled Circuit Generation System

3.1 Garbled Circuit Generation System

Our FPGA acceleration of GC generation works as follows. We start with a function f

the user wishes to evaluate securely and generate garbled circuit tables and garbled circuit values

based on garbled circuit protocol. This is done by 1) translating the function to a Boolean circuit

using an existing software platform and providing commands to the FPGA to garble the function,

2) accelerate the garbling by making use of an FPGA overlay architecture. We also improve the

performance of the system by addressing different bottlenecks. We will show briefly how the system

works as a whole and later describe each part of the hardware and software separately.

Fig. 3.1 shows the high-level structure of a heterogeneous system using FPGAs. In general,

any heterogeneous system has the host side and the accelerator works in coordination with the host.

There is an interconnection between the accelerator and the host.

The FPGA acts as the accelerator providing customized hardware circuits for a specific

application. The benefit of using FPGAs can be time performance improvement, reduced total power

consumption, increased energy efficiency, reduced system cost, etc. The bitstream for the hardware

architecture will be programmed on to the FPGA from the host.

24

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

The host side of the heterogeneous system acts as the controller for the accelerator and

works with the corresponding hardware architecture. It takes responsibility for configuration of the

hardware, transmission of the initial data, start of operations, collecting the hardware results, etc.

The low-level accelerator driver supplied for the FPGA, application interface, and operating systems

make those operations possible.

The interconnection between the FPGA and host is the communication channel of all

the data and control signals. There are several ways of implementing the interface including Intel

QuickPath Interconnect (QPI), AXI bus, PCI Express, etc. Those interfaces aim to have low latency

and memory coherency. For QPI and AXI bus, FPGA is usually in-socket, meaning the scope of the

system is relatively small. This can reduce latency, have good memory coherency, cache coherency

and shared memory modules. On the other hand, for the PCIe interface, the system can be on a

large scale which makes the wide utilization of FPGAs as an accelerator in the data center possible.

The latest Generation 5 of PCIe can provide up to 3.9GB/s throughput for a single lane. The lower

communication delay cost of PCIe will make large HPC problems using FPGAs more widespread.

As for garbled circuits, there are some differences compared with the traditional workflow:

First, the computational complexity of garbled circuits is too high for mapping to any

FPGA directly. For example, one simple garbled circuit AND gate takes about 3K Adaptive Logic

Modules (ALM) on an Altera FPGA. If there are thousands of Boolean gates including AND gates

even for a very small problem, the total resources needed will exceed well beyond the limit of any

FPGAs off the shell. Even multiple FPGA solutions might not apply without dividing the problem

into evenly smaller ones. Moreover, even if a solution might be feasible, the problem becomes the

total redesign time for a specific problem of garbled circuits. For each new problem, the hours needed

for designing a new hardware implementation will be very large.

Second, reducing unnecessary access between host and hardware can boost the total

performance and the communication pattern of the host and the FPGA is not the same either. FPGA

implementations such as video processing, wireless communication, has a distinct boundary between

hardware and software operation with regards to time. This avoids frequent synchronization between

hardware and software. For example, video processing is essentially streaming processing which

deals with a flow of pixel data. While doing the operations, the host does not have to intervene

until all the required data finishes processing. Once the start address of one frame is acquired by

the hardware, the flow of data will be taken care of via buffers and the datapath for the specific

functionality, like filter, edge detection, etc. Similar situations apply to the physical layer of the

transceiver in wireless communications, where each stage such as preamble detection, modulation,

25

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

demodulating can be applied either using hardware or software. The intermediate data can be buffered

from/to host to/from FPGA, making the separation of operations viable.

In the case of garbled circuits, the challenges are the granularity of the operation and data

access pattern. The granularity means that in order to support different kinds of garbled circuit

problems, the hardware architecture has to be as general as possible. Later we will show that any

structure of garbled circuit problem can be implemented with only two garbled gates, garbled circuit

AND gate and garbled circuit XOR gate, which shows the possibility of realizing large problems

using these two smaller garbled circuit Boolean operations. As a result, for this data access pattern,

the host has to control the feeding of the initial data, intermediate address, the operation stages, etc.

More importantly, the address of the intermediate data is not contiguous. It is a major drawback

since the data can not be accessed as a stream of data. Neither PCIe nor DDR interfaces can be used

for the best performance with respect to the throughput. Later discussion shows the latency of data

transmission is also the bottleneck.

Besides the two differences above, there are also some factors which are the constraint

of a specific heterogeneous computing platform, in our case ProceV board and the corresponding

software development tools and device drivers. Some can be crucial to performance such as the clock

frequency of the FPGAs, the data transmission clock frequency, the size and the method data can be

shared between FPGA and the host, and the API for using specific operations through the device

driver. Those can vary among different platforms which affect the final performance.

3.2 Software Structure

This section will discuss the software structure of the heterogeneous computing system

for general garbled circuit problems. Fig. 3.2 shows the full software structure and workflow for

generating the host side code for any garbled circuit problem. The following sections address problem

generation, problem parser, layer extractor, and code generation tools.

3.2.1 Problem Generation

A garbled circuit problem is defined as a function to be evaluated using garbled circuit

scheme to protect the privacy of input values. A batch of operations for hardware overlays is a

group of Boolean operations within one layer and it can be mapped onto the hardware overlay

architecture. The type of a batch can be either AND or XOR operation. The information of each

26

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

FlexSC

GC Problem

Gate Netlist

Layer Extraction Parser

Gate Layer

Host Code Generator

Host Code

Problem Parser

Layer
Information

Figure 3.2: Software Workflow

27

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

batch of operations includes the input and output wire IDs for each Boolean operation, total number

of Boolean operations in the batch and the AND gate ID for each AND operation. Each layer can be

separated into several batches of operations, which makes garbled circuit using FPGA overlay cells

possible for large problems.

We use FlexSC [26] as the software platform to generate the Boolean circuit representing

any garbled circuit operation. Problems are easy to implement using FlexSC compare with other

platforms such as FastGC, TinyGarble etc. FlexSC uses ObliVM as the backend for any garbled

circuit operation. ObliVM is a privacy preserving computation framework that allows one or multiple

organizations to perform secure data analysis without disclosing their private data. FlexSC provides

an arithmetic library so that if users use the function within the library, the function will call the

garbled circuit protocol backend realized inside ObliVM while running.

We build different types of garbled circuit problems based on the library from FlexSC.

After modifying the platform of FlexSC, specifically within the ObliVM backend, we can get the

garbled circuit gate list information with or without the value on each wire. We need the version

with the value on each wire for verification purposes and the one without values on each wire for the

Boolean operation of the problem. Here are the details.

First is garbled circuit gate list with value on each wire. This is helpful for generating the

testbench so that while doing hardware design, the operation runs exactly the same as that of the

software. Appendix A is an example of the generated garbled circuit values.

Second is the circuit generation mode to generate the structure of the circuit without the

value of each wire. This mode generates the garbled circuit operations for later layer extractor and

host code generation. The value on each wire is not important, since for every operation the input

value will be a random sequence, and only the Boolean structure stays the same. Each Boolean gate

is represented by the wire IDs and operation type. Here is an example of the millionaire’s question.

Suppose two millionaires want to compare their wealth without revealing the value of their wealth

to each other. We assume that the wealth of each millionaire can be represented in 8 bits, then the

problem becomes comparing two 8 bit values. Here is how the operation is represented using FlexSC.

The geq function will return true if x is greater or equal than y and false otherwise. The sub and not

functions inside are further implemented in other functions which are eventually realized by garbled

AND and XOR operations.

public T geq(T[] x, T[] y) {
assert (x.length == y.length) : "bad input";
T[] result = sub(x, y);

28

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

return not(result[result.length - 1]);
}

Here are the generated Boolean operations gate list from FlexSC. The form is wireID1

AND/XOR wireID2 = wireID3. The Boolean sequence is the same as the order performed in FlexSC.

8 XOR 17 = 18
9 XOR 17 = 19
10 XOR 17 = 20
11 XOR 17 = 21
12 XOR 17 = 22
13 XOR 17 = 23
14 XOR 17 = 24
15 XOR 17 = 25
0 XOR 26 = 27
18 XOR 26 = 28
0 XOR 28 = 29
27 AND 28 = 30
26 XOR 30 = 31
1 XOR 31 = 32
19 XOR 31 = 33
1 XOR 33 = 34
32 AND 33 = 35
31 XOR 35 = 36
2 XOR 36 = 37
20 XOR 36 = 38
2 XOR 38 = 39
37 AND 38 = 40
36 XOR 40 = 41
3 XOR 41 = 42
21 XOR 41 = 43
3 XOR 43 = 44
42 AND 43 = 45
41 XOR 45 = 46
4 XOR 46 = 47
22 XOR 46 = 48
4 XOR 48 = 49
47 AND 48 = 50
46 XOR 50 = 51
5 XOR 51 = 52
23 XOR 51 = 53
5 XOR 53 = 54
52 AND 53 = 55
51 XOR 55 = 56
6 XOR 56 = 57

29

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

24 XOR 56 = 58
6 XOR 58 = 59
57 AND 58 = 60
56 XOR 60 = 61
7 XOR 61 = 62
25 XOR 61 = 63
7 XOR 63 = 64
62 AND 63 = 65
61 XOR 65 = 66
64 XOR 17 = 67

The type for XOR is wireID 1 XOR wireID 2 = wireID 3; type for AND is wireID 1 AND wireID 2

= wireID 3. Notice that any problem can be expressed as a Boolean circuit can be represented using

only Boolean AND and XOR gates. Note this is a small example. The number of gates within each

problem can be hundreds of thousands.

3.2.2 Layer Extractor

After we get the complete gate list description for a problem, the list goes through a layer

extractor. We process the gate list in breadth first order and the layer extractor organizes the Boolean

gates for this procedure.

There are two levels of parallelism for garbled circuit problem, which is the parallelism

in each garbled circuit AND and XOR operation and in each layer of Boolean operations. We

represented Boolean circuit gate list as a Direct Acyclic Graph (DAG), and each layer of the circuit

that can be garbled in parallel is extracted. The CPU is responsible for mapping individual gates

to their realization on the FPGA. Our FPGA architecture implements as many AND and XOR

operations in parallel as can be kept busy. The CPU can transmit the AND operations or XOR

operations as a batch of Boolean operations in a layer, and assign them to overlay cell. When a layer

is completed, the FPGA signals this information to the CPU which then transmits the next batch of

the circuit, until the circuit has been fully garbled. More details of the FPGA architecture are given

in Section 3.3 and Section 3.4.

We use Python to construct the layer scheduler which implements breadth first search on

the graph and the output is the layer information. We also separate out the primary input values

where the wire ID is not the output of any gate.

We use 8-bit millionaire’s problem to demonstrate its functionality. Fig. 3.3 shows the

visualization which provides the user a straightforward way of monitoring this function layer by

30

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

Figure 3.3: Layer Extractor Output Visualization

layer. X axis is the layer number, and the y-axis is the gate ID. The yellow circle represents the

input wire ID; the red square represents the Boolean AND operation; the blue triangle represents the

Boolean XOR operation. This figure demonstrates the dependency of each layer on the DAG. Based

on garbled circuit AND and XOR operation, we can map the operation onto the generic architecture

on FPGAs for any problem. Notice that this is a small problem, large problems have more gate

within each layer. The layer extraction is a prepossessing step for each problem and only needs to be

performed once per problem, independent of input values.

3.2.3 Problem Parser

As shown in Fig. 3.2, we also take gate netlist to problem parser for layer information.

Problem parser analyzes gate, wire and layer information for each problem. Knowing the information

will enable us to build the hardware architecture for garbled circuit problems. Fig. 3.4 shows the

31

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

GC
Parser

Gate
List

of Wire
of AND Gate
of XOR gate

of Layer
of adjacent 1to1 Wire

Max adjacent 1to1 in a layer
of not_adjacent 1to1 Wire

of 1toN Wire
.
.
.

Figure 3.4: Garbled Circuit Problem Parser

structure of the problem parser.

For the output, some are general information: the total number of wires represent the total

memory locations that we need for a specific problem; total AND gates and XOR gates show the

amounts of those two operations; the number of layers reflects the level of dependency among all the

Boolean operations.

Other output is information about separating wires into different groups. This is beneficial

for different hardware memory hierarchy designs. For example, the adjacent 1-to-1 wire means a

wire is only connected to one input after it was computed and also the connected gate is in the next

layer. This gives us an opportunity to use local memory to accelerate storage and also reuse the

location after the next layer is finished. Also, there are 1-to-1 wires but not in the adjacent layer and

1-to-n wires where one output is used multiple times.

3.2.4 Host Code Generation

For heterogeneous computing systems, we developed the tools to automatically generate

the host code based on any garbled circuit operation. The input to it is the output of the layer extractor

32

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

containing the gate list with layer information. Here is the functionality of code generation.

• This tool generates host code based on different hardware architectures obeying different

acceleration policies. The host has to work with the hardware to provide the right functionality,

such as the number of AND and XOR overlay cells on FPGAs and the memory systems.

Translation of the address for each wire is based on the specific memory policy on the

hardware.

• The host code contains the necessary initialization buffer for different problems and also comes

with selection of debugging mode

• It rearranges the order within each layer and decides a good order to send AND and XOR

operations to the FPGA.

• Separation main function into a group of smaller ones to avoid exceed heap size problem

Using this generator, users can general host code for any garbled circuit problem. The

structure of host code is described in Appendix B.

3.3 Simulation of Garbled Circuit Generation

This is the first section of garbled circuit hardware architecture design methodology. We

provide the computing unit for garbled circuit operation on FPGAs and make sure the functionality

is correct. An overlay architecture is applied on FPGAs and we use on-chip Block RAM for data

storage. We elaborate on each part of the hardware and also estimate of the speedup compared with

software in Chapter 4.

3.3.1 FPGA Overlay Architecture

The complete design of the overlay architecture using Block RAM on FPGAs, shown in

Fig. 3.5, includes garbled circuit XOR and AND overlay cells, Block RAM, a FIFO for communicat-

ing the garbled table and outputs with the CPU, and a workload dispatcher and data controller.

Garbled circuit AND and XOR overlay cells are the computational components which are

mapped to FPGA fabric in a coarse grained manner. BRAM stores the initial, intermediate data and

the final result in the form of a garbled table for each Boolean gate and garbled value for each wire.

The wire ID is also used as the memory address. The workload dispatcher and data controller is

33

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

XOR

Workload
Dispatcher

&
Data

Controller

FIFO

BRAM

FPGA

Figure 3.5: Overlay Architecture for Garbled Circuit

a finite state machine that controls the whole system. The FIFO enables communication from the

FPGA to the host. The values transmitted include the garbled table for each AND operation and the

garbled values of the outputs of the operation. The garbled table values are written to the FIFO when

each AND garbling completes.

The following sections introduce the architecture of garbled circuit AND overlay cell,

XOR overlay cell, embedded memory and workload dispatcher and controller.

3.3.2 Garbled Circuit AND Overlay Cell

The AND overlay cells required for garbled circuit generation are much more complicated

than single bit operations. Each wire of the AND operation is represented as 80 bits in our implemen-

tation. A basic garbling AND operation implements the functionality described in Section 2.1 and

shown in Fig. 2.2. Each line is implemented according to Equation 2.1. This implementation requires

four SHA-1 cores, using 512-bit values derived from the garbled inputs and additional information.

The SHA-1 core inside the garbled circuit AND overlay cell is based on an open source SHA-1

core [38]. Our garbled AND operation requires 82 clock cycles on the FPGA and uses 3070 ALMs

and 3750 one bit registers on a Stratix V FPGA.

Fig. 3.6 shows the hardware architecture of garbled AND overlay cell. K0
0 , K0

1 and K0
2

are three garbled value representing value 0 on the wire for an AND operation. R is the global

34

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

AND Gate

K2
0

SHA-1

K0
0

K1
0

K2
0

R

K0
0,K1

0

K2
0

SHA-1

K0
1,K1

0

K2
0

SHA-1

K0
0,K1

1

K2
1

SHA-1

K0
1,K1

1

Figure 3.6: A Garbled AND Overlay Cell

35

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

variable based on which the cipher can get the garbled value representing value 1. For any wire i, the

equation is always K0
i ⊕K1

i = R. This figure shows a basic Garbled Circuit AND operation without

applying the garbled table space saving optimization method. Clearly, there are four combinations of

the operations for any two pairs of input garbled value, which are K0
0 , K0

1 and K0
2 ; K1

0 , K0
1 and K0

2 ;

K0
0 , K1

1 and K0
2 ; K1

0 , K1
1 and K1

2 . The operation is to compute the message digest the concatenation

of the two input values and then XOR with the corresponding garbled value of the output. There are

four output values, each of which is in one entry of the garbled table.

We use FlexSC [26] as the software platform to generate garbled circuits. The proposed

system should behave exactly the same as what FlexSC can provide. The optimization method that

FlexSC applies is row reduction and can save only three instead of four entries inside any garbled

circuit AND operation table. They achieve this by making one of the garbled table entries a value

zero and randomizing the other three entries. The entry is decided by the garbled operation of two

inputs for each AND operation. So is the value of K0
2 .

Fig. 3.7 shows the optimized operation which uses the row reduction method for a garbled

AND operation that we implement. The optimized version of the garbled AND overlay cell can

reduce the size of the garbled table by 25%, which is also the saving of transmission size. The

module still needs four SHA-1 primitives. There are two arbitrators for all four output of the SHA-1

operations. The first arbitrator will decide the sequence of the result and pick one of them which

XORs with the other three. The second arbitrator will rearrange the sequence of those three values

and store them into the garbled table. Note that these arbitrators do not introduce any latency to the

system. Also, four SHA-1 modules are always running in parallel. In Chapter 4, we will verify the

functionality via the testbench generated directly from FlexSC and show the timing information.

3.3.3 Garbled Circuit XOR Overlay Cell

Garbled Circuit XOR overlay cell benefits from the so-called “free” XOR protocol. A

free XOR gate consists of 80-bit plaintext XOR operations. For any garbled circuit operation, it is

guaranteed that using free XOR protocol will have the same validity and privacy as using standard

cryptographic primitives. This has been proven [74] under the assumption of the semi-honest model.

Using this free XOR protocol, the XOR computation is much smaller than garbled circuit AND.

Fig. 3.8 shows the structure of XOR overlay cell on FPGAs. The computation is K0
2 =

K0
0 ⊕K0

1 and K1
2 = K0

2 ⊕K0
1 ⊕R. It is clear that XOR operation is a combinational datapath and is

very suitable for hardware. Compared with software implementation using a for loop, the hardware

36

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

Optimized Garbled AND Gate

K2
0

SHA-1

K0
0

K1
0

R

K0
0,K1

0

K2
0

SHA-1

K0
0,K1

1

K2
1

SHA-1

K0
1,K1

1

K2
0

SHA-1

K0
1,K1

0

A
R
B
I
T
R
A
T
O
R

A
R
B
I
T
R
A
T
O
R

Garbled
Table

0

1

2

3

Zero

Figure 3.7: Optimized Garbled AND Overlay Cell

37

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

Garbled XOR Gate

K1
0K0

0

K1
0

R

K0
0

R

K0
0

K2
0

K1
0 K2

1

Figure 3.8: A Garbled XOR Overlay Cell

overlay cell also saves a considerable amount of computing time.

3.3.4 Embedded Memory

We support communication between gates by storing all inputs and outputs inside memory.

We first explore embedded memory on the FPGA chip for simulation purposes. For Altera Stratix

FPGAs, there are two types of embedded memories: one is enhanced Memory Logic Array Blocks

(MLAB) and the other is the M20K block memory. Each MLAB is implemented by one Logic

Array Block (LAB) containing 10 adaptive logic modules (ALM). M20K block memory is dedicated

memory resources and is suitable for providing a large amount of data storage. The tools determine

which type of memory is used and the user can set the memory policy.

We use Block Random Access Memory (BRAM) to store the garbled values for each wire

(i.e. every input and output for every gate). We treat all of the on-chip memory as one monolithic

sequential memory device. The memory is 80 bits wide and implemented with one read and write

port. The unique wire ID in the Boolean circuit corresponds to the memory location. This monolithic

memory simplifies our design since no decision making is required in determining where to find

38

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

One Port RAM

Data_in

Address

wren

In_clock

rden

aclr

Out_clock

Data_out

Figure 3.9: A Standard RAM Interface

inputs or where to store outputs.

Fig. 3.9 shows the interface of 1-port RAM MegaCore IP function. MegaCore from the

Altera IP library provides the predefined modules with multiple configurations available for users.

Users do not need to redesign the functionality. This guarantees a standard interface, increases the

robustness of the system, and optimizes for Altera FPGA devices.

For inputs in the 1-port RAM IP core, data input and write enable are specifically for the

write operation; port read enable is for the read operation; others ports such as input clock, address

and asynchronous clear are shared by both operations. The number of data values can be configurable

based on the number of wire within each garbled circuit problem. Output data will be available once

the RAM is finished reading. The synthesis process decides the physical implementation of how this

IP will be mapped onto Altera FPGAs.

3.3.5 Workload Dispatcher and Data Controller

The workload dispatcher and data controller is responsible for fetching garbled values

from the memory based on input or output address, pushing the input data to the unoccupied garbled

circuit AND or XOR overlay cell, writing back the result to the memory after each operation finishes.

39

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

The design of this module is vital since the timing performance is decided by the state defined within

it. In other words, it decides not only the total resource utilization for hardware architecture but

also the timing of interact with the host. Fig. 3.10 shows the timing information of the workload

dispatcher and the controller. In details, it implements the following steps:

1. Determine the type of the next batch of operations sent from the host

2. Read values in BRAM for input values and forward to a vacant gate

3. When an AND or XOR operation is finished, write the output garbled value to the correspond-

ing location in BRAM

4. For an AND gate, the controller is also responsible for pushing the gate ID and garbled table

entries to the FIFO for transmission to the host

5. At the end of garbled circuit generation, read the garbled output value(s) from the wire ID(s)

and push them to the FIFO for transmission back to the host

In order to achieve the maximum performance as a heterogeneous computing system, we

implement in hardware the maximum number of AND and XOR overlay cells that can be kept

busy, taking the latency of the AND operations and the availability of the BRAM for reading into

account. In our current design, this results in 43 AND gates. We implement a single XOR gate, as

the computation has one cycle latency which makes it always available and additional XORs will not

help the performance. Fig. 3.11 shows the timeline for garbled circuit AND operation. The read from

and write to BRAM are both one clock cycle latency; garbled circuit AND takes 82 clock cycle; reset

takes one. Our overlay architecture with BRAM implements 43 AND cells. Based on the timeline,

if there are more AND operation the 44th gate will run on the first overlay cell since it has already

completed. In our implementation, XOR operation in a layer will be computed after all the ANDs

have started. There may be contention for writing BRAM if XOR and AND operations complete at

the same time and this contention is handled by the workload dispatcher. Performance results for this

design are given in Section 4.3.

Fig. 3.12 shows the timeline for garbled circuit AND operation. An XOR gate has four

cycles of latency total, two for reading inputs, one for computing XOR and one for writing the output.

40

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

ddsd

DDR
Memory

DDR/
BRAM

I/F

BRAM
A Overlay Cell

Workload Dispatcher & Data Controller

ADD1

Layer
info

Garbled
Operation

ADD2

In1

In2

Garbled
Value

Garbled
Table

ADD3

Step 1 Step 3Step 2

Figure 3.10: Workload Dispatcher and Data Controller Timing information

8211 1 1

8211 1 1

8211 1 1

8211 1 1

1

2

3

44

8211 1 145

A B C D

A: BRAM Read;

B: GC AND Operation;

C: BRAM Write back;

D: reset;

Figure 3.11: Garbled Circuit AND Gate Operations Sequence

41

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

11 1 1

11 1 1

11 1 1

1

2

3

A C D

A: BRAM Read;

B: GC XOR Operation = 0;

C: BRAM Write back;

D: reset;

Figure 3.12: Garbled Circuit XOR Gate Operations Sequence

3.4 Heterogeneous Computing System using ProceV Board

After having verified the correctness and validity of using FPGA overlay cells to accelerate

garbled circuit Boolean operation, we redesign the hardware architecture to fit in a heterogeneous

computing system, specifically, the ProceV board from Gidel Inc. With the support of 8-lane PCIe

Generation 3 interface between host and FPGA, the Stratix V FPGAs can perform at its best potential.

The device drivers provided by the development kits guarantee the communication between hardware

and host. Off-chip DDR memory will allow us to garble large problems. Fig. 3.13 shows the

heterogeneous computing system with off-chip DDR memory and PCIe interface.

We will discuss several topics in the following sections. One is the difference between the

FPGA hardware only system described in Section 3.3 and the heterogeneous system with hardware

and software. In this section, we focus on PCIe interfaces, DDR memory and workload dispatcher

and data controller. In Section 3.5, we demonstrate the methodology of improving the performance

of the whole system, not only hardware architecture but also the adjustments needed in the software

structure.

3.4.1 Communicating between Host and FPGA

The communication channel of the host and FPGA is through PCIe interface. It is a

common high-speed serial connection for connecting peripheral boards to CPUs. On the host side,

42

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

P
C
I
e

CPU

AND

AND

AND

AND

AND

AND

XOR

Workload
Dispatcher

&
Data

Controller

DDR
Memory

FPGA

DDR
Memory

Controller
Interface

Main
Memory

XOR XOR

XOR

XOR

XOR

Figure 3.13: Heterogeneous Computing System with DDR Memory

43

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

the device driver enables the host to transfer data through PCIe in a bi-directional way. On the

hardware side, the interface module connecting to the PCIe physical interface is responsible for the

data transfer based on the host commands.

There are two modes for the host to transmit the information. First is accessing to DDR

memory on board described in Section 3.4.2 and second is accessing the registers allocated inside

the FPGA in Section 3.4.3.

3.4.2 Accessing DDR Memory On Board

The ProceV board features 8GB DDR SODIMM memory which is much larger than the

embedded RAM on FPGAs. Here are the differences of using DDR compared with BRAM.

• The first difference is the speed of accessing memory. For BRAM, the maximum speed can be

600MHz and only takes one clock cycle for reads and writes. However, the clock frequency is

constrained by that of the whole system. On the ProceV board, the fastest speed of the system

clock is 200MHz. For on board DDR memory, the ProceV environment provides the specific

interface to interact with the memory. Specifically, the system will handle both Direct Memory

Access (DMA) transfer and user controlled access to DDR memory. DMA is responsible

for the transfer of the initial data from host memory to DDR on the ProceV board. FPGA

hardware will later take control of accessing the data via the DDR memory controller interface.

• The second difference is the size of two memories. Size is the pitfall of using embedded

memory for storing all the data. The Quartus RAM IP core’s largest address space is 65536

which is very limited with 80-bit data. Also, we need to store three entries for each garbled

table in memory. Thus the total address space is 65536/4 = 16384. We can not even map

a two 64-bit multiplication operation based on the problem size. This is the limitation of

using embedded memory. Our purpose is to map all kinds of garbled circuits on the hardware

architecture, and for large problems, the BRAM is not large enough to store all the initial and

intermediate data.

• Third difference is the interface. For BRAM, users can use predefined memory IP cores which

have many configurations mode to choose from. Compared to the DDR memory access from

the ProceV board, the workload dispatch and data controller can access the on board DDR

memory via DDR interface shown in Fig. 3.14.

44

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

As mentioned above, our aim is to provide a general hardware architecture and software

structure for any garbled circuit problems. The limited size of Block RAM inside FPGA is not large

enough for the initial data and intermediate data including garbled value and garbled table for most

problems. So the next approach is to store all the values onto DDR memory.

For DMA access, the software API is provided by Gidel to utilize the effective DMA mode.

These are divided into three steps: preparation, usage, and closing.

• For the preparation step, users will first allocate a memory space in the host memory for a

user defined size to be transmitted, the start location of this space, the channel number, the

direction of the transmission, etc. A memory handle is returned after this step.

• For the usage step, The handle will be fed into a function which runs the DMA supported by the

driver. Before calling DMA transmission, the host can write any initial data into the allocated

memory. Gidel also provides other useful functions such as checking the completeness of

DMA, remove the memory handler, etc.

• For the closing step, the host unlocks this memory location and release the system resources.

For DDR memory access from user’s customized module, the provided interface is shown

in Fig. 3.14. It is a single port interface with two groups of input signals for read and write operations.

The address is 32 bit wide and the data width can be customized for different widths. The latency

of the DDR access is about 170 ns for one read and about 180 ns for one write operation as we

measure. The timing information varies a little since there is DDR memory refresh every now and

then. This latency result is captured thought real signals via the Altera tool signalTap while the

system is running on FPGAs. Port lclk is the clock of the local bus which can be configured while

generating the hardware interface. The frequency options for this clock are 100MHz, 125MHz,

150MHz, and 200MHz. This is different from another clock for the module which directly connects

to PCIe which has the maximum frequency 300MHz.

The interface changes and the increased latency of DDR memory access make the hardware

architecture different from the architecture described in Section 3.3. Here are some design changes

implemented to support changing from BRAM to DDR memory in a heterogeneous system.

• It affects the optimal number of AND and XOR overlay cells on the hardware. Compared

with standalone FPGAs, the heterogeneous system is different in many ways, including the

above-mentioned memory access latency and different clock frequency of both the HW-SW

interface clock and the local bus clock. The principle of deciding the number of overlay cells is

45

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

Figure 3.14: ProceV Board DDR Memory Interface

to use the smallest number of garbled circuit AND and XOR gates while keeping the memory

interface and PCIe interface as busy as possible. We also try a different number of AND and

XOR overlay cell combinations.

• It also affects the address translation while doing code generation from the host side. For the

BRAM memory system, the width of the BRAM is configurable within the IP core, which

means that one address can represent 80 bits, so each wire id will directly represent one address.

In contrast, the width of the DDR memory is 32 bits. This means it needs 3 addresses for one

garbled value of one wire ID. For alignment purposes, we allocate 4 DDR addresses for one

garbled value. Thus one garbled circuit AND gate will take 16 DDR addresses in order to

store the garbled value of the output wire and also three entries of the garbled table.

• The bottleneck of the system changes from FPGA computation bound to the memory and

I/O bound. The latency of the garbled circuit AND and XOR operation will stay the same no

matter what the memory and I/O latencies are. The memory and I/O latencies change from 1

clock cycle (If 200MHz, 5 ns) to 170 to 180 ns for each DDR access. The memory interface is

the new bottleneck of the system and the software should accommodate the access pattern for

better performance.

46

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

3.4.3 Accessing On-Chip Registers

Not only the initial data but also the two input and one output address of each garbled

circuit AND/XOR gate needs to be transferred via the PCIe interface. Each gate will perform the

corresponding operations on the values of specific addresses. The host parses the structure of each

garbled circuit problem, according to which addresses are sent to the hardware side. Using this

mechanism, one fixed hardware architecture can support many different garbled circuit problems.

Assume there are m AND gates and n XOR gates, each gate will need in total three address registers

which can be written by the host. Thus the total number of registers will be 3 ∗ (m+ n).

For the host, the application driver contains the register type which represents the I/O

register in the design. In other words, a register is a member of the application driver class with direct

access to the hardware architecture. Based on the directions, there will be three types of registers:

write register, read register and read&write register. For example, the write register can only be

written to by the host but can not be read. The host first maps the register to the physical address on

the ProceV board and later writes to the register. There are also register array types as a member of

the application driver class which the host can access. Similar to register, the host can access the

register inside the array via the corresponding index.

The actual time for the host writing to one register on hardware is about 50 ns. The timing

information is captured via SignalTap while the garbled circuit is running. So for three addresses of

each Boolean gate, the data transmission time is around 150 ns. Along with the transmission of layer

information in each batch of operations, the total latency could be even larger. Time overlapping

method is provided in Section 3.5. More timing information will be presented in chapter 4.

3.4.4 Workload Dispatcher and Data Controller

For the workload dispatcher and data controller, states in the FSM are added according to

the timing information of the memory access pattern. The system using BRAM will only wait for

one clock cycle for either read or write; however, for DDR memory, memory access operation is

not finished until the rise of the complete flag. Also, data concatenation is needed for DDR memory

because of the DDR interface provided.

Here are the steps for the basic version of workload dispatcher and controller for the

heterogeneous computing system. Fig. 3.15 shows the time line of one batch of Boolean operations.

Once the current batch has finished, the host will send the next batch. Improved version is discussed

in Section 3.5.

47

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

tr 11

2

3

A C D

A: Memory Read (Time tr);

B: GC AND Operation (Time 82);

C: Memory Write back (Time tw);

D: Reset (Time 1);

T: Operation Info Transition (Time n*m)

n

T

82 tw

B

n

n

tr 182 tw

tr 182 tw

tr 182 twm

Figure 3.15: Coarse Granularity CPU and FPGA Communication

1. Get a batch of Boolean operations from the host via input registers.

2. Start the FSM based on the operations; specifically fetch the data and feed the value to the

input of the overlay cells.

3. When one Boolean operation is finished, write the output of the garbled gate to the correct

location in DDR. For AND gate, three entries of the garbled table are also written back to the

DDR in the next memory address of the garbled circuit output.

4. At the end of garbling, raise the flag for CPU to transmit the next batch of operations. Repeat

until host finishes sending the operations within all the layers.

3.4.5 AND and XOR Overlay Cells

Switching from BRAM to DDR memory for data storage affects the number of AND and

XOR overlay cells because of the change of timing information. For example, the time of one XOR

Boolean operation which includes accessing the memory three times takes longer than the host is

needed for transferring the wire information of one XOR operation. That means increasing the

number of XOR overlay cells within the hardware will increase the performance of the whole system.

48

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

We tried different numbers of AND and XOR overlay cell combination in our experiments and the

results are presented in Chapter 4.

3.5 Architecture Improvement

In this section, we focus on the different sources of bottleneck that hamper the total

performance of the garbled circuit generation system. Each section will describe a bottleneck of

the standard hardware architecture described in Section 3.4 and the disadvantages. We then discuss

methods to increase the performance. The architectural improvements include a hybrid memory

hierarchy, improved host to FPGA communication, and optimizations to the overlay architecture

especially the number of AND and XOR overlay cells.

3.5.1 Hybrid Memory Hierarchy

For a hybrid memory hierarchy, we are seeking to use both Block RAM and DDR memory

for better performance. The character of the two memories is obvious: Block RAM is within the

FPGA chip and is faster but small in size; DDR memory is large but slow. We can take advantage

of the benefit of each memory, while at the same time avoid the shortcomings. In a CPU memory

hierarchy, the purpose of using cache architecture is to reduce the time for data access. Modern CPU

shares three level caches and with DDR memory, and the total data access time is much lower than

using DDR memory alone. These hierarchies also keep the size of the cache close to the CPU as

small as possible to reduce the expense.

Fig. 3.16 shows the improvement of our hardware architecture using both the BRAM

inside the FPGA and the DDR memory on board. We define the rules by which garbled values are

stored in BRAM via a register allocation policy for BRAM. Values for the rest of the wires will be

stored on DDR. This architecture supports many different register allocation policies by the software.

For the hardware architecture, we configure the workload dispatcher and data controller

to accommodate this hybrid memory hardware architecture. The controller monitors the flag of

the address provided from the host and decides which to interact with, either the Block RAM or

DDR interface. We use the last bit of the address location as the flag, and if the flag bit is zero, the

location is DDR memory address; otherwise, it is a BRAM address. There is no need to provide an

extra register flag for memory type. The remaining 31-bit address (besides the flag bit) is more than

enough to represent the address domain and this saves one register write communication time for

49

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

P
C
I
e

CPU

AND

AND

AND

AND

AND

AND
Workload
Dispatcher

&
Data

Controller

DDR
Memory

FPGA
DDR

Memory
Controller
Interface

Main
Memory

BRAM

XOR

XOR XOR

XOR

XOR

XOR

Figure 3.16: Hybrid Memory System

50

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

each wire. For each Boolean gate, the saving time is around 150 ns, which is considerable, especially

for large problems.

On the software side, the problem parser will analyze the layer and wire information based

on the register allocation policy before generating two groups of wires IDs for BRAM and DDR

memory. Based on this information, the host code generator generates the locations of the memory

based on its type. We have implemented two register allocation policies for assigning the wire IDs.

The first one is the directly-used policy and the other is the most-frequently-used policy. We describe

both of the policies and their time-saving analysis as follows.

For the directly-used policy, we define that the directly-used wire will be stored in BRAM

rather than in off-chip memory. We select the specific wire ID by analyzing the characteristics of

all the wires and pick the wire ID based on two criteria: (1) the wire is used only once after it is

generated and (2) the Boolean gate which uses this wire ID is in the adjacent layer. In Chapter 4,

we show the number of wires that meet this requirement for different problems and analyze the

minimum space to be allocated on BRAM.

The advantage of using this policy is that the BRAM can be reused compared with DDR

memory, where the latency is around 170 ns for the read operation and 180 ns for write, the access

of BRAM is only 5 ns when using the 200 MHz local clock frequency. The second benefit is that

space can be reused once the value is used by the next layer’s Boolean operation. For the design,

careful consideration is needed for the addresses that can be reused. We can not write the BRAM

address to the previous layer’s address since the address space is still used for the rest of operation in

the current layer. The 1-to-1 output wires of the current layer should be written to another BRAM

space. As a solution, we separate the BRAM into two halves and write the output value in switched

mode. For all the operations in each layer, if the value on the first half is being read, the second half

will store the output values and vice versa. This is a ping pong buffer realized in Block RAM. This

mechanism guarantees the value on the address to be written is already used and it can save lots of

memory space.

For the most-frequently-used policy, we define that the wires that are most frequently used

are stored in BRAM to shorten the total memory access time. Different from the directly-used policy,

this one is based on the fact that for those wire ID whose value is accessed multiple times, using one

address of BRAM could saving more DDR access time. For a 1-to-n wire ID, the timing saving is N

times the time difference between DDR Access and BRAM Access. However, the tradeoff of using

this policy is that space is not immediately available for reuse, which considering the limited amount

of locations on BRAM, could be a concern. Prepossessing can analyze each wire’s behavior and

51

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

check the exact time that the BRAM space allocated to it can be reused. In other words, There is a

potential improvement of doing register life time analysis. Once the last access for a specific wire ID

is finished, the location can be reused. We first sort the wire ID based on the number of accesses

which is N and put the wire IDs with larger N in BRAM. Once BRAM can not fit more 1-to-n wires,

the rest of the wire ID with smaller N will be translated to the addresses in DDR Memory. Both of

these policies are compared with each other and we present the timing results in Chapter 4.

3.5.2 Host to FPGA Communication

Host to FPGA communication contributes major delay for our garbled circuit heterogeneous

reconfigurable system as described in Section 3.4. First, the address access pattern of garbled circuit

problem is not contiguous so we cannot use burst mode for streaming of data; second, address

information has to be sent by the host on-the-fly in order to support any garbled circuit problem over

FPGA overlays.

These characteristics of garbled circuit computation make the data transmission between

host and FPGA a major bottleneck of the system. The base design proposed in Section 3.4.1 suffers

drawbacks brought by the communications on the PCIe interface. The host has to wait until a batch

of operations is finished before sending the next batch. The total time includes not only the data

transmission and garbled circuit operation but also the synchronization steps between hardware

architecture and the host.

There are three principles of improving the performance of communication between host

and FPGA. First is to avoid unnecessary checking signals; second is to reduce the number of

registers for each batch of operations sent from the host; third is to implement pipeline methodology

and increase the fine granularity of information sent from the host for time overlap between data

transmission and garbled circuit operation. A detailed explanation is as follows.

Our first principle of avoiding unnecessary checking signals means that the host does not

have to wait before sending the next batch of operations. Fig. 3.17 shows the situation. In the

heterogeneous system using BRAM alone, the timing it takes for the host to send the information of

one XOR gate is longer than the actual operation which includes fetching the input data, doing XOR

operation and writing back to BRAM. Based on this fact, the host does not have to check the finish

flag of XOR operation and can keep sending the gate information of XOR operation one by one.

However, if DDR memory is involved in the system, this optimization does not apply. If the main

clock is 300 MHz and the local clock is 200 MHz, the host has to wait for the finish for one batch

52

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

11 1 1

11 1 1

11 1 1

1

2

3

A C D

A: BRAM Read;

B: GC XOR Operation = 0;

C: BRAM Write back;

D: reset;

T: Operation Info Transition

n

n

n

T

Figure 3.17: Data transmission for XOR Operation without Check using BRAM

before sending another one due to the synchronization between the host and FPGA. The solution is

to increase the number of XOR overlay cell on hardware.

Second is to reduce the number of registers the host needs to write to for each batch of

operations. It is realized by concatenating values from several registers into one register. We use

two address registers to represent three addresses of information for each gate. The total width of

2 addresses is 2register ∗ 32bits/register = 64bits and the actually bit-width for each address

location in our design is b64/3c = 21 bits. Besides the flag bit representing the memory type, there

will be 20 bits for a real address which is about one million wires. We demonstrate the feasibility

of using this optimization method for problems less than one million wires. Fig. 3.18 shows this

optimization.

The third method is to increase the fine granularity within a batch of operations. Fig.

3.19 shows the timeline after using the pipeline methodology. We design the communication mode

which can overlap the transmission of one Boolean gate information and Boolean operation. Overlay

cells can start working as soon as the transmission of a new Boolean operation is finished. So the

granularity of the operation changes from a batch of operations to one Boolean operation. At the

53

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

ADD 1 ADD 2 ADD 3

31 0 31 011 10 22 21 1

Figure 3.18: Reduce of Number of Registers

same time, the host does not have to change any thing. In order to recognize the new operation, we

check if a specific register changes its value. For AND, it is gate id. For XOR, it is the address

of output wire ID. Since this ID is the last to be written to the hardware. Note that, if using the

directly-used policy for choosing the address for BRAM, the output address can be reused. So the

workload dispatcher and data controller cannot recognize a new operation simply via the change of

this address. Our solution is to use a flipped bit within the output address so that the controller knows

the new operation.

3.5.3 AND and XOR Overlay Cells

In order to find the optimal number of AND and XOR overlay cells for the system, the

system’s memory hierarchy is a key factor. Here are some situations which affect the number of

overlay cells:

1. For using only BRAM, the number of XOR overlay cells is one and the number of AND

overlay cells is 43.

2. If we choose the workload dispatcher and data controller without pipelining, the optimal

number of AND/XOR gates can not be decided before experiments on the real system, no

matter what type of memory we choose.

3. If we use the workload dispatcher and data controller with the pipeline, the optimal number of

AND/XOR gates is the larger the better. Timing results are shown in Chapter 4.

54

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

tr 11

2

3

A C D

A: Memory Read (Time tr);

B: GC AND Operation (Time 82);

C: Memory Write back (Time tw);

D: Reset (Time 1);

T: Operation Info Transition (Time n)

n

T

82 tw

B

n

n

tr 182 tw

tr 182 tw

tr 182 twm

Figure 3.19: Fine Granularity CPU and FPGA Communication

55

CHAPTER 3. SYSTEM DESIGN METHODOLOGY

3.5.4 System Parameters

There are also many system parameters that affect the total performance. To improve the

system performance, we increase the total clock frequency of our overlay architecture from 100MHz,

150MHz to 200MHz. The interface clock frequency changed from 200MHz to 300MHz.

Other potential improvement methods are not supported by the infrastructure of ProceV.

For example, the register size for the host to access is limited to 32 bits. If we could write a larger

size register for each access, the data transmission over PCIe could be faster. Also, the DDR memory

interface cannot read and write at the same time which also limits the performance provided by the

overlay.

56

Chapter 4

Experiments and Results

This chapter applies the methodologies discussed in Chapter 3 and shows the corresponding

results. We give the step by step system improvement for both hardware architecture and software

structure. Especially we focus on solving the bottlenecks of the data transmission, garbled operation,

and synchronization between hardware and software.

In this chapter, we first summarize the workflow of the whole system in Section 4.1. Then

we summarize the problems we are targeting and show the characteristics of each one in Section 4.2.

In Section 4.3, we show the simulation results for the hardware architecture presented in Section 3.3.

In Section 4.4, the results of using a heterogeneous computing system are included. Also, we explore

the architectural improvement method mentioned in Section 3.5 and discuss the results.

4.1 System Workflow

Our heterogeneous system consists of a host PC and target FPGA card for acceleration as

shown in Fig. 4.1. This figure highlights the tasks performed on both CPU and FPGA side.

Hardware on the FPGA side can map any garbled circuit problem thanks to the overlay

architecture mentioned in Chapter 3. Users do not have to redesign and follow the traditional FPGA

design workflow such as synthesis, place and route, program, etc. All the user has to do is to program

the FPGA ahead of time using a generated bit stream, in our case the SRAM Object File(.sof). An

sof file can configure the SRAM based Altera device via the programmer. The software thus will

have the ability to utilize the architecture via different generation patterns. We explore different

hardware architectures, focusing on PCIe communications and memory hierarchy. The hardware

platform is well tested and very robust.

57

CHAPTER 4. EXPERIMENTS AND RESULTS

CPUFPGA

GC Generator

FlexSC

GC
Problem

Gate
Netlist

Layer Extractor

Layer
Info.

PCIE

Architecture
Mapping

Host Code
Generation

Garbled
Table

Input
Garbled

Value

Memory
System

Figure 4.1: System of Garbled Circuits

58

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.1: Problem Switching Time

Our Workflow Traditional Workflow
Hardware Architecture Software Generation Hardware Design

One Time Compile Minutes to hours Every problem
less than one hour depending on size takes days to weeks

We compare the reuse time by measuring the compile time of our overlay architecture and

the traditional FPGA workflow. For compile time, the overlay architecture can be reused without

recompilation, while the traditional FPGA workflow has to design whole circuits based on the new

problem and recompile even if a small change is made. Table 4.1 reflects this discussion.

For software workflow, we make use of FlexSC based on ObliVM [75] as the software

framework that allows developers without any cryptography expertise to convert algorithms expressed

in a high-level language to GC expression. FlexSC is a Java platform for the garbled circuit

implementation for various arithmetic operations. It enables easier access to the garbled circuit for a

general software engineer. Specifically, it realizes an arithmetic library whose backend is realized

using the protocol of garbled circuit provided by ObliVM.

Also, it supports several modes of the garbled circuit. For example, regular garbled circuit

mode comes with row reduction optimization which saves 25% generation and transmission size

option, etc. We modify FlexSC to generate the operations performed which will be stored for later

usage. After this stage, the output file with all the Boolean operations for this problem will be

available for further translation.

After the layer information is generated, we have the following tools to rearrange the gates

within the same layer to better fit the architecture and communication pattern for this heterogeneous

platform. Also, for each problem, we can automatically generate the corresponding host code

written in C plus plus. We only need one time bit programming for FPGAs meaning that the FPGA

acceleration core can fit any garbled circuit problem and the only difference is the host code. The

host is responsible for initial data transmission through Direct Memory Access (DMA), controlling

the garbling operations and sending corresponding signals and addresses.

What is sent to the FPGA for each layer is in the form of batches. One batch of operations

includes the number of gates in the layer, the input and output wire IDs for the layer, and for the

AND gates the gate ID. If one layer does not fit on FPGA, it can be separated into several batches,

which allows us to handle large problems. Layer 0 requires values for the inputs, which are 80-bit

random values generated for each possible input value, i.e. k0wi
and k1wi

. These strings are generated

59

CHAPTER 4. EXPERIMENTS AND RESULTS

using a random number generator for each input wire wi.

The results of the garbler include the garbled table values and the garbled values of the

outputs stored in memory. These later are sent to the host CPU. The garbler also provides input

keys, based on the input data from each user sent to the garbler via oblivious transfer, as described in

Section 2.1.

4.2 Problem Analysis

In order to check the speedup compared with FlexSC, which runs exactly the same protocol

as our system, we choose various problems and check the garbled circuit generation time within

both platforms. We also use the problem parser to obtain useful information for those problems.

This information is helpful for analyzing the characteristics of each problem and also is useful for

choosing the parameters while designing our system.

Problems we choose include the millionaire’s problem, addition, hamming distance, multi-

plication, sorting, sum, and matrix multiplication. We choose different sizes of these problems to

check scalability.

We develop the problem parser to shows many aspects of each problem, including general

gate information and layer information. There is also information about wire ID for classification

using two different register allocation policies, such as 1-to-1 wires to be used in the next layer for

the directly-used policy and 1-to-N wires for the most-frequently-used one. We show the analysis

results in Tables 4.2, 4.6, 4.7 and 4.8 and discuss these further below.

4.3 Simulation Results

We first show simulation results for the hardware architecture for garbled circuits presented

in Section 3.3. The memory for storing garbled values and garbled tables is BRAM on the FPGA.

The circuit consists of 43 garbled AND gates, 1 XOR and the workload dispatcher and data controller.

We focus on two parts in this section. One is the verification of the circuit in Section 4.3.1 and the

second is performance in Section 4.3.2.

4.3.1 Testbench Generation

We build the testbench from FlexSC inputs to check the correctness. We design the

hardware along with the test which includes the test of different numbers of Boolean operation within

60

CHAPTER 4. EXPERIMENTS AND RESULTS

64 ‘1’

Valid size

80

Garbled
Value

279 “11100000”

‘0’s

80

Garbled
Value

Gate ID

512 Bits

Figure 4.2: SHA-1 Message Padding

a batch of operations and across batches.

There are four SHA-1 cores in our design and the block size of SHA-1 is 512 bits. The

SHA-1 input has to follow the standard for correct functionality. Here is the situation for the garbled

circuit AND gate. For each garbled value in two wires within one AND gate, the bitwidth for each

wire is 80 bits. The gate id is 64 bits. Based on the SHA-1 standard, the format is as shown in Fig.

4.2.

4.3.2 Performance Results

We use FlexSC to generate the Boolean circuit representation fed into the FPGA. We

also use it to run our experiments. We compare our results with FlexSC to validate our designs

and also compare run times to show speed up. This design is not fully working in hardware so

the experimental results we provide are estimates based on the design tools and placed and routed

circuits. We present fully operational hardware in Section 4.4. The maximum frequency achievable

for this overlay architecture is 200 MHz.

We compare the number of clock cycles between FlexSC and our approach. We precisely

monitor the clock cycle count purely for the computation of garbled circuit. We sum the clock

cycle times for the XORs and ANDs to provide the computing time on the FPGAs. Note that these

operations are performed serially on the CPU, but in parallel on the FPGA.

The problems that we garble are millionaire’s problem, addition, Hamming Distance (HD),

multiplication and sorting. The size of these problems is shown in Table 4.2. To show the flexibility

of our design, different problems have different numbers of bits of input. The millionaire’s problem

61

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.2: Size of the Examples

Problem # of AND Gate # of XOR gate # of layers Max # of AND
gate in One Layer

Millionaire (2) 2 11 7 1
Addition (6) 6 24 18 1

Hamming Distance (10) 20 90 22 5
A * B (8) 120 352 57 64
A * B (12) 276 816 89 144

Sorting (10*4) 848 4683 278 32

Table 4.3: Clock Cycle Comparison

Problem Our Approach FlexSC
(Input Size in bit) (Clock Cycle) (Clock Cycle)

Millionaire (2) 1.9 ∗ 102 1.1 ∗ 106
Addition (6) 5.6 ∗ 102 1.7 ∗ 106

Hamming Distance (10) 1.2 ∗ 103 4 ∗ 106
A * B (8) 4.4 ∗ 103 3 ∗ 107
A * B(12) 7.8 ∗ 103 6.1 ∗ 107

Sorting (10*4) 1.1 ∗ 104 1.4 ∗ 108

uses 2 bits for each person; the adder is 6-bit wide. Hamming Distance takes two 10-bit values. We

garble two multipliers, one with 8-bit inputs and one with 12-bit inputs. Sorting orders the sequence

of two groups of digits each of which has ten 4-bit integers. Remember this design requires that the

entire problems fit on a single FPGA and in embedded memory which limits the size of problems we

can handle.

Table 4.3 compares clock cycles of our FPGA design with FlexSC. The FPGA implemen-

tation requires about 104 times fewer clock cycles than FlexSC and demonstrates the advantage of

implementing garbling using FPGAs. The software platform runs on a computer with Intel Core

i7-2640 CPU at 2.80 GHz; the FPGA design runs at 200 MHz. Taking this into consideration,

Table 4.4 presents the expected speedup. Our approach is two to three orders of magnitude faster. In

addition, we expect the FPGA implementation to consume much less power.

Table 4.5 shows the resource utilization for our FPGA overlay system. The system uses

75% of the available logic in ALMs and about half of the M20K for BRAM and FIFO.

62

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.4: Speedup compared with FlexSC

Problem Speedup
Millionaire (2 bits) 422
Addition (6 bits) 222

Hamming Distance (10 bits) 243
A * B (8 bits) 498
A * B (12 bits) 571

Sorting (10*4 bits) 929

Table 4.5: Resource Utilization

Module ALMs M20Ks 1-bit Register
One AND 3,070 0 3,750
One XOR 40 0 81

BRAM 0 1,060 0
FIFO 510 280 404
Whole 176,893/234,720 1,340/2,560 215,308
Design 75.4% 52.3%

4.4 Heterogeneous Computing System Results

After completing the simulation, we switch to the ProceV board from Gidel as our target

platform for the evaluation of a heterogeneous computing system. The ProceV board is a Stratix

V FPGA-based platform with 16+GB external memory. It provides high-speed communication

between host and FPGA via a PCIe*8 generation 3 bus which makes the system suitable for high-

performance computing and low latency networking projects. The ProceV system is supported by

Gidel’s ProcWizard software and IP. The Altera Stratix V FPGA on board provides high capacity and

high speed for many designs and contains 234K Adaptive Logic Modules (ALM) and 52M memory

bits. PCIe generation 3 doubles the data rate compared with generation 2 with 8 Giga transfers per

second (GT/s) per lane. The ProceV board, with 8 lanes, will provide about 7.88 Gb/s throughput.

This high throughput benefits the data transfer between the host CPU and the Stratix FPGA on board.

This system provides APIs for developers to access the device driver through the host.

The structure of this section is that first we show the analysis results of all the problems

that we tackle using this ProceV board in section 4.4.1 and then show the software and hardware

improvement via performance results in section 4.4.2.

63

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.6: Gate Information for Problems

Problem Layer # AND # XOR # Gate # AND % Gates/layer
6-bit adder 17 6 24 30 20.0 1.8
10-bit HD 22 20 90 110 18.2 5.0
30-bit HD 27 60 270 330 18.2 12.2
50-bit HD 32 100 450 550 18.2 17.2
8-bit multi 57 120 352 472 25.4 8.3
16-bit multi 121 496 1472 1968 25.2 16.3
32-bit multi 249 2016 6016 8032 25.1 32.3
64-bit multi 505 8128 24320 32448 25.0 64.3

10 4-bit sorting 278 848 4638 5486 15.5 19.7
5 5 4-bit m mult 25 3900 11600 15500 25.2 620.0

10 10 4-bit m mult 27 7526 22489 30015 25.1 1111.7
5 5 8-bit m mult 57 15800 47200 63000 25.1 1105.3

10 10 8-bit m mult 57 127200 380800 508000 25.0 8912.3
20 20 4-bit m mult 37 254400 761600 1016000 25.0 27459.5

4.4.1 Problem Analysis

This section shows the different problems that we have been working on for speedup on

performance. The problems include addition, hamming distance, multiplication, sorting and matrix

multiplication.

Table 4.6 shows the layer information for those problems. For example, 6-bit adder means

the addition operation of two 6-bit integers; 10-bit HD means the hamming distance between two

10-bit value; 32-bit multi means the multiplication between two 32-bit integer; 10 4 sorting means to

sort 10 value each has 4 bits; 10 10 8 m mult mean two matrix multiplication each has 10 rows by 10

column and each value is 8 bits. Layer number and gate number reflect the size of each problem. The

computational complexity of XOR gates is relatively low because of the free XOR policy. AND gates

are the most computation intensive part of the operation. From the table, we can see the percentage

of AND operations varies from 18.2% to 25.4%. The rest of the operations are XORs. Gates per

layer show the average number of gates per layer which do not have data dependency and this gives

us an estimate of the size of the layers and the problems. From this table, we can see that our largest

problems reach one million garbled circuit operations and there can be several thousand independent

gates within each layer. Also, the largest number of layers is not necessarily from the largest problem.

Table 4.7 shows the wire information for all the problems. Each wire corresponds to one

memory location. The more wires, the more memory needed for storing the values of the complete

the operation. The problems we choose have a wide range of wire numbers from several dozen to one

64

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.7: Wire Information for Problems

Problem Wire A wire B gate C gate D gate max E wire/layer
6-bit adder 42 12 0 12 0 1 2.5
10-bit HD 140 55 0 50 5 7 6.4
30-bit HD 420 147 0 163 11 22 15.6
50-bit HD 700 293 0 269 24 37 21.9
8-bit multi 495 296 0 247 49 64 8.7

16-bit multi 2015 1232 0 1007 225 256 16.7
32-bit multi 8127 5024 0 4063 961 1024 32.6
64-bit multi 32639 20288 0 16319 3969 4096 64.6

10 4-bit sorting 5717 2968 0 2136 832 40 20.6
5 5 4-bit m mult 16175 9700 0 8350 1350 2000 647.0

10 10 4-bit m mult 31472 18768 0 16051 2717 3809 1165.6
5 5 8-bit m mult 64375 39400 0 32850 6550 8000 1129.4

10 10 8-bit m mult 517500 317600 0 263400 54200 64000 9078.9
20 20 4-bit m mult 1050800 635200 0 541600 93600 128000 28400.0

A: 1-to-1 wire; B: gate with both input the 1-to-1 wire; C: gate with one 1-to-1 wire from adjacent layer;

D: gate with one 1-to-1 wire NOT from adjacent layer; E: 1-to-1 wire in a layer.

million wires. There are also different types of wires such as 1-to-1 wire and 1-to-N wire. For 1-to-1

wires, this includes 1-to-1 wires where the output of one gate is immediately used in the following

layer, and 1-to-1 wires where the output is not used in the following layer. The former type is a

column C gate and the latter is column D. We choose the former type in column C gate of 1-to-1

wire for good temporal locality for directly-used policy in the hybrid memory system. One finding is

that there is no gate with 2 1-to-1 wires, which means at least one of the two inputs are used in other

operations. The maximum number of 1-to-1 wires in a layer means the size of memory needed for

directly-used policy for full speedup.

Table 4.8 shows the information of the percent of each type of wire. Percent A shows the

number of 1-to-1 wires among all the wires and based on the table, multiplication, sorting, matrix

multiplication has about 60% of 1-to-1 wires. We can see that most of the 1-to-1 wires are used

in the next layer represented in Percent B column. This makes the directly-used policy a good

fit for many garbled circuit problems with much less memory space required compared with the

most-frequently-used policy. Percent C column shows the percent of the 1-to-1 wire to be used in the

next layer among all the wires.

65

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.8: Wire Percent for Problems

Problem Percent A Percent B Percent C
6-bit adder 28.57% 100.0% 28.6%
10-bit HD 39.29% 90.9% 35.7%
30-bit HD 35.00% 110.9% 38.8%
50-bit HD 41.86% 91.8% 38.4%
8-bit multi 59.80% 83.4% 49.9%
16-bit multi 61.14% 81.7% 50.0%
32-bit multi 61.82% 80.9% 50.0%
64-bit multi 62.16% 80.4% 50.0%

10 4-bit sorting 51.92% 72.0% 37.4%
5 5 4-bit m mult 59.97% 86.1% 51.6%

10 10 4-bit m mult 59.63% 85.5% 51.0%
5 5 8-bit m mult 61.20% 83.4% 51.0%

10 10 8-bit m mult 61.37% 82.9% 50.9%
20 20 4-bit m mult 60.45% 85.3% 51.5%

Percent A: Percent of 1-to-1 wire in all wires;

Percent B: 1-to-1 wire to be used in the next layer in all 1-to-1 wires;

Percent C: 1-to-1 wire to be used in the next layer in all wires

4.4.2 Performance Results

Here we show step by step improvement of performance using different levels optimiza-

tions mentioned in Chapter 3. Eventually, we come up with one hardware architecture and the

corresponding software structure for general garbled circuit problems. We use problems of addition,

hamming distance, multiplication and sorting for hardware and software exploration. At the end, we

summarize the speedup compared with software.

First, we put all the garbled values on the DDR memory and build the system up using

3 AND overlay cells and 1 XOR overlay cell. We also monitor the FlexSC running time for each

problem. Table 4.9 shows the speed-up can get as low as 1.16 which is relatively the same as software.

Speed-up is the division between software time and our system’s running time. The reason is the

data access of each Boolean operation is not contiguous and the DDR interface can not apply burst

mode to that. Another reason is the long synchronization time between the host and the FPGA. This

design sets the main clock to 200 MHz which is the interface clock responsible for data transmission

between host and FPGA, and local clock to 125MHz which is the frequency the workload dispatcher

and data controller works at.

We then increase the number of AND gates to 5 and 10 respectively and the speed up is

shown in Table 4.10. Total speed-up is the division between software time and our system’s running

66

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.9: 3 AND 1 XOR Overlay Cells Realization for Garbled Circuit

Problem SW Time (ms) Ours (us) Speed-up
6-bit adder 2.06 109 18.90
10-bit HD 2.53 368 6.88
30-bit HD 4.08 1067 3.82
50-bit HD 6.46 1757 3.68
8-bit multi 9.22 1534 6.01
16-bit multi 14.54 6267 2.32
32-bit multi 33.76 24720 1.37
64-bit multi 153.13 100788 1.52

10 4-bit sorting 21.12 18192 1.16

Table 4.10: Increase Number of AND Overlay Cells

Problem 5 AND Overlay (us) Speed-up 10 AND Overlay (us) Total Speed-up
6-bit adder 78 26.41 76 27.11
10-bit HD 260 9.73 257 9.84
30-bit HD 765 5.33 741 5.51
50-bit HD 1282 5.04 1210 5.34
8-bit multi 1098 8.40 1058 8.71

16-bit multi 4280 3.40 4218 3.45
32-bit multi 17406 1.94 17056 1.98
64-bit multi 71068 2.15 69858 2.19

10 4-bit sorting 12605 1.68 12375 1.71

time. Results show that there are performance increases by increasing the number of AND gates.

But the increase in not obvious from 5 to 10. Later results show that the time is largely consumed by

the PCIe communication between host and FPGA and the host has to write one batch of operations

before the hardware can start running. This is based on 200MHz for the main clock and 125MHz for

the local clock. All architectures have one XOR overlay cell.

We look into the transmission time of each XOR operation and find that it is larger than the

XOR operation time. Additional speed-up is the additional speed-up compared with the version with

xor check and total speed-up is the division between software time and our system’s running time.

This means that we can remove the synchronization steps and let the host keep sending XOR gates.

For all the XOR operations within one layer, the host can send them one by one via PCIe before

sending batches of AND operations. Table 4.11 shows the results of removing XOR operation check

from the host. This contributes largely to the speedup as the table shows.

Next, we used a hybrid memory system for speeding up the data access time. We use

registers and later BRAM for applying the directly-used policy. Tables 4.12 and 4.13 shows the

67

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.11: Results for Removing Host XOR Operation Check

Problem 10 AND w/o xor check (us) Additional Speed-up Total Speed-up
6-bit adder 60 1.30 34.33
10-bit HD 99 2.63 25.56
30-bit HD 216 3.43 18.89
50-bit HD 365 3.32 17.70
8-bit multi 428 2.47 21.54
16-bit multi 1420 2.97 10.24
32-bit multi 4924 3.46 6.86
64-bit multi 18673 3.74 8.20

10 4-bit sorting 2770 4.47 7.62

Table 4.12: Directly-Used Policy using Register and DDR Hybrid Memory

Problem 10AND + Hybrid Memory 1 (us) Time Save vs DDR Total Speed-up
6-bit adder 54 10.00% 57.22
10-bit HD 87 12.10% 29.08
30-bit HD 181 16.20% 22.54
50-bit HD 292 20.00% 22.12
8-bit multi 371 13.30% 24.85
16-bit multi 1264 11.00% 11.50
32-bit multi 4278 13.10% 7.89
64-bit multi 15419 17.40% 9.93

10 4-bit sorting 2243 19.00% 9.42
Hybrid Memory 1 consists of registers on FPGA and DDR on Board

speedup improvement compared with software. These tables also show the percentage of time saved

compared with using DDR memory alone. The register has a slightly better speed-up since the

register does not have any delay for accessing the values, while for the BRAM, there is one clock

cycle delay for accessing the data.

We also implement the most-frequently-used policy using hybrid memory which is BRAM

on-chip memory and DDR off-chip memory. We try three large problems and the results are shown

in Table 4.14. Policy comparison means the speed-up comparison between two policies which if

it is larger than 1, it means using most-frequently-used policy is faster. For 32-bit multiplication

and 10 4-bit sorting, most-frequently-used policy performs slightly better than directly-used policy.

However, it is the opposite for bigger problems like 64-bit multiplication. Based on the analysis

above, large problems tend to have more wires and if the BRAM can not reuse many locations like

the directly-used policy does, there will be limitations of BRAM space for even large problems for

the most-frequently-used policy. The register lifetime analysis is needed for reusing the BRAM

68

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.13: Directly-Used Policy using BRAM and DDR Hybrid Memory

Problem 10AND + Hybrid Memory 2 (us) Speed-up
6-bit adder 54 57.2
10-bit HD 88 28.8
30-bit HD 193 21.1
50-bit HD 302 21.4
8-bit multi 380 24.3
16-bit multi 1284 11.3
32-bit multi 4208 8
64-bit multi 15945 9.6

10 4-bit sorting 2292 9.2
Hybrid Memory 2 consists of BRAM on FPGA and DDR on Board

Table 4.14: Most-Frequently-Used Policy

Problem 10AND + Hybrid Memory 2 (us) Policy Comparison
32-bit multi 4384 1.04
64-bit multi 15648 0.98

10 4-bit sorting 2425 1.06

locations in the future.

We also check the influence of different local clock frequencies. We use a page-ranking

algorithm realized in GraphSC [19] which is a platform of implement graphic operations using

ObliVM as the backend. GraphSC implements three steps of solving page ranking problems, which

is scatter, gather and apply. This facilitates any software programmer to use the garbled circuit

protocol on graph operations. We implement page ranking with two, three, and four lines of

information where each line represents either an edge or a vertex. Table 4.15 shows that increasing

the local clock helps the total performance of the system. 4% to 10% for changing from 100 to 125

MHz and 18% to 21% for changing from 125 to 200 MHz.

We now switch to 200MHz as local clock and 300MHz as the main clock. One problem is

that since the main clock increases and the simplification of the synchronization method for XOR

operation, the time of transmitting a XOR operand is no longer larger than the XOR operation time.

Table 4.15: Influence of Clock Frequency of Hardware

Problem sw (us) 100MHz (us) Speedup 125MHz Speedup 200MHz Speedup
2 PR 465895 42762 10.9 41044 11.35 34786 13.39
3 PR 601691 73069 8.23 66409 9.06 55186 10.9
4 PR 667604 93314 7.15 90087 7.41 74620 8.95

10 AND 1 XOR Overlay Cells using the Directly-Used Policy

69

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.16: Influence of Number of Gates

Gates Number Time Speedup Compared with SW Speedup Improvement
5XOR 5AND 18677 8.20 -

10XOR 10AND 14888 10.29 1.25
15XOR 15AND 12252 12.50 1.22

64-bit multiplication problem. 300 MHz main clock and 200 MHz local clock.

Table 4.17: Using 2 Address Registers for 3 Addresses

Problem 1 Reg as 1 address 2 Regs as 3 addresses Improvement Total Speedup
2 pr 41044 37358 1.1 12.47
3 pr 66409 58587 1.13 10.27
4 pr 90087 7.83 1.06 7.83

10AND and 10XOR overlay cells; 300 MHz main clock and 200 MHz local clock.

So we can not apply xor without synchronization stages between the host and FPGA. The solution is

to use multiple XORs to improvement the total performance. Table 4.16 shows the results of using 5

AND and 5 XOR overlay cells; 10 AND and 10 XOR; 15 AND and 15 XOR for the speedup. The

speedup improvement shows that the increase from changing from 5 to 10 is 1.25 times and changing

from 10 to 15 is 1.22 times.

We also check the speedup of using 2 register addresses for 3 addresses in Table 4.17. We

use page-ranking examples and the results show 1.06 to 1.13 speedup improvement compared with

the method of using 1 register for 1 address. However, as we mentioned in Table 4.17 this only

applies to relatively small problems because of the valid bitwidths it supports.

In Table 4.18, we show all the problems that we tackle for the purpose of accelerating

garbled circuit protocols using ProceV as the heterogeneous reconfigurable system. Speed-up is

the division between software time and our system’s running time. These results have applied the

following optimizations: (1) 15 AND overlay cells and 15 XOR overlay cells; (2) Hybrid memory

system with the directly-used policy; (3) Maximum 300 MHz main clock frequency for PCIe interface

and maximum 200 MHz local clock frequency; (4) Pipelining synchronization between the host and

FPGA. We show significant speedup compared with software platform FlexSC for all the problems.

70

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.18: Speedup Results

Problem sw (ms) Time (us) Speedup
6-bit adder 2.06 45 45.78
10-bit HD 2.53 80 31.63
30-bit HD 4.08 171 23.86
50-bit HD 6.46 259 24.94
8-bit multi 9.22 293 31.47
16-bit multi 14.54 949 15.32
32-bit multi 33.76 3308 10.21
64-bit multi 153.13 12252 12.50
10 4-bit sort 21.12 2339 9.03

5 5 4-bit m mult 60.66 5830 10.40
10 10 4-bit m mult 220.81 11286 19.56
5 5 8-bit m mult 203.86 24128 8.45

10 10 8-bit m mult 1060.63 170895 6.21
20 20 4-bit m mult 2170.88 340698 6.37

71

Chapter 5

Conclusion and Future work

5.1 Conclusion

This dissertation demonstrates a heterogeneous reconfigurable computing system using

FPGA overlay architecture for general garbled circuit operations. This is the first heterogeneous

computing system using FPGAs for garbled circuit problems so far. This system lets the user

implement and accelerate their application without knowing any knowledge of either hardware

development or secure function evaluation protocol by providing a complete workflow to transfer

any garbled circuit problem onto it. We demonstrate the benefit of using this system by showing

significant speedup compared with existing software platforms.

For the hardware architecture on FPGA, unlike the tailored approaches that are tied to

the execution of a specific SFE structure which requires full reprogramming of an FPGA with each

new execution, our design uses a coarse grained overlay architecture and enables the evaluation of

different SFE tasks without the need for reprogramming.

The host side workflow includes garbled circuit problem generator, problem parser, and

host code generation tools which can be configurable for different hardware architectures. These tools

explore the parallelism for any GC problem and generate the host program based on the structure of

the problem. We also provide analytical tools to show the different characteristics of a problem.

We explore the bottlenecks while working on this heterogeneous reconfigurable computing

system using ProceV board and tackle them using different solutions. This exploration can give

future researchers valuable data and vision for improving their own heterogeneous systems.

This system is the first heterogeneous computing system using FPGAs for accelerating

general garbled circuit problems and this research makes possible the wider adoption of using garbled

72

CHAPTER 5. CONCLUSION AND FUTURE WORK

circuit schemes in the future.

5.2 Future Work

Future work of this project contains several aspects. First is the further improvement of the

existing heterogeneous system in Section 5.2.1. Section 5.2.2 talks about expanding the scale of the

system to a cluster of nodes, each of which features one ProceV board. The third is to choose other

heterogeneous system using FPGAs, discussed in Section 5.2.3.

5.2.1 Performance Improvement within one Node

First is the further improvement of the performance of the heterogeneous system using

one ProceV board on one node. As analyzed in this dissertation, the performance suffers from the

interconnection delay between host and FPGAs, especially PCIe communication and DDR memory

access.

One direction is to expand the overlay cell library to abstract more complicated computa-

tional patterns using Boolean AND and XOR operations. The current work uses garbled circuit AND

and XOR overlay cells as two components of the hardware architecture library, which guarantees

that any problem that can terminate in finite time can map onto those two overlays. This fine grain of

operation suffers from the DDR access delay in every Boolean operation. Based on Table 4.7 and

4.8, we already know that there are many 1-to-1 wires which are to be used in the next layer. Even if

we use embedded RAM for storing those data using directly-used policy, there is still memory access

time for that wire.

One possible solution is to build other overlay cells which consist of the Boolean operations

across two layers. For example, there are several Boolean functions which are E = A ⊕ B,

F = C ⊕D and G = E ⊕ F . If the output wire E of function E = A⊕B is only used in the next

layer function G = E ⊕ F , we can combine the three functions into G = (A ⊕ B) ⊕ (C ⊕ D).

By doing this, we save the time of storing the garbled value E to the memory either on-chip or

off-chip. This improves the timing performance for this operation. Also, each XOR operation in

this function can be replaced by AND operation, making total 6 variations (Notice that equation

G = (A ∧B)⊕ (C ⊕D) and G = (A⊕B)⊕ (C ∧D) are the same in hardware architecture). If

there are many operation patterns among those 6 variations in a garbled circuit problem, total time

saving could be considerable. This also requires redesigning the problem parser and running time

73

CHAPTER 5. CONCLUSION AND FUTURE WORK

will benefit from extra preprocessing time which is a good tradeoff. One more thing is that since

there is no gate with both input wires from the previous adjacent layer, there will be at least one of

the two operations needed to be stored in memory for future use. In the previous example, at least

one of two wires E and F has to be written back to memory.

5.2.2 Map Garbled Circuit Problem onto Multiple Nodes

Second is to separate a large problem into several small problems which can be computed

independently through several host nodes each with its own ProceV board. This enables the expansion

of the size of the problems into even larger data mining problems, such as page ranking with

more nodes using GraphSC and eventually provide a large, scalable, efficient platform for privacy

preserving computation.

In detail, the communication within each node in the data center is still PCIe interface.

However, the connections between the hosts can have several options, such as Ethernet interface,

Interlaken networking, etc. Ethernet interface is a standard connection for connecting the host

in today’s data center. Interlaken networking interface can be applied for direct FPGA to FPGA

communication, which could potentially avoid the high latency communication channel through

PCIe and Ethernet interface. The challenge of multiple nodes is the separation of the problems and

data storage. Since we want to separate large problems into smaller tasks suitable for one node,

clear boundaries should be defined between different tasks. Also, for each task, there should be

less dependency between each other. In other words, the task should be low in coupling and high

in cohesion. For data storage, each host along with FPGA have their own memory space and data

should not be shared unless necessary. In the future, universal memory space could alleviate the data

sharing challenge for the garbled circuit, but this requires infrastructure support. The future work

will be continued thanks to the NSF funding for building a ”Massively Scalable Secure Computation

Infrastructure Using FPGAs” [19, 17, 76].

5.2.3 Other Platform Exploration for Garbled Circuit

Another potential research direction includes exploring other platforms for better perfor-

mance and scalability. For example, Amazon launched the AWS EC2 F1 instance in April this year

(2017) which provides the instance of using one or multiple FPGAs as an accelerator within its

own Amazon Web Services (AWS) cloud infrastructure. F1 instances feature Intel Boardwell E5

processor with up to 976 GB of memory, up to 4 TB of SSD storage and also one to eight Xilinx

74

CHAPTER 5. CONCLUSION AND FUTURE WORK

UltraScale+ VU9P FPGAs and this provides plenty of resources for the exploration of even larger

garbled circuit problems. There is 64 GB memory on a 288 bitwide four DDR4 interface and the

connection between host and FPGA is PCIe x16. These parameters are better than the ProceV board

which features 8 GB on board memory with DDR3 interface and PCIe x8 lane for the host to FPGA

connection. For instances with more than one FPGA, there is dedicated PCIe fabric which allows

FPGAs to share the same memory address space and communicate with each other at up to 12 GB/s

in each direction. Given the support of faster DDR and PCIe interface and customized size of register

access from the host to FPGA, those bottlenecks of our current heterogeneous reconfigurable system

using ProceV board can be further alleviated.

75

Appendix A

Example of Garbled Circuit with

Garbled Values

Here is an example of generating the garbled circuit with garbled value from FlexSC

generated using Millionaire problems with 4-bit input. This information is useful for constructing the

testbench for the hardware design. Each wire is represented as 10 8-bit value and the total is 80 bits.

The type of wires includes input, AND and XOR operations. In the generated output, garbled value

on each wire is composed of 10 8-bit values which make the total size 80 bits. In this example, Alice

is the garbled circuit generator with four-bit input, which is false, false, true false. The sequence ”-87

-78 81 -34 84 -68 87 -121 -27 116” represents the false value of Alice’s input bit 0. The type of the

Boolean gates is either AND or XOR with its own gate ID. Each gate consists three GCSignal wire

ID, which represent the location of garbled value stored in memory. In this example, the first XOR

gate has input ID 2 and 101, output ID 1175. Those generated details become the testbench with

which we verify the correctness of hardware design.

Input of Alice:
0(false)
-87 -78 81 -34 84 -68 87 -121 -27 116
1(true)
0 -90 115 12 -99 -3 42 126 22 -19
2(false)
-55 65 -103 -107 -27 -77 62 -81 -121 -112
3(false)
-54 -115 -102 -42 15 103 -42 118 -76 36

76

APPENDIX A. EXAMPLE OF GARBLED CIRCUIT WITH GARBLED VALUES

XOR GATE ID: 1
GCSignal ID: 2
25 -6 54 115 14 100 1 12 -125 106
GCSignal ID: 101
-73 110 76 -65 -58 28 -128 125 16 38
GCSignal ID: 1175
-82 -108 122 -52 -56 120 -127 113 -109 76

XOR GATE ID: 2
GCSignal ID: 2
25 -6 54 115 14 100 1 12 -125 106
GCSignal ID: 103
122 73 -127 -48 -66 -26 -50 23 10 -58
GCSignal ID: 1176
99 -77 -73 -93 -80 -126 -49 27 -119 -84

XOR GATE ID: 3
GCSignal ID: 2
25 -6 54 115 14 100 1 12 -125 106
GCSignal ID: 105
20 -78 -1 44 82 -108 50 -54 -5 59
GCSignal ID: 1177
13 72 -55 95 92 -16 51 -58 120 81

XOR GATE ID: 4
GCSignal ID: 2
25 -6 54 115 14 100 1 12 -125 106
GCSignal ID: 107
-102 95 20 50 9 -10 53 34 79 81
GCSignal ID: 1178
-125 -91 34 65 7 -110 52 46 -52 59

XOR GATE ID: 5
GCSignal ID: 2
25 -6 54 115 14 100 1 12 -125 106
GCSignal ID: 93
-87 -78 81 -34 84 -68 87 -121 -27 116
GCSignal ID: 1180
-80 72 103 -83 90 -40 86 -117 102 30

77

APPENDIX A. EXAMPLE OF GARBLED CIRCUIT WITH GARBLED VALUES

XOR GATE ID: 6
GCSignal ID: 2
25 -6 54 115 14 100 1 12 -125 106
GCSignal ID: 1175
-82 -108 122 -52 -56 120 -127 113 -109 76
GCSignal ID: 1181
-73 110 76 -65 -58 28 -128 125 16 38

XOR GATE ID: 7
GCSignal ID: 93
-87 -78 81 -34 84 -68 87 -121 -27 116
GCSignal ID: 1181
-73 110 76 -65 -58 28 -128 125 16 38
GCSignal ID: 1182
30 -36 29 97 -110 -96 -41 -6 -11 82

GCGenz And Gate ID is : 1
GCsignal a :
-80 72 103 -83 90 -40 86 -117 102 30
GCsignal b :
-73 110 76 -65 -58 28 -128 125 16 38
GCsignal res :
-38 57 -93 -18 94 107 75 13 50 85

XOR GATE ID: 8
GCSignal ID: 2
25 -6 54 115 14 100 1 12 -125 106
GCSignal ID: 1183
-38 57 -93 -18 94 107 75 13 50 85
GCSignal ID: 1184
-61 -61 -107 -99 80 15 74 1 -79 63

XOR GATE ID: 9
GCSignal ID: 95
25 92 69 127 -109 -103 43 114 -107 -121
GCSignal ID: 1184
-61 -61 -107 -99 80 15 74 1 -79 63
GCSignal ID: 1185
-38 -97 -48 -30 -61 -106 97 115 36 -72

78

APPENDIX A. EXAMPLE OF GARBLED CIRCUIT WITH GARBLED VALUES

XOR GATE ID: 10
GCSignal ID: 1176
99 -77 -73 -93 -80 -126 -49 27 -119 -84
GCSignal ID: 1184
-61 -61 -107 -99 80 15 74 1 -79 63
GCSignal ID: 1186
-96 112 34 62 -32 -115 -123 26 56 -109

XOR GATE ID: 11
GCSignal ID: 95
25 92 69 127 -109 -103 43 114 -107 -121
GCSignal ID: 1186
-96 112 34 62 -32 -115 -123 26 56 -109
GCSignal ID: 1187
-71 44 103 65 115 20 -82 104 -83 20

GCEva And Gate ID is : 2
GCsignal a :
-38 -97 -48 -30 -61 -106 97 115 36 -72
GCsignal b :
-96 112 34 62 -32 -115 -123 26 56 -109
GCsignal res :
-38 57 -93 -18 94 107 75 13 50 85

XOR GATE ID: 12
GCSignal ID: 1184
-61 -61 -107 -99 80 15 74 1 -79 63
GCSignal ID: 1188
-38 57 -93 -18 94 107 75 13 50 85
GCSignal ID: 1189
25 -6 54 115 14 100 1 12 -125 106

XOR GATE ID: 13
GCSignal ID: 97
-55 65 -103 -107 -27 -77 62 -81 -121 -112
GCSignal ID: 1189
25 -6 54 115 14 100 1 12 -125 106
GCSignal ID: 1190

79

APPENDIX A. EXAMPLE OF GARBLED CIRCUIT WITH GARBLED VALUES

-48 -69 -81 -26 -21 -41 63 -93 4 -6

XOR GATE ID: 14
GCSignal ID: 1177
13 72 -55 95 92 -16 51 -58 120 81
GCSignal ID: 1189
25 -6 54 115 14 100 1 12 -125 106
GCSignal ID: 1191
20 -78 -1 44 82 -108 50 -54 -5 59

XOR GATE ID: 15
GCSignal ID: 97
-55 65 -103 -107 -27 -77 62 -81 -121 -112
GCSignal ID: 1191
20 -78 -1 44 82 -108 50 -54 -5 59
GCSignal ID: 1192
-35 -13 102 -71 -73 39 12 101 124 -85

GCEva And Gate ID is : 3
GCsignal a :
-48 -69 -81 -26 -21 -41 63 -93 4 -6
GCsignal b :
20 -78 -1 44 82 -108 50 -54 -5 59
GCsignal res :
-38 57 -93 -18 94 107 75 13 50 85

XOR GATE ID: 16
GCSignal ID: 1189
25 -6 54 115 14 100 1 12 -125 106
GCSignal ID: 1193
-38 57 -93 -18 94 107 75 13 50 85
GCSignal ID: 1194
-61 -61 -107 -99 80 15 74 1 -79 63

XOR GATE ID: 17
GCSignal ID: 99
-54 -115 -102 -42 15 103 -42 118 -76 36
GCSignal ID: 1194
-61 -61 -107 -99 80 15 74 1 -79 63

80

APPENDIX A. EXAMPLE OF GARBLED CIRCUIT WITH GARBLED VALUES

GCSignal ID: 1195
9 78 15 75 95 104 -100 119 5 27

XOR GATE ID: 18
GCSignal ID: 1178
-125 -91 34 65 7 -110 52 46 -52 59
GCSignal ID: 1194
-61 -61 -107 -99 80 15 74 1 -79 63
GCSignal ID: 1196
64 102 -73 -36 87 -99 126 47 125 4

XOR GATE ID: 19
GCSignal ID: 99
-54 -115 -102 -42 15 103 -42 118 -76 36
GCSignal ID: 1196
64 102 -73 -36 87 -99 126 47 125 4
GCSignal ID: 1197
-118 -21 45 10 88 -6 -88 89 -55 32

GCEva And Gate ID is : 4
GCsignal a :
9 78 15 75 95 104 -100 119 5 27
GCsignal b :
64 102 -73 -36 87 -99 126 47 125 4
GCsignal res :
-38 57 -93 -18 94 107 75 13 50 85

XOR GATE ID: 20
GCSignal ID: 1194
-61 -61 -107 -99 80 15 74 1 -79 63
GCSignal ID: 1198
-38 57 -93 -18 94 107 75 13 50 85
GCSignal ID: 1199
25 -6 54 115 14 100 1 12 -125 106

XOR GATE ID: 21
GCSignal ID: 2
25 -6 54 115 14 100 1 12 -125 106
GCSignal ID: 1197

81

APPENDIX A. EXAMPLE OF GARBLED CIRCUIT WITH GARBLED VALUES

-118 -21 45 10 88 -6 -88 89 -55 32
GCSignal ID: 1200
-109 17 27 121 86 -98 -87 85 74 74

82

Appendix B

Interface Between Host and ProceV

Board

Here are the steps of how to construct the host code for the heterogeneous reconfigurable

system using ProceV:

1. Initialize an object of driver D

2. Create handle H for the memory M allocated for DMA transition

3. Fill the initial values into memory M by randomly generated value

4. Run DMA through the function of driver: D→runDMA(H)

5. Write global register such as R value via driver D

6. For each layer:

write in out registers for each AND and XOR overlays

write registers for control such as layer information

7. Iterate until all the layer are processed

83

List of Acronyms

AES Advanced Encryption Standard

ALM Adaptive Logic Module

ASIC Application-Specific Integrated Circuit

AWS Amazon Web Services

BRAM Block Random Access Memory

CBC Cipher Block Chaining

CPU Central Processing Unit

DAG Direct Acyclic Graph

DDR Double Data Rate

DMA Direct Memory Access

DMA Direct Memory Access

DSP Digital Signal Processor

ECB Electronic Codebook

ECC Elliptic Curve Cryptographic

FPGA Field Programmable Gate Array

GC Garbled Circuits

GPU Graphics Processing Unit

84

APPENDIX B. INTERFACE BETWEEN HOST AND PROCEV BOARD

HDK Hardware Development Kit

HDL Hardware Description Language

IP Intellectual Property

LAB Logic Array Blocks

LUT Look Up Table

MIMD Multiple Instruction Multiple Data

MLAB Memory Logic Array Blocks

NoC Network on a Chip

PCIe Peripheral Component Interconnect Express

SDRAM Synchronous Dynamic Random-Access Memory

SFDL Secure Function Definition Language

SFE Secure Function Evaluation

SHA Secure Hash Algorithm

SHDL Secure Hardware Description Language

SIMD Single Instruction Multiple Data

SODIMM Small Outline Dual In-line Memory Module

SOF SRAM Object File

85

Bibliography

[1] Altera, “Stratix V Device Handbook,” https://www.altera.com/content/dam/altera-www/global/

en US/pdfs/literature/hb/stratix-v/stx5 core.pdf.

[2] Gidel, “ProceV,” http://gidel.com/ProceV.html.

[3] A. Yao, “How to generate and exchange secrets,” in Foundations of Computer Science, 1986.,

27th Annual Symposium on, 1986, pp. 162–167.

[4] J. Angwin, “The web’s new gold mine: Your secretsa journal investigation finds that one of

the fastest-growing businesses on the internet is the business of spying on consumers; first in a

series,” Wall Street Journal, 2010.

[5] M. Ramos-Casals, P. Brito-Zerón, B. Kostov, A. Sisó-Almirall, X. Bosch, D. Buss, A. Trilla,

J. H. Stone, M. A. Khamashta, and Y. Shoenfeld, “Google-driven search for big data in autoim-

mune geoepidemiology: Analysis of 394,827 patients with systemic autoimmune diseases,”

Autoimmunity reviews, 2015.

[6] L. A. Adamic and N. Glance, “The political blogosphere and the 2004 US election: divided

they blog,” in Proceedings of the 3rd international workshop on Link discovery. ACM, 2005,

pp. 36–43.

[7] S. Ressler, “Social network analysis as an approach to combat terrorism: past, present, and

future research,” Homeland Security Affairs, vol. 2, no. 2, pp. 1–10, 2006.

[8] M. Kosinski, D. Stillwell, and T. Graepel, “Private traits and attributes are predictable from

digital records of human behavior,” Proceedings of the National Academy of Sciences, vol. 110,

no. 15, pp. 5802–5805, 2013.

86

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
http://gidel.com/ProceV.html

BIBLIOGRAPHY

[9] S. Salamatian, A. Zhang, F. du Pin Calmon, S. Bhamidipati, N. Fawaz, B. Kveton, P. Oliveira,

and N. Taft, “How to hide the elephant-or the donkey-in the room: Practical privacy against

statistical inference for large data,” in GlobalSIP, 2013.

[10] U. Weinsberg, S. Bhagat, S. Ioannidis, and N. Taft, “Blurme: Inferring and obfuscating user

gender based on ratings,” in RecSys, 2012.

[11] S. Bhagat, I. Rozenbaum, and G. Cormode, “Applying link-based classification to label blogs,”

in WebKDD, 2007.

[12] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel, “You are who you know: Inferring

user profiles in Online Social Networks,” in WSDM, 2010.

[13] J. Otterbacher, “Inferring gender of movie reviewers: exploiting writing style, content and

metadata,” in CIKM, 2010.

[14] D. Rao, D. Yarowsky, A. Shreevats, and M. Gupta, “Classifying latent user attributes in twitter,”

in SMUC, 2010.

[15] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” in

OAKLAND, 2008.

[16] J. Wortham, “Facebook and privacy clash again,” The New York Times May, vol. 6, 2010.

[17] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft, “Privacy-preserving

ridge regression on hundreds of millions of records,” in IEEE S & P, 2013.

[18] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh, “Privacy-preserving

matrix factorization,” in ACM CCS, 2013.

[19] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi, “GraphSC: Parallel

secure computation made easy,” in IEEE S & P, 2015.

[20] M. Beye, Z. Erkin, and R. L. Lagendijk, “Efficient privacy preserving k-means clustering in a

three-party setting,” in IEEE International Workshop on Information Forensics and Security.

IEEE Press, 2011.

[21] W. Du, Y. S. Han, and S. Chen, “Privacy-preserving multivariate statistical analysis: Linear

regression and classification,” in 4th SIAM International Conference on Data Mining (SDM

2004). SIAM, 2004.

87

BIBLIOGRAPHY

[22] Y. Huang, L. Malka, D. Evans, and J. Katz, “Efficient privacy-preserving biometric identifica-

tion,” in NDSS, 2011.

[23] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-

maeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A reconfigurable fabric for accelerating

large-scale datacenter services,” in Computer Architecture (ISCA), 2014 ACM/IEEE 41st Inter-

national Symposium on. IEEE, 2014, pp. 13–24.

[24] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil,

M. Humphrey, P. Kaur, J.-Y. Kim et al., “A cloud-scale acceleration architecture,” in Microar-

chitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on. IEEE, 2016,

pp. 1–13.

[25] “Amazon ec2 f1 instances,” https://aws.amazon.com/ec2/instance-types/f1/, accessed: 2017-06.

[26] “FlexSC,” https://github.com/wangxiao1254/FlexSC, accessed: 2017-08-01.

[27] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A generic, customizable, and

reusable secure computation architecture,” in IEEE S & P, 2015.

[28] X. Fang, S. Ioannidis, and M. Leeser, “Secure function evaluation using an fpga overlay

architecture,” in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. ACM, 2017, pp. 257–266.

[29] ——, “Garbled circuits for preserving privacy in the datacenter,” in International Workshop on

Heterogeneous High-performance Reconfigurable Computing (H2RC’16), 2016.

[30] A. Yao, “How to generate and exchange secrets,” in FOCS, 1986.

[31] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and mechanism design,” in

1st ACM Conference on Electronic Commerce, 1999.

[32] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft, “Privacy-preserving

ridge regression on hundreds of millions of records,” in IEEE S&P, 2013.

[33] M. O. Rabin, “How to exchange secrets by oblivious transfer,” Aiken Computation Laboratory,

Harvard University, Tech. Rep. TR-81, 1981.

[34] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing contracts,” Commun.

ACM, vol. 28, no. 6, 1985.

88

https://aws.amazon.com/ec2/instance-types/f1/
https://github.com/wangxiao1254/FlexSC

BIBLIOGRAPHY

[35] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure protocols,” in Proceed-

ings of the twenty-second annual ACM symposium on Theory of computing. ACM, 1990, pp.

503–513.

[36] V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR Gates and Applications,”

in ICALP, 2008.

[37] P. FIPS, “180-4,” Federal Information Processing Standards Publication, Secure Hash, 2012.

[38] J. Strömbergson, “SHA1 core,” https://github.com/secworks/sha1.

[39] X. Fang, P. Luo, Y. Fei, and M. Leeser, “Balance power leakage to fight against side-channel

analysis at gate level in fpgas,” in IEEE ASAP 2015 Conference, 2015.

[40] ——, “Leakage evaluation on power balance countermeasure against side-channel attack on

fpgas,” in High Performance Extreme Computing Conference (HPEC), 2015 IEEE. IEEE,

2015, pp. 1–6.

[41] P. Luo, Y. Fei, X. Fang, A. A. Ding, D. R. Kaeli, and M. Leeser, “Side-channel analysis of

mac-keccak hardware implementations.” IACR Cryptology ePrint Archive, vol. 2015, p. 411,

2015.

[42] P. Luo, Y. Fei, X. Fang, A. A. Ding, M. Leeser, and D. R. Kaeli, “Power analysis attack on

hardware implementation of mac-keccak on fpgas,” in ReConFigurable Computing and FPGAs

(ReConFig), 2014 International Conference on. IEEE, 2014, pp. 1–7.

[43] A. Brant and G. G. Lemieux, “ZUMA: An open FPGA overlay architecture,” in Field-

Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual International

Symposium on. IEEE, 2012, pp. 93–96.

[44] T. Wiersema, A. Bockhorn, and M. Platzner, “Embedding fpga overlays into configurable

systems-on-chip: Reconos meets zuma,” in ReConFigurable Computing and FPGAs (ReCon-

Fig), 2014 International Conference on. IEEE, 2014, pp. 1–6.

[45] N. Kapre, N. Mehta, M. Delorimier, R. Rubin, H. Barnor, M. J. Wilson, M. Wrighton, and A. De-

hon, “Packet switched vs. time multiplexed FPGA overlay networks,” in Field-Programmable

Custom Computing Machines, 2006. FCCM’06. 14th Annual IEEE Symposium on. IEEE,

2006, pp. 205–216.

89

https://github.com/secworks/sha1

BIBLIOGRAPHY

[46] N. Kapre and J. Gray, “Hoplite: Building austere overlay NoCs for FPGAs,” in Field Pro-

grammable Logic and Applications (FPL), 2015 25th International Conference on. IEEE,

2015, pp. 1–8.

[47] D. Koch, C. Beckhoff, and G. G. Lemieux, “An efficient FPGA overlay for portable custom

instruction set extensions,” in Field Programmable Logic and Applications (FPL), 2013 23rd

International Conference on. IEEE, 2013, pp. 1–8.

[48] A. K. Jain, S. A. Fahmy, and D. L. Maskell, “Efficient overlay architecture based on dsp

blocks,” in Field-Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd

Annual International Symposium on. IEEE, 2015, pp. 25–28.

[49] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Are coarse-grained overlays ready for general

purpose application acceleration on fpgas?” in Proceedings of IEEE International Conference

on Pervasive Intelligence and Computing. IEEE, 2016.

[50] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R. Pennington, W.-m. Hwu et al.,

“Qp: A heterogeneous multi-accelerator cluster,” in Proc. 10th LCI International Conference on

High-Performance Clustered Computing, 2009.

[51] A. George, H. Lam, and G. Stitt, “Novo-G: At the forefront of scalable reconfigurable super-

computing,” Computing in Science and Engineering, vol. 13, no. 1, pp. 82–86, 2011.

[52] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay—a secure two-party computation

system,” in Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13,

ser. SSYM’04, 2004.

[53] A. C.-C. Yao, “Protocols for secure computations,” in FOCS, vol. 82, 1982, pp. 160–164.

[54] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient garbling from a fixed-key

blockcipher,” in IEEE Symposium on Security and Privacy (SP), 2013.

[55] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,” in Annual International

Conference on the Theory and Applications of Cryptographic Techniques. Springer, 2015, pp.

220–250.

[56] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party computation using garbled

circuits,” in USENIX Security, 2011.

90

BIBLIOGRAPHY

[57] L. Malka, “Vmcrypt: modular software architecture for scalable secure computation,” in

Proceedings of the 18th ACM conference on Computer and communications security. ACM,

2011, pp. 715–724.

[58] W. Henecka and T. Schneider, “Faster secure two-party computation with less memory,” in

Proceedings of the 8th ACM SIGSAC symposium on Information, computer and communications

security. ACM, 2013, pp. 437–446.

[59] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for efficient mixed-protocol

secure two-party computation.” in NDSS, 2015.

[60] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “TASTY: tool for

automating secure two-party computations,” in CCS, 2010.

[61] B. Kreuter, A. Shelat, and C.-H. Shen, “Billion-gate secure computation with malicious adver-

saries,” in USENIX Security, 2012.

[62] C.-h. Shen et al., “Two-output secure computation with malicious adversaries,” in Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques. Springer,

2011, pp. 386–405.

[63] B. Kreuter, B. Mood, A. Shelat, and K. Butler, “PCF: A portable circuit format for scalable

two-party secure computation,” in USENIX Security, 2013.

[64] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure two-party computations in ansi c,”

in CCS, 2012.

[65] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor, “Frigate: A validated, extensible, and

efficient compiler and interpreter for secure computation,” in 2016 IEEE European Symposium

on Security and Privacy (EuroS&P). IEEE, 2016, pp. 112–127.

[66] A. Schropfer, F. Kerschbaum, and G. Muller, “L1 - an intermediate language for mixed-

protocol secure computation,” in 35th Annual Computer Software and Applications Conference

(COMPSAC). IEEE Computer Society, 2011.

[67] A. Rastogi, M. A. Hammer, and M. Hicks, “Wysteria: A programming language for generic,

mixed-mode multiparty computations,” in 2014 IEEE Symposium on Security and Privacy.

IEEE, 2014, pp. 655–670.

91

BIBLIOGRAPHY

[68] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar, “Tinygarble:

Highly compressed and scalable sequential garbled circuits,” in IEEE S & P, 2015.

[69] E. M. Songhori, S. Zeitouni, G. Dessouky, T. Schneider, A.-R. Sadeghi, and F. Koushanfar,

“Garbledcpu: a mips processor for secure computation in hardware,” in Proceedings of the 53rd

Annual Design Automation Conference. ACM, 2016, p. 73.

[70] S. Pu, P. Duan, and J.-C. Liu, “Fastplay-a parallelization model and implementation of smc on

cuda based gpu cluster architecture.” IACR Cryptology ePrint Archive, vol. 2011, p. 97, 2011.

[71] T. K. Frederiksen, T. P. Jakobsen, and J. B. Nielsen, “Faster maliciously secure two-party

computation using the gpu,” in International Conference on Security and Cryptography for

Networks. Springer, 2014, pp. 358–379.

[72] N. Husted, S. Myers, A. Shelat, and P. Grubbs, “GPU and CPU parallelization of honest-but-

curious secure two-party computation,” in CSAC, 2013.

[73] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Garbled circuits for leakage-

resilience: Hardware implementation and evaluation of one-time programs,” in Cryptographic

Hardware and Embedded Systems, CHES 2010. Springer, 2010, pp. 383–397.

[74] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free xor gates and applications,” in

Proceedings of the 35th International Colloquium on Automata, Languages and Programming,

Part II, ser. ICALP ’08, 2008, pp. 486–498.

[75] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A programming framework

for secure computation,” in Security and Privacy (SP), 2015 IEEE Symposium on, 2015, pp.

359–376.

[76] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh, “Privacy-preserving

matrix factorization,” in ACM CCS, 2013.

92

	Cover
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract of the Dissertation
	1 Introduction
	1.1 Garbled Circuits
	1.1.1 An Example: Computing Average Blood Pressure

	1.2 Heterogeneous Reconfigurable Computing
	1.3 Contributions
	1.4 Remainder of the Dissertation

	2 Background
	2.1 Garbled Circuits
	2.1.1 Garbled Circuits Overview
	2.1.2 Garbling Phase
	2.1.3 Evaluation Phase
	2.1.4 Optimization

	2.2 SHA-1 Algorithm
	2.3 Field-Programmable Gate Array
	2.3.1 FPGA Architecture
	2.3.2 FPGA Overlays
	2.3.3 Heterogeneous Computing Platform using FPGAs
	2.3.4 ProceV Board

	2.4 Related Work
	2.4.1 Garbled Circuit Algorithm Research
	2.4.2 Garbled Circuit Implementation
	2.4.3 Garbled Circuit Acceleration

	3 System Design Methodology
	3.1 Garbled Circuit Generation System
	3.2 Software Structure
	3.2.1 Problem Generation
	3.2.2 Layer Extractor
	3.2.3 Problem Parser
	3.2.4 Host Code Generation

	3.3 Simulation of Garbled Circuit Generation
	3.3.1 FPGA Overlay Architecture
	3.3.2 Garbled Circuit AND Overlay Cell
	3.3.3 Garbled Circuit XOR Overlay Cell
	3.3.4 Embedded Memory
	3.3.5 Workload Dispatcher and Data Controller

	3.4 Heterogeneous Computing System using ProceV Board
	3.4.1 Communicating between Host and FPGA
	3.4.2 Accessing DDR Memory On Board
	3.4.3 Accessing On-Chip Registers
	3.4.4 Workload Dispatcher and Data Controller
	3.4.5 AND and XOR Overlay Cells

	3.5 Architecture Improvement
	3.5.1 Hybrid Memory Hierarchy
	3.5.2 Host to FPGA Communication
	3.5.3 AND and XOR Overlay Cells
	3.5.4 System Parameters

	4 Experiments and Results
	4.1 System Workflow
	4.2 Problem Analysis
	4.3 Simulation Results
	4.3.1 Testbench Generation
	4.3.2 Performance Results

	4.4 Heterogeneous Computing System Results
	4.4.1 Problem Analysis
	4.4.2 Performance Results

	5 Conclusion and Future work
	5.1 Conclusion
	5.2 Future Work
	5.2.1 Performance Improvement within one Node
	5.2.2 Map Garbled Circuit Problem onto Multiple Nodes
	5.2.3 Other Platform Exploration for Garbled Circuit

	A Example of Garbled Circuit with Garbled Values
	B Interface Between Host and ProceV Board
	List of Acronyms
	Bibliography

