HML: AN INNOVATIVE
HARDWARE DESCRIPTION LANGUAGE

AND ITS TRANSLATION TO VHDL

A Thesis
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by
Yanbing Li
August 1995

© Yanbing Li 1995
ALL RIGHTS RESERVED

ABSTRACT

HML (Hardware ML) is an innovative hardware description language based on the
functional programming language SML (Standard ML).

HML is a high-order language that supports polymorphic functions. HMIL’s
advanced type system provides many constructs that are important to hardware
descriptions but are lacking in the more mature, widely used hardware description
languages such as VHDL and Verilog. Its succinct syntax provides a simple and
concise notion for describing hardware.

HML programs do not need to specify types and interfaces while describing
hardware; they are automatically inferred using advanced type checking and type
inference techniques.

We have implemented an HML type checker and a translator to VHDL. The
HML-to-VHDL translator automatically infers types and interfaces and generates a
synthesizable subset of VHDL. This makes it possible for users to describe hardware
in HML and still be able to make use of the rich availability of VHDL tools or to
integrate with other VHDL packages or programs.

Examples are given to illustrate the HML system.

Table of Contents

1 Introduction
1.1 Purpose e
1.2 Comparison of HML to other HDLs

1.3 Preview

2 HML Language

2.1 Introduction Lo
2.1.1 Introduction to SML oL
2.1.2 Introduction to HML
2.1.3 A Quick Exampleof HML

2.2 HML Types and Objects
2.2.1 HML Basic Types,
2.2.2 Advanced Types
2.2.3 HML Objects and Object Declarations

2.3 HML Programming Constructs
2.3.1 HML Lexical Elements
2.3.2 Signal Assignments L Lo oL
2.3.3 Expressions and Operators
2.3.3.1 Operators

2.3.3.2 Bit-vectors Operations

2.3.3.3 Behavioral Operators

2.3.3.4 Expressionso

2.3.4 Function and Hardware Function Declarations

2.4 Describing Hardware in HML
2.4.1 Describing Structure in HML00
2.4.2 Describing Behavior in HML
2.4.3 Putting Behaviors and Structures Together
2.4.4 Restrictions of Describing Hardware in HML

2.5 Discrepancies Between HML and SML

3 HML Type Checking and Inference
3.1 Introductiono
3.2 Type Checking and Type Inference Rules
3.2.1 Definition of Types Used in the Type Checker

3.2.2 Environments 32

3.2.3 Type Inference Rules 32
3.3 Type Checking and Inference Algorithm 36
4 Translating HML to VHDL 39
4.1 Introduction to VHDL oL 39
4.1.1 VHDL Overview 39
4.1.2 The VHDL Subset Used in the HML-to-VHDL System . . . 40
4.1.3 Introduction to Mentor-Graphics VHDL Simulation/Synthesis

Tools o o 41
4.2 HML-to-VHDL Translation Rules 42
4.2.1 Top-level Translation 42

4.2.2 Translation of Behaviors: Concurrent vs. Sequential Con-
structs . . . oL L L 49
4.2.3 Translation of Signal Assignments 51
4.2.4 Adding Declarations in Translation 51
4.2.5 Translation for Simulation and Synthesis 53
4.2.6 Other Issues in the Translation 56
4.3 HML Features Not Implemented by HML-to-VHDL Translator . . . 57
4.3.1 Recursive Functions, 58
4.3.2 High-order Functions 58
4.4 Conclusion e 63
5 Implementation in SML 65
5.1 Organization of HML Source Programs 65
5.2 Data Structures and Functionso 67
6 Examples 71
6.1 Non-restoring Integer Square-root 71
6.1.1 The Non-restoring Integer Square Root Algorithm 71
6.1.2 Describing the Integer Square Root in HML 72

6.1.3 VHDL Code and Simulation/Synthesis on Mentor-Graphics
Tools o o 75
6.2 Adder/Subtracter ALU 79
6.2.1 Describing Adder/Subtracter ALU in HML 79
6.2.2 Generated VHDL Description of Adder/Subtracter ALU . . 79
7 Conclusions and Future Plans 85
7.1 Conclusions 85
7.2 Future Work Lo 86
A HML Grammar 88
B HML2VHDL User’s Manual 93

Bibliography

95

List of Tables

1.1

2.1
2.2
2.3

4.1
4.2

Comparisons of HML and other hardware description languages . . 5
HML Types o o e 14
Signal assignment: syntax and hardware meanings 17

HML Operators and precedence (in order of decreasing precedence) 18

The VHDL subset that is used in HML-to-VHDL system 41
HML-to-VHDL translation rules 43

List of Figures

2.1
2.2
2.3
2.4

2.5

2.6
2.7
2.8
2.9

2.10

3.1
3.2
3.3

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
6.1

Gate level circuit diagram of a full adder
Structural description of a 1-bit fullAdder
Behavioral description of a 1-bit fullAdder
HML description of an adder with carry output using bit-vector

concatenationo Lo Lo Lo
HML programming constructs and program organization — a sim-

plified HML abstract syntax tree
Example: A polymorphic array generator
An n-bit full adder generator based on a 1-bit full adder
Example: A polymorphic adder with latched output
Rewrite the polymorphic adder with latched output by mixing

structural and behavioral descriptions
Example of multiple assignments to one signal

Definition of types: modes and pure types
HML type checking and type inference rules
Abstract syntax tree segment for expression (a+b)+(c+d)+1

HML-to-VHDL Top-level Translation Graph
Translated VHDL description for the fullAdder example — structure
Translated VHDL description for the fullAdder example — behavior
Translated VHDL description for an adder with output latch (mix-
ture of structural and behavioral description)
Translated VHDL description for the simple adder sum
Translation of signal assignments
Translation of functions: Example of a 4-bit counter
Different translation for simulation and synthesis
Object renaming in HML-to-VHDL translation
Two high-order structural compositions
HML descriptions for two high-order structural compositions
Translated VHDL descriptions for sequential compositions
Translated VHDL descriptions for parallel composition

Organization of HML source programs

Non-restoring integer square root Level 2 algorithm in SML

20

24
25
26
26

27
28

32
33
37

44
46
47

48
30
51
o4
)
38
39
60
61
62

66
73

6.2
6.3

6.4
6.5
6.6

6.7
6.8

6.9

6.10

HML description of integer square root Level 2 algorithm
VHDL description of integer square root produced by VHDL-HML

translator — Simulation Version
QuickVHDL simulation stimulus file of square root example
Simulation wave form of square root example
VHDL description of integer square root produced by VHDL-HML

translator — Synthesis Version
HML description of an adder/subtracter ALU
VHDL description of the adder/subtracter ALU produced by VHDL-
HML translator (Part 1, to be continued)
VHDL description of the adder/subtracter ALU produced by VHDL-
HML translator (Part 2, continued)
VHDL description of the adder/subtracter ALU produced by VHDL-
HML translator (Part 3, continued)

Chapter 1

Introduction

Hardware description languages (HDLs) are used to describe hardware for the
purpose of simulation, modeling, testing, design, and documentation of digital
systems. They are playing an important role in computer-aided design. With the
progress of synthesis technology, the abstraction level of the description is getting
higher. We present HML, which has a higher level of abstraction than most of the
widely used HDLs.

HML is a functional hardware description language based on Standard ML
(SML) [MTH90]. SML is a high-level functional programming language which is
strongly typed and polymorphic and supports high-order functions. HML inher-
its many programming features of SML and takes advantage of many advanced
techniques that are adopted from SML, including the rich type system, advanced
type-checking and type inference. It also includes extensions for describing hard-
ware, such as the concept of signal and the definition of hardware functions.

HML can be easily integrated with different back ends such as simulators and

tools for hardware synthesis and verification.

1.1 Purpose

The major motivation for designing HML is to have a concise and powertul notation
for hardware description. HML’s high-order and advanced type system, which
includes polymorphism and automatic type inference, makes this possible. As more
designs are used in synthesis, it is also desirable to have a hardware description
language suitable for synthesis. Among the existing HDLs, most of them have only
a subset that is synthesizable.

HML was designed based on these considerations. Firstly, the most promi-
nent feature of HML is that the automatic inference of types and interfaces allows
users to write programs without specifying types. This makes HML programs easy
to write and read. Secondly, strong type checking allows the user to find design
rule violations such as bus width mismatches early in the design process. Thirdly,
HML provides many constructs that are important to hardware description but are
lacking in the more mature, widely accepted hardware description languages. De-
scribing hardware at a higher level, HML is able to take advantage of many recent
techniques in programming language research such as high-order functions and
polymorphism that are not included in existing languages such as VHDL [TEESS],
Verilog [TM91], and Ella [MPT85]. Finally, because more and more designs are
aiming at synthesis, we implemented an HML-to-VHDL translator which allows
users to write HML programs which generate synthesizable VHDL programs that
can be simulated and synthesized on the commercially available VHDL tools or

can be integrated with other VHDL programs.

1.2 Comparison of HML to other HDLs

There are many hardware description languages that are widely accepted; why do

we need HML? The comparison of HML to other HDLs shows that HML has its

advantages. We have compared HML to VHDL, Verilog, Ella and Ruby.

Created to be a standard, VHDL [IEES88] has a very comprehensive syntax
that combines both general computing and hardware description. It can support
descriptions at different levels (behavioral, register transfer and structural). How-
ever, there is a subset of VHDL which doesn’t have explicit hardware meaning and
is theoretically not synthesizable.

VHDL is strongly typed and allows designer to specify their own enumerated
types and subtypes. Since VHDL’s type system is much more restrictive than that
used in HML, many useful functions for hardware description cannot be written
in VHDL. One such construct is a hardware generator that generates the same
regular structure independent of the types of the ports of its submodule; the HML
generator code is reusable on different types of submodules. VHDL doesn’t support
polymorphic functions; the user has to write a separate generator function for each
type of the submodule. VHDL does not support recursive functions and high-order
functions, which are very useful in describing hardware. In VHDL, all types and
interfaces must be specified by the designer. In HML, types and interfaces are
inferred automatically.

Another widely used hardware description language, Verilog [TM91], includes
only a very limited notion of data types. Verilog does not allow user defined types
or enumerated types, although it does allow subranges to be defined. Many of the
design errors found by type checking strongly typed languages such as HML and
VHDL will not be found in designs described using Verilog.

Ella [MPT85] is perhaps the HDL which is the most similar to HML. Ella is
a functional language which supports user defined, enumerated types. However,
all types must be specified by the designer - no attempt is made to infer types.
Ella does support recursive functions but its typing system is not polymorphic, so

regular structure generators with type inference cannot be specified with Ella.

Ruby [JS90] is a notation and design discipline intended for the development of
regular integrated circuits and similar hardware and software architectures. The
general idea of Ruby is that circuits and circuit components are represented by
relations between the signals at their inputs and outputs. Larger circuits are as-
sembled from components by a suite of functions, such as relational composition
and various combining forms that represent regular arrays of components. In
Ruby, polymorphism is supported by allowing the same development to be applied
to many different designs. Ruby supports high-order functions and recursive func-
tions. Ruby provides various compositions for hardware structure, but it doesn’t
provides features for describing behaviors. The compositions are represented in
equations (“algebraic laws”) which are succinct in format but are also very hard
to read.

The above comparison focused on type systems of the four languages. In addi-
tion, HML is superior to other three languages with its succinct and simple syntax,

which will be shown by the examples throughout the thesis. Table 1.1 summarizes

the comparison of HML to other HDLs.

Table 1.1: Comparisons of HML and other hardware description languages

|| VHDL | Verilog | Ella | Ruby | HML |
IEEE Cadence Manchester Oxford Cornell
Origin Design
Standard System University University University
Based on Ada C, Pascal SML
Syntax Very Abstract Simple,
Simple Complicated hard to emphasize
complexity complicated read functionality
Syntax Very Verbose Verbose Succint Succint
verbosity verbose
synthesizability A subset Core Too Generate
Yes Ella synthesizable
synthesizable synthesizable | abstract VHDL subset
Straightforward
hardware Partially Partially Partially No Yes
meanings
Type User User User No Types
specifies specifies specifies inferred
inference types types types types automatically
Functions can
Polymorphic No No No Yes apply to
multiple types
High order No No No yes Functions are
first-class types
Rich Rich a small Translated to
Tools available VHDL, use
availability | availability set VHDL tools

1.3 Preview

HML was first described in a paper [OLLA93] which discussed HML features and
how to use it to describe structural hardware. In a later paper [OLHA95], HML
was used to describe the behavior of a non-restoring square root example. There
was no HML parser and type checker available at that time.

In this masters work, I modified some old definitions of HML [OLLA93], added
new features such as hardware functions, and did the implementation of the HML
system. I have implemented a front-end HML parser, a type-checker which auto-

matically infers types and interfaces and also checks for syntax and typing errors

and some design rule errors, and an HML-to-VHDL translator which translates
HML programs into synthesizable VHDL programs.

This thesis is organized as follows. Chapter 2 gives a detailed description of the
HML language, its programming features, syntax and informal semantics, partic-
ularly hardware meanings. Chapter 3 discusses the type checking / type inference
rules and the algorithms that are used in the HML type checker. Chapter 4 covers
the HML-to-VHDL translation rules, based on the informal semantics and hard-
ware meanings of HML constructs that are described in Chapter 2. Chapter 5
addresses the actual implementation of the system in SML. It explains the orga-
nization of the source programs and the function of source programs. Chapter 6
gives two illustrating examples of HML. The programming techniques discussed
in Chapter 2 are used to describe an integer square-root and an add/subtract
example. Chapter 7 summarizes the work and discusses future directions.

There are 3 appendices. Appendix A is a summary of the HML grammar.
Appendix B is the user’s manual for using the HML2VHDL system. Appendix
A and B together with Chapter 2 can serve as a thorough HML system manual.
Appendix C is the list of all the signatures that are used in the system source code.

Along with Chapter 5, it is a guide for reading and modifying the source code.

Chapter 2

HML Language

This chapter gives a detailed description of HML features, syntax, and an infor-
mal semantics. The introduction provides some background information on the
Standard ML programming language (SML) and an overview of HML. The next
two sections discuss HML’s type system and programming constructs. The last
section in this chapter is about how to describe hardware (including structural and

behavioral descriptions) in HML and some programming techniques.

2.1 Introduction

HML is based on SML [MTH90], including extensions in the area of hardware
descriptions. It is also implemented in SML of New Jersey. The first part of this

section briefly introduces SML, the second part is an overview of HML.

2.1.1 Introduction to SML

SML (Standard ML) is a very high level programming language and is based upon
a formal definition [MTH90] that prescribes the precise semantics of the language.
SML is primarily a higher order functional language. SML is strongly typed and

polymorphic. This retains much of the flexibility of typeless languages while pre-

venting most run-time type errors. SML’s modules may be the most advanced of
any language. The SML functor extends the usual notion of generic module. SML
does support some procedural programming features, such as sequential operations,
assignments, references, input/output commands and exception handling [Pau91].

There are several different implementations of SML available. One of the best
and most widely used implementations is Standard ML of New Jersey (SML-
NJ) [AT93]. SML-NJ produces efficient code and includes a variety of tools to
support program development. Among those tools which were used with the HML
system are: SMIL-Lex and SML-Yacc. Lex and Yacc provide the capability of

reading input files and parsing them into a data structure.

2.1.2 Introduction to HML

HML adopts many advanced features from SML, including:

Functional language, with some procedural programming features,

high-order and polymorphic functions,

automatic type inference, and
e concise and readable syntax.

HML inherits a subset of its syntax from the programming language SML.
This includes type, value and function declarations, expressions and program con-
trol statements. HML also supports non-functional features such as sequential
expressions and assignments in similar ways to SML.

In addition, HML adds important features specifically for hardware description,
including the concept of signals, behaviors and hardware functions, logic operators,

and behavior and structure constructors.

2.1.3 A Quick Example of HML

In this section we look at a small example of an HML description of a 1-bit full
adder to get a feel for how to use the language for describing hardware. In the fol-
lowing sections of this chapter, we will discuss the HML type system, programming
constructs and in greater detail, how to describe hardware using HML.

The 1-bit full adder has three inputs: a, b and carry input cin; it has two

outputs: sum and cout. The formulas for calculating sum and cout are:

a®bPd cin

sum

cout

axbt+axcin+bxecin=axb+can(adhb).

The gate level design according the the above formulas is shown in Figure 2.1.

cin

Figure 2.1: Gate level circuit diagram of a full adder

HML can describe hardware in structural and behavioral formats. Figure 2.2
gives the description of the 1-bit full adder in the structural format. hw is the
keyword for defining a hardware function. cin, a, b, sum and cout are the
arguments of the hardware function, representing the interface of the adder. Inside
the hardware function, structures are built from modules and signals. Gates AND,
OR and XOR are pre-defined modules; they are composed together by operator “||”.
Signals with the same name are connected. aXb, ab and abc are internal signals

declared by the intern declaration.

10

hw fullAdder (cin, a, b, sum, cout) =
let
intern aXb, ab, abc
in
XOR (a, b, aXb)
|| XOR (cin, aXb, sum)
|| AND (cin, aXb, abc)
| AND (a, b, ab)
|| OR (ab, abc, cout)
end

Figure 2.2: Structural description of a 1-bit fullAdder

Figure 2.3 gives the behavioral description of the full adder. The behavior
description is the direct translation of the formulas for calculating sum and cout.
It consists of two signal assignments (each is a behavior) composed together by a
behavior operator “||” (same as that for structure).

hw fullAdder (cin, a, b, sum, cout) =

sum := a xor b xor cin
|| cout := (a and b) or (cin and (a xor b))

Figure 2.3: Behavioral description of a 1-bit fullAdder

2.2 HML Types and Objects

The advanced type system is HML’s most prominent feature compared to other
hardware description languages. HML is strongly typed yet polymorphic. This
makes HML functions more flexible and at the same time strong type-checking
prevents run-time type errors and some design rule violations. Automatic type
inference gives users the convenience of not specifying types. Section 2.2.1 describes
the basic types of HML. Section 2.2.2 discusses advanced types built on basic types.

Section 2.2.3 explains HML objects and how to declare objects, particularly signals.

11

2.2.1 HML Basic Types

HML provides a number of basic types, including unit, bool, bit, integer and bit-
vector types. The operators on these types are defined in Section 2.3.3.

1. Unitis the most basic type with a single value written as “()”. An expression
with a value of unit is evaluated as a null expression.

2. Bit type has a value of either high written as >1° or low written as ’0°.

3. Bool can have a value of either true or false, it is mainly used in the software
sense in behavioral description, while bit has a hardware interpretation.

4. An integer type is a range of integer values within the range specified by
declaration range or the default range is used. The syntax of a range declaration
is:

range 1integerl, integer2

integerl and integer2 are two arbitrary integers. At the stage of synthesis,
integers are synthesized into bit-vectors. The width of the bit-vectors are decided
by the range of the integers.

5. A bit-vector type is an array of bits. The width of bit-vectors used in a
program can be set by a width declaration. The syntax is:

width integerl,integer2

integerl and integer?2 are two non-negative integers that represent how the
bit-vector is labeled.

Note that in an HML program, range or width declaration can be used only
once, as the global integer range or bit-vector width. If an object has different
range or width from what is declared by the range or width declaration, it should
be specified when the object is introduced for the first time. For example, in the

following program segment,

12

width 7,0
hw example (a : bit_vector(3,0), b, c...)

width 7,0 declares that all the bit-vectors used in this program has width of 8-
bit (labeled as bit-vector(7 downto 0)), excepted where noted. a:bit_vector(3,0)
specifies that the width of a is 4-bit (labeled as bit-vector(3 downto 0)).

6. HML has a special type called behavior. It is used in hardware function dec-
larations as the return type. Signal assignments allow behaviors to communicate
with each other; they are also the primitives of behavior types. There will be more

detailed discussion about behavior type and signal assignments in this chapter.

2.2.2 Advanced Types

As a high-order language, HML’s functions are first-class objects and can be used
in other functions as arguments. Functions have function types which are mappings
from a list of types to basic types. The definition of function type is as follows.
function type := type list — type
The type list at the left side of the — 1is a list of the input argument types.
The type at the right side of the — is the type of the return value of the function.
For example, fun add (a, b) = a + b defines a polymorphic add function

* a — a. «is a type variable who value can be either integer type

with type: «
or bit-vector type. Type variable is used in polymorphic type system to represent
unknown types. One of its important applications is to check consistent usage of
an object whose type is unknown [ASUS6].

SML’s function definition is extended to include the notion of hardware func-
tion. A hardware function type is the type of a hardware module. It is a mapping
from an interface type to a behavior type. The interface type is a list of hardware

interface ports, each port is a pair of Input/Output information and type. The In-

put/Output can have four values: Input means the port is an input; Qutput means

13

that it is an output; InOut means that it is a bidirectional port; Non_applied im-
plies that an object is used in the software sense only and therefore does not have
input/output meaning. A hardware function returns a behavior type. Here is the
definition of hardware types:

hardware type := interface type — behavior_type

interface type := (io, type) list

io := Input | Output | InOut | Non_applied

In our 1-bit full adder example, the hardware function fullAdder has three
inputs a, b and cin and two outputs sum and cout; its type is:

(Input,bit) * (Input,bit) * (Input,bit)

* (Output,bit) * (Output,bit) — behavior.

Because HML supports high-order functions, the term type used in
function type and interface type can be either basic types or advanced types
including function types and hardware function types.

An instance of an HML module (with a hardware function type) is the applica-
tion of the corresponding hardware function to some signals that it is connected to;
it has a behavior type. For example, XOR (a, b, aXb) as an instance of hardware
function XOR is of behavior type.

HML allows user defined types. New types can be created with type declara-
tions. A type declaration defines an abbreviation for an enumerated type expres-
sion. An enumerated type is an ordered set of identifiers. The identifiers within a
single enumerated type must be distinct, they should also be distinct from other
identifiers used as variables or signals.

An example of an enumerated type in HML is:

type state = add | subtract | multiply | divide .

Type state is defined with four possible values.

Table 2.1 gives a summary of HML types.

14

Table 2.1: HML Types

Types H Descriptions
Unit ()
Bool true, false
Basic Bit 0, U
Integer Range of integers,
range 1,]
types Bit-vector Array of bits,
width i,]
Behavior Type of signal assignments
Function Type of regular functions
Advanced type function type = type list — type
Hardware Type of hardware modules

types function type || hardware fun =
io_type list — behavior_type

User defined Enumerated types
types type t = vi1 | v2 |

2.2.3 HML Objects and Object Declarations

An object is a named item in an HML description which has a value of a specified
type. There are two classes of objects: constants and signals.

Constants can be declared with a val declaration (value declaration) at the
global level. Value declarations assign values to an object, they have the syntax :

val id = eap.

Signals can also be viewed as a type. They are used to communicate between
hardware behaviors in a behavioral description or to connect submodules in a
structural design. They have type a=. The superscript “=" indicates that we
require signal values to be of an equality type. If a type can have an equality test
as an operation then it is called an equality type. The basic types int, bool, bit,
unit and bit-vector are all equality types. On the other hand, any type involving a
function type (71 — T%) is not an equality type [Rea89].

All the arguments in a hardware function are signals that are visible at a mod-

15

ule’s interface. The signals used internally in a hardware module can be declared
by intern declarations inside hardware function declarations. The syntax for intern
declarations is :

intern idl, id2, ids ...

In the full adder example in Figure 2.2, declaration intern aXb, ab, abc
declares aXb, ab and abc to be internal signals that are invisible outside the
module.

Signals can also be declared by a wval declaration, with its initial value set as
the value of the exp in the val declaration. For example, in the following program
segment, val in_signal = 0 declares an internal signal in_signal of type int and

sets its initial value to be 0.

hw example(...) =
let
val in_signal = 0
in

end

Only val declarations that appear inside a hardware function declaration declare
signals. Global level val declarations declare constants.

Due to HML’s automatic type inference system, an object declaration does not
have to specify the object’s type. However, as an option, the user can choose to
specify types of objects. The syntax for specifying types is to add type informa-
tion when an object is first declared. For example, val in_signal : int = 0
declares signal in_signal to have type int. This is the type that would be inferred

automatically if it were not declared.

16
2.3 HML Programming Constructs

This section describes the HML programming constructs, including lexical ele-
ments, expressions and operators, and declarations. The syntax for these con-

structs are given. For more details about HML syntax, refer to Appendix A.

2.3.1 HML Lexical Elements

1. Comments

Comments in HML are enclosed by “(*” and “*)”. Nested comments are sup-

ported.

2. Identifiers

Identifiers are used as programmer defined names. They must conform to the rule:
id : [A-Za-z][A-Za-z 0-9]*

3. Bit and Bit Strings

The value of a bit is represented by 0’ or ’1’. Bit-vectors are arrays of type

bit, they are represented by enclosing the bit vector value in double quotes, for

example "00011101".

4. Bool Value

The value of Bool type is either “true” or “false”.

5. Key words

The following names are reserved for key words: and, andalso, bit, bool, bit-

vector, case, else, end, false, fn, fun, hw, if, in, int, intern, inv, let, nand,

nor, not, of, or, orelse, structure, then, true, type, val, xor, and xnor.

2.3.2 Signal Assignments

As mentioned in Section 2.2.1, signal assignments are the primitives of behav-
ior type. In HML, signals can be assigned values by two kinds of assignments.

Table 2.2 shows their syntax and hardware meanings. The first, combinational

17

assignment, is intended to model the behavior of combinational logic. The tar-
get signal is updated immediately. The second, register assignment, is intended
to model the behavior of sequential circuit elements; the target signal is updated
in the next clock cycle. Assuming global time t with values of 0, 1, 2, ..., the
signal assignment syntax can be seen as a shorthand for the hardware meanings
shown in Table 2.2. To keep HML simple, the above signal assignments do not
specify any timing information. However, register assignments implicitly include
clock information. The HML-to-VHDL translator that we have implemented will
prompt users about whether to add timing information to the generated VHDL
code. Based on the user’s choice, timing information can be automatically added to
the VHDL code by the translator. Since timing and clocks do not need to be spec-
ified, the programs emphasize functionality and ignore the actual implementation
details; they are easier to read or write.

HML only supports one global clock; users can choose the type of the clock

while compiling the program. The support for multiple clocks is future work.

Table 2.2: Signal assignment: syntax and hardware meanings

Combinational Syntax signal := expression
Assignment Meaning | signal(t) = expression(t)
Register Syntax signal <- expression
Assignment Meaning | signal(t+1) = expression(t)

2.3.3 Expressions and Operators

An HML expression is a formula combining primitive expressions with operators
or with programming constructs such as if. .then..else. All the HML operators

and their precedence and scope are listed in Table 2.3; they are discussed below.

18

Table 2.3: HML Operators and precedence (in order of decreasing precedence)

Class Operators Types operated on
& descriptions
Sign ~ int
Arithmetic 0 div int, bit-vector
—|_7
Relational =,<>,>,>=,<, <= | int, bit-vector
Logical and, or, nand, nor, | int, bit, bit-vector
Xor, Xnor, inv
Boolean andalso, orelse, not | bool
Bit concatenation @ bit, bit-vector

; In behavioral description:
sequential expressions
Behavior I Submodule composer and

Concurrent behavior composer

2.3.3.1 Operators

The arithmetic operators are +, -, *, and div; they operate on values of type
integer or bit-vector. Bit-vectors are assumed to be 2’s complement representations
of integers in these operations.

The boolean operators are not, andalso and orelse. andalso and orelse
are “short-circuit” operators; they only evaluate their right operand if the left
operand does not determine the result. They all operate on bool type.

The logical operators are and, or, nand, nor, xor, xnor and inv, they
operate on values of type integer, bit and bit-vector. The operators are bitwise if
operating on integers and bit-vectors. Integers are treated as bit-vectors with 2’s
complement representation.

The relational operators =,>, >=, <, <=, <>, are used on values of type
integer and bit-vector. Bit-vectors, are treated as 2’ complement representations of
integers. = and <> can be also applied to values of type bit and bool to compare

whether the two values are equal.

19

The sign operator ~ operates on values of integer type. Note the difference
“_ »

from

All operators of two operands require the two operands to have the same type.
2.3.3.2 Bit-vectors Operations

Among the operators described in Section 2.3.3.1, arithmetic, logical and rela-
tional operators can be used with bit-vectors. Bit-vectors also have some special
operations that are very useful; these includes bit selection and concatenation.

1. Bit selection: The bits in a bit-vector can be selected by a bit selection
expression, with the syntax:

bit-vector-name [integer] , for selecting a single bit and

bit-vector-name [integerl, integer2] for selecting a range of bits.

For example, if BV is a bit-vector(7,0) of value "00011101", then BV[0] selects
the least significant bit, which is >1°; BV[7,4] selects the most significant four
bits, which are "0001".

2. Concatenation: Two bit-vectors can be concatenated into a new bit-
vector by operator “@Q”. The new bit-vector’s width is the sum of the two primitive
bit-vectors; it is labeled as bit-vector(width-1,0) regardless of how the two primitive
bit-vectors are labeled. For example, if b1(3,0) is 701117 and b2(3,0) is 710107,
then bl @ b2 is "01111010” and is labeled as (7,0). If b1 and b2 are labeled
differently but keep the same values, b1 @ b2 is unchanged.

Bit-vector concatenation can not only be used in expressions, such as in b3
:= bl @ b2, but can also be used for pattern matching in the left-hard side of
signal assignments. The example in Figure 2.4 uses bit-vector concatenation and
describes an adder with carry output. Inputs a and b are bit-vectors of the same
width (assume the width is w1). sum is the sum result of width w1l and carry is

the 1-bit carry output.

20

width ...
hw adder (a, b, sum, carry:bit) =
carry @ sum := a + b

Figure 2.4: HML description of an adder with carry output using bit-vector con-
catenation

Concatenation is not supported by the HML system yet.

2.3.3.3 Behavioral Operators

There are a couple of operators that operate on behavior type. Behavior operator
“||” is used to compose several submodules into one hardware module - in struc-
tural descriptions, the submodules are instance of hardware functions and have
type of behavior; in behavioral descriptions, the submodules are concurrently run-
ning behaviors. The submodules (in either structural format or behavioral format)

communicate via signals. Structural and behavioral descriptions can be mixed by

LL||77

Operator “;” is used inside a behavioral description to compose multiple be-
havioral expressions into a behavior. “;” is also used in software functions, as
the sequential expressions composer; in this case, “;” operates on any type except
behavior. The use of “;” in software functions will be discussed in Section 2.3.3.4.

Behavioral operators “||” and “;” have the same hardware meanings. For ex-
ample,

hw ... = s:=1; t:=2 and

hw .. = s:=1 || t:=2
are equivalent. The difference is syntax: “||” is only allowed in the top-level of a

hardware function to compose either behaviors or structural modules; the HML

parser treats behaviors composed with “||” as independent processes. “;” is usually

used inside a behavior at a lower level when the behavior has multiple expressions

21

in it. For example,

hw ...= if condition then (s:=1; t:=2) else ...
is valid in HML; the “;” used here is not replaceable by “||” because it appears
inside an if-then-else expression but not at the top-level. Users can make use of
the syntax difference to organize their programs: use “||” to partition the whole

“:7 while describing each sub-module.

circuit into several sub-modules; use
While using “||” and “;” to compose behavior expressions, the order is not

important because all the behavior expressions execute concurrently.
2.3.3.4 Expressions

In addition to the operators described above, HML has following constructs for

expressions. Key words are bold-faced.

o [f-then-else expression : if expl then exp?2 | else exp3 |.

The else part is optional.

o Let-in-end expression : let decls in exp end.

decls is multiple declarations.

e Clase expression :
case cxp of rule list,

rule : pat => exp.

If multiple expressions are use in any place where one exp appears, they must
be enclosed by “ (7 and) 7, and they are separated by “;”. In software functions,
these expressions can have different types and they are evaluated in order; the result
for the whole expression is that of the last expression in the sequence. In hardware
functions, these expressions must have the type of behavior.

Signal assignments are expressions which are of behavior type. This has been

discussed in Section 2.3.2.

22

Functions in HML are abstract values; They need not have a name. HML allows
anonymous functions with fn notation as shorthand for function declarations.
fn is an expression which has function type, it defines an anonymous software
function. The syntax is:

Fn expression : fn rule list. The definition of rule list is the same as defined in
Case expression.

For example, fn n=> n * 2 is a function of type int — int that doubles an
integer. It is an anonymous form for function defined by:

fun double(n) = n * 2.

Fn expressions can be applied to an argument; (fn n=> n * 2)(9) applies
the function defined by (fn n=> n*2 to an integer argument 9. Anonymous func-
tions can be given a name by a val declaration. val double = fn n=> n * 2 is
equivalent to fun double(n) = n * 2.

Note that fn notation only defines software functions.

2.3.4 Function and Hardware Function Declarations

There are two kinds of functions in HML, the software functions and hardware
functions, as discussed in Section 2.2.2. The types of them have been addressed in
Section 2.2.2. Here we look at their syntax and difference.

The syntax for function and hardware function declarations are very similar

except the two have different keywords fun and hw. The syntax is:

Jun_hw_dec : fun/hw clauses
clauses . clause
| clause | clauses

clause :1d pats [: result_type | = exp.

Note that in software or hardware function declarations, the types of arguments

and results do not need to be declared. The user can choose to declare all of them

23

or some of them; this is useful particularly when some types can not be resolved
by the type checker. For example,

fun sum (a, b) = a+b
defines a polymorphic adder that can operates on integer or bit-vector types. A
user who wants an integer adder can write:

fun sum (a:int, b) = a+b
which declares input a to have integer type, or

fun sum (a, b):int = a+b
which declares the return value to have integer type.

Semantically, the major difference between the two kind of declarations is that
hardware functions represent hardware modules, while software functions are for
software use. They can be called in hardware functions, and are used only as an aid
to hardware functions. Another difference is that a software function returns values
of a specific type other than behavior type, and a hardware function must return
behavior type (which means the expression in the hardware function declaration
must be composed by signal assignments or other hardware modules). Hardware
function declarations are the major parts of an HML program; how to declare

hardware functions will be covered in greater detail in Section 2.4.

2.4 Describing Hardware in HML

HML is a declarative language. Figure 2.5 shows that the top level of HML pro-
grams are a series of declarations, including value declarations, type declarations,
function declarations and hardware declarations. Hardware declarations introduce
a special kind of function which represents hardware modules; they are the main
part of HML descriptions.

HML hardware functions can be used to declared structures or behaviors or the

mixture of both structures and behaviors.

24

Hardware Description— Declaration

Declaration Declaration Declaration
E type / val / width / int_range / fun _ declaration
hw_declaration

hw / fun_declaration — symbol clause_list

i:: clause clause
patterns result_type exp

exp

Concurrent_exp. Combinational_assign Fn_exp
Sequential_exp Register_assign Fun_app_exp

| Binary_op_exp Let_in_end

If _then_else

Structural_exp
________________ . Case_exp

Top-level exps

Figure 2.5: HML programming constructs and program organization — a simplified
HML abstract syntax tree

2.4.1 Describing Structure in HML

HML structures are built from modules and signals. Modules may either be prim-
itive modules or compound modules built using the module composition operator
“||”. Primitive modules are predefined hardware functions described with struc-
tural or behavioral HML. HML provides a small predefined library of basic gates
that can be used to build other structures. Signals with the same name are con-
nected. Signals internal to a module are declared using the intern keyword and
scoped by let...in...end. The arguments of the modules are signals.

In Section 2.1.3, we have seen a 1-bit full adder described in structural HML:
given the two-input gates AND, OR and XOR have been defined, a one bit full adder
is defined as an interconnection of these primitives. This kind of structural de-
scription is straightforward. It is like a language version of the schematic: list all
the submodules and draw the connections. Other languages that support struc-

tural level descriptions such as VHDL also use similar formats, although the actual

25

syntax may vary. However, since a hardware module can be an argument of an-
other hardware function, HML structural descriptions can be more complicated
and more flexible than a simple netlist.

Using the structural format, functions for regular structure generators can be
written in HML by exploiting polymorphism and high order functions. These
can then be applied to different types of cells. We have written generators for
different kinds of arrays and trees. In VHDL and other HDLs that do not support
polymorphism and high order functions, the user has to write the same generators
several times if the type of the cell structures or the number of the cells is different.

Example. The array generator is independent of the actual types of its cells.
A hardware function array instantiates n copies of cell connected to buses inp
and outp. See Figure 2.6. This array generator is polymorphic: cell can be of
any module with an input and an output port that can be of any width; inp and
outp are bit-vectors of any width.

hw array 1 cell inp outp =
cell (inpl0], outpl[0])
| array n cell inp outp =

cell (inp[n-1], outp[n-11)
|| array (n-1) cell (inp, outp))

Figure 2.6: Example: A polymorphic array generator

Example. Based on the 1-bit full adder described in Section 2.1.3, we can
write an n-bit full adder generator (see Figure 2.7). If the 1-bit full adder is
generalized to other cells with the same interface, then the following description
becomes a generator of a ripple array with outputs.

Note that for high-order and recursive functions, we only implement type check-

ing but not the translation to VHDL. This will be discussed in detail in Section 4.3.

26

hw adder-array(1, fullAdder, a, b, cin, sum, cout)
fullAdder (a[0], b[0], cin, sum[0], cout)
| adder-array(n, fullAdder, a, b, cin, sum, cout)

let
intern carry
in
fullAdder (al[n-1], bln-1], carry, sum[n-1], cout)
|| adder-array(n-1, fullAdder, a, b, cin, sum, carry)
end

Figure 2.7: An n-bit full adder generator based on a 1-bit full adder

2.4.2 Describing Behavior in HML

A behavior is a group of hardware description expressions based on signal assign-
ments. Inside a behavior, the hardware description expressions are evaluated se-
quentially in zero time in each evaluation cycle. HML has a behavior composer “||”
that combines several concurrently executing behaviors into a hardware function
of a behavior type.

Example. The simple adder shown in Figure 2.8 can operate on various types
(integer, bit or bit-vector). The assignment s1 := a + b specifies a combinational
adder and s2 <- s1 specifies that the output s1 will be latched in a register.

hw sum (a, b, sl1, s2) =

sl :=a+b
Il s2 <- st

Figure 2.8: Example: A polymorphic adder with latched output

The program doesn’t specify a clock, but the “<-" signifies a register assignment
which implies that a clock signal is needed in the hardware. Also no variable or
signal declarations are needed and the arguments of the top level function represent

the interface (inputs and outputs) to the hardware described.

27

2.4.3 Putting Behaviors and Structures Together

In the previous sections we have discusses how to describe behaviors and structures
in HML. Sometimes it is convenient to mix behavioral descriptions and structural
descriptions. Mixing behavioral and structural descriptions is particularly useful
when users try to build new programs based on some predefined hardware functions
(modules) — the predefined hardware functions can be used directly in a structural
format while new descriptions are added in either structural or behavioral format.

Assuming we have predefined an add hardware function,

hw add (x, y, z) = z:=x+y,
the polymorphic adder with latched output in Figure 2.8 can be rewritten by
mixing structural and behavioral descriptions, as shown in Figure 2.9.

hw sum (a, b, sl1, s2) =

add (a, b, sl1) (*kstructural formatx)
|| s2 <- s1 (*behavioral format*)

Figure 2.9: Rewrite the polymorphic adder with latched output by mixing struc-
tural and behavioral descriptions

Figure 2.5 summarizes the basic programming facilities and program organiza-
tion of HML. It is a simplified HML abstract syntax tree. For greater detail on

the syntax of HML, refer to Appendix A.

2.4.4 Restrictions of Describing Hardware in HML

There are some restrictions that users should follow in order to write correct HML
hardware descriptions.

No combinational loops are allowed: combinational loops do not have specific
hardware meanings. For example, if there exist two combinational signal assign-
ments s:=t and t:=s, the type checker will detect this as an error. However, s:=t

and t«—s can appear in the same program because the register assignment t«s

28

introduces a delay (a clock cycle). In real programs, combinational loops may
have more complicated formats; the detection of such loops is done by detecting
whether there is any cycle in the signal dependency graph for combinational signal
assignments only.

Multiple assignments to the same signal are illegal in HML. Since all the signal
assignments run concurrently, multiple assignments to the same signal can not be
resolved and therefore are not allowed. The idea for implementing this restriction is
simple — to detect whether the left-hand side signal in a signal assignment appears
in the left-hand side of other signal assignments. In the case of mixing structural
and behavioral descriptions, it is a little more complicated. Consider the example
in Figure 2.10; sl appears to be assigned only once, but it is also the output
of AND(a, b, s1). In this case sl actually gets assigned twice. Therefore the
strategy to detect multiple assignments is generalized to detect not only whether
a signal appears at the left-hand side of an assignment but also whether it is an
output of a structural expression.

hw example (a, b, c, sl, s2) =
AND (a, b, sl1)

sl :=a+b

[
|| s2 := a OR c

Figure 2.10: Example of multiple assignments to one signal

2.5 Discrepancies Between HML and SML

As discussed in previous sections of this Chapter, HML inherited a big part of
its syntax from SML. However, HML differs somewhat from the syntax inherited
from SML. Users who have used SML before can avoid confusion by following these

guidelines. Users who do not have SML experience can ignore this section.

29

e Functions: SML allows two formats for defining functions of multiple argu-

ments. For example, for an Add1 function that adds two values, both

fun Add2 x y = x + ¥y

and fun Add (x, y) = x +y

are acceptable. The two Add functions defined have different types: the
former format has type @ — (a — «); the latter has type a *x a — a.
The former format defines a curried function [Pau9l] and permits partial
application. In our example, if Add1 is applied to its first argument (of
type «) its result is a function of type a — a. As in SML, HML also allows
these two formats of defining functions of multiple arguments. HML however
does not support the feature of curried functions and the two formats define
functions of the same type: a * a — «. Partial application is not supported

in HML.

e Keyword AND: In HML the declaration construct val... and val ...

is not permitted and keyword and is reserved as a logical operator.

e Let-in-end: In the let-decl-in-exps-end construct, the multiple expres-
sions exps doesn’t need to be put in parentheses; but in HML, they have to
be put in parentheses. For example,let .. 1in expl; exp2; exp2 endis
valid in SML, but in HML, only 1let .. in (expl; exp2; exp2) end is

permitted.

Chapter 3

HML Type Checking and

Inference

This chapter examines type checking and type inference in HML. The type checking

rules and the algorithm are discussed.

3.1 Introduction

Since HML is a polymorphic, high-order programming language, type checking
and type inference are more important and complicated than for a language with
a monomorphic type system and no high-order functions.

The task of the type checker is to check that an expression has a particular
type or to infer a most general type for it if its type can not be decided. A type
inference algorithm can be constructed for deducing the types of expressions from
the types of primitive operations [Rea89].

One of the principal goals of HML is to catch errors as early in the design
process as possible. This is done by performing some design rule checking as part
of type checking. The design rule checking done by the HML type checker is mostly

interface checking: if a signal or a bus connected to a hardware module does not

30

31

match its port type, then an error occurs.
The type inference information is very crucial for HML to connect to any back

end. In the HML-to-VHDL translator that will be described in the next chapter,

type information is added to all VHDL declarations.

3.2 Type Checking and Type Inference Rules

3.2.1 Definition of Types Used in the Type Checker

The definition of types (see Figure 3.1) in the type checker not only includes the
general meaning of types, which is called pure types here, but also includes modes
in types, so that we can tell whether an expression has a constant mode or a
variable mode. The difference is that an expression of constant mode can not be
assigned to. The following classes of type metavariables are needed to show the

type checking and type inference rules of HML:
1. Modes p : Ranges over modes; either constant or variable.

2. Pure types 7 : Ranges over types without modes attached, for example,

int or bool.

3. Types 7 : A type is a mode plus a pure type; that is, every 7 can be

expressed in the form gz, such as constant int.

4. In/Out ¢ : This is used in hardware types only, to indicate whether a port

of the hardware is input, output, or a bidirectional port.

Because of the polymorphism of the type system, the possible forms of type

are extended to include type variables «, /3, 7, ...

32

¢ = constant | variable
7 = unit | bool | int | bit | behavior
| bit_vector (i: int, j: int)
| function (7y, ..., 7p) = © wheren >0
| hardware ((171, ..., tn7,) — behavior where n>0
= input | output | inout | not_applied
T = umw

Figure 3.1: Definition of types: modes and pure types
3.2.2 Environments

We need to keep track of the types of all the objects; they are included in type
environments, which are simply partial functions from objects to types. While

describing type checking rules, A is used to represent environments.

3.2.3 Type Inference Rules

The rules for the polymorphic type inference system are summarized in Fig-
ure 3.2 [Rea89]. This section explains all the type inference rules individually.
Before explaining the inference rules in Figure 3.2, we look at the notation
used to describe the rules. In expression “A F F : pun”, “A” is the environment
discussed in Section 3.2.2, E is an expression, and pw is the mode and pure type.

“AF E:pn” means that in environment A, expression E has mode p and type .

1.Signal AFV:S when A(V)

=S
2.Constant A C:S when A(C) =S

Rule 1 and 2 indicate that to check what type an identifier has, look it up in

the environment. In HML, an identifier can be either a signal or a constant.

3.Arithmetic, logical AF Fy: 7w A Ey:par
& boolean exps A F E{x FEy: constant =

. Notation

. Signal

. Constant

. Arithmetic, logical
& boolean exps

. Relational
expressions

. Signal
assignments

. If-then-else

. Case

expression

. Function

application

. Let-in-end

10. Function

abstraction

AFFE:prm
AFV:S when A(V) =8
AFC:S when A(C) =S

AFFEyw A FEy:pom

33

A F £y x FEy : constant «

AFFEyw A FEy:pom

A F E{ % FEy : constant bool

A+ Eq: variable © AF FEy:purm

A F Ey:=/ « FEy: constant behavior

AFFEy:pp bool AR Ey:pusw AF Fs:psm

A Fif £ then F5 else F3 : constant 7

AFE :yx A+ [V:constant 7 |- E: prx

AF case B of V = F : constant =«

AFFE:m oo AI—E/:,ugﬂ'/

A F EE : constant

AFE :S A+ [V:S]FE: ur

AFletval V=F in F end : constant =

A—I—[V:constantrl]l—E:,wr

AFfn V= F:constant 7 —«

Figure 3.2: HML type checking and type inference rules

34

The types of composite expressions are built from the types of their subterms.
Rule 3 explains the type inference for arithmetic, logical and boolean expressions.
Let % be any operator of the above classes. The rule says that the two sub-
expressions can have any mode gl and g2, but they must have the same type ;
the result expression has constant mode (for example, x+y has constant mode —

x+y := 1 is not a valid expression), and type 7 - the type of the two sub-expressions.

4.Relational Al Fy:u7w AF Ey:porm
expressions A+ Fyx F,: constant bool

Type inference rule for relational expressions (rule 4) is similar to rule 3 — it
requires that the two sub-expressions to have the same type but not necessarily

the same mode. The result expression has constant mode and boolean type.

5.Signal A+ Ej : variable 7 AF FEy:purm
assignments A F F) :=/ « F5: constant behavior

For signal assignments (either combinational or sequential), as in rule 5, the
left-hand side and right-hand side sub-expressions should have matching types;
the mode of the left-hand side expression must be constant mode. The result

expression is of behavior type, as discussed in Section 2.3.2.

6.If-then-else Ak Ej:pu;y bool AF FEy:por AF Fs:psw
A Fif £q then F5 else F3 : constant =

[f-then-else expressions also require matching types; the type of the condition

must be boolean (rule 6).

7.Case AFE i A+ [V : constant T | E: our
expression A F case E' of V= E : constant =

35

In a case expression (rule 7) case E of V= F, expression E' and its case
V should have the same type; the result expression type is the type of case body
expression E. The real case expression usually has multiple clauses; cases and body
expressions in different clauses should be compared to each other to guarantee
matching types. Type information of one clause can also be used to infer types of

another clause.

8.Function AFFE:m T AFE ,u27r/
application A+ EE : constant =

A function expression has type 7 — 7 where 7 is a list of the types of the
arguments and 7 is the return type. In a function application (rule 8), assuming
the type of the function is P 7, the arguments are checked to have type 7'('/; the

result expression has type © and constant mode.

9.Let-in-end AF E : S A+ [V:S]FE: ur
AFlet val V=E in E end : constant

The type inference rule for let-in-end expressions (rule 9) is more complicated
because the declarations in a let-decls-in-exp-end expression introduce new
bindings and therefore the body expression exp should be evaluated in a new

environment. The result expression type is the type of the body expression.

10.Function A + [V : constant T |FE:our
abstraction AF fnV = I/ : constant T o7

Function abstraction (fn-expression) is similar to the let-in-end expression be-
cause it also involves new bindings. In expression fn V = F, function argument V
should be added into the old environment A while evaluating body expression E.

If the type of V is inferred as 7 and the type of E is 7, the result expression has

36

. /
function type # — 7. Like case expressions, function abstractions may have mul-

tiple clauses; these clauses should be compared each other to guarantee matching

types.

3.3 Type Checking and Inference Algorithm

The basic approach of the type checking and inference algorithm involves two
processes: bottom-up and top-down.

The type checking and inference starts from the leaves of the abstract syntax
tree, applies the type rules in Figure 3.2 to check whether the types of the primitives
fit the requirement of the rules and to infer unknown types — including types of
the parent and the siblings in the abstract syntax tree. For example, in expression
el+e2, if subexpression el is checked to have type integer, then we can infer that
e2 (sibling) as well the composite expression el+e2 (parent) have the same type
integer.

It a type can not be decided in the bottom-up process, it will be assigned a
type variable as its type. If the type of an element in the abstract syntax tree is
inferred by checking a type rule, the top-down process is applied to recheck the
types of elements that are under the current element in the abstract syntax tree
as well as its siblings. Associated with each element is a boolean attribute called
decided which indicates whether the types of the elements under this elements
have been decided. If decided is true, there is no need to initiate the top-down
process. Top-down processes use the same rules as bottom-up processes, except
conditions and results of the rules are reversed.

The processes can be illustrated with the following example.

fun type_example (a,b,c,d) = (a+b) + (c+d) + 1

The abstract syntax tree segment for expression (a+b) + (c+d) + 1 is shown

37

in Figure 3.3.

n4: (a+b)+(c+d)+1

Figure 3.3: Abstract syntax tree segment for expression (a+b)+(c+d)+1

The type checker has to infer the types of arguments a, b, c and d as well as
the type of function type_example. When names a, b, c and 4 are first intro-
duced as the arguments of function type_example, their types are unknown and
they are given type variables al, a2, a3 and a4 as their type expressions. The
integer 1 has type int. The type inference starts from the bottom-up process. Node
nl:a+b is checked first according to type inference rule 3 in Figure 3.2. Since a
and b should have same type, the type expression of b (a2) is replaced by that
of a (al) and the type of node n1 is al. Similarly node n2:c+d is checked and
c and d as well as node n2 have type a3. Going up from node n1 and n2, node
n3:nl1+n2 can be type-checked. Since n1:(a+b) and n2: (c+d) should the same
type, the type of n2: (c+d) a3 is therefore replaced by the type of nl: (a+b) al.
This initiates a top-down process to update the types of ¢ and d according to the
updated type of n2:c+d. In the top-down process, ¢ and d are updated to have
type expression al. Node n3 has type al. Then the bottom-up process restarts
to check node n4:n3+1. The integer 1 force node n4 as well as node n3 to have
integer type. The updating of n3 initiates another top-down process to update the
types of nodes under n3; a, b, ¢ and d are updated to have integer type. The

above type inference procedures are summarized with the following steps:

38

Bottom-up Steps
0. Leaves a:al, b:a2, c:a3, d:a4, 1:int
1. nl a+b:al, update b:al
2. n2 c+d:a3, update d:a3
3. n3 nl+n2:al, top-down n2:al, c:al, d:al
4. n4 n3+1:int, top-down n3:int, nl:int, n2:int, a:int, b:int, c:int, d:int

Based on the typesofa, b, ¢, dand type of expression (a+b)+(c+d)+1 (node
n4), function type_example has type:

int * int * int * int — int.

In the type inference algorithm, the bottom-up process is dominant. The top-
level type inference function is a bottom-up process based on type inference rules
(Figure 3.2). Each bottom-up step may initiate a top-down process if there is
updating on any sub-expression. The algorithm is guaranteed to terminate because
both bottom-up and top-down processes are one-way recursive traversals of the
abstract syntax tree and do not involve any loops. The run time of both processes

at a certain node is linear to the depth of the node in the abstract syntax tree.

Chapter 4

Translating HML to VHDL

We have implemented an HML-to-VHDL translator in order to make use of the
many VHDL simulation and synthesis tools available. The translation targets a
synthesizable subset of VHDL. This chapter first introduces VHDL and its tools,
then focuses on HML-to-VHDL translation rules and some of the implementation

issues.

4.1 Introduction to VHDL

This section gives a brief introduction to VHDL, describes the VHDL subset that
is used in the HML-to-VHDL system and introduces the Mentor-Graphics VHDL

simulation /synthesis tools.

4.1.1 VHDL Overview

The development of VHDL, the VHSIC Hardware Description Language,
was originated in 1980s. In 1987, VHDL was adopted by the IEEE as a stan-
dard hardware description language and has since achieved wide spread industrial
acceptance [Ash90].

VHDL is a hardware description language with strong emphasis on concurrency.

39

40

The language supports hierarchical description of hardware from system to gate
or even switch level. VHDL has support at all levels for timing specification and
violation detection. It provides constructs for generic design specification and
configuration. In addition to the description capability, systems modeled in VHDL
can also be simulated at any of the levels in order to verify their functionality.

A VHDL design entity is defined by an entity declaration and an associated
architecture body. The entity declaration specifies its interface and is used by
architecture bodies of design entities at higher levels of hierarchy. The architecture
body describes the operation of a design entity by specitying its interconnection
with other design entities (structure), by its behavior, or by a mixtures of both.
The VHDL language groups subprograms or design entities by use of packages.
For customizing generic descriptions of design entities, configurations are used.
VHDL also supports libraries and contains constructs for accessing packages, design

entities, or configurations from various libraries [Nav93].

4.1.2 The VHDL Subset Used in the HML-to-VHDL
System

VHDL was not originally designed for synthesis. Many VHDL constructs are not
synthesizable: access types, assert statements, or files for instance have no direct
hardware correspondence [OW94]. The translation of HML to VHDL targets a
synthesizable subset of VHDL. The VHDL subset used in the HML-to-VHDL
system is summarized as four classes in Table 4.1: programming constructs, types,
operators, and signal attributes. Note that this is actually a subset of the VHDL
synthesizable subset, but it is sufficient to represent all the HML features after the

translation.

Table 4.1: The VHDL subset that is used in HML-to-VHDL system

41

Programming Constructs Types
Entity declaration | Type declaration Bit
Architecture body | Wait statement Bit_vector
Package declaration | Signal declaration || Boolean
Package body Signal assignment || Enumerated
Process statement | If statement Integer

Function Case statement
Function call Use clause
Operators Signal Attributes
Multiplying /, %, sla, sra
Sign — ‘event
Adding +,—
Relational =,/=,<,<=,>,>= || "last_value
Logical and, or, nand, nor,

XOT, Xnor, not

4.1.3 Introduction to Mentor-Graphics VHDL

Simulation/Synthesis Tools

VHDL-based tools are widely available on platforms ranging from personal comput-
ers to multi-user Unix machines. This is one of out major motivations for building
the HML-to-VHDL translator. Simulators for full VHDL IEEE 1076 [IEE88] are
also available for a variety of platforms. In addition, there are several synthesis
programs that take a subset of VHDL as input and generate net lists.

Mentor-Graphics provides a series of commercial VHDL tools including the fully
integrated compiler/simulator/debugger design development system System-1076,
AutoLogic VHDL synthesis [Men94a], and QuickVHDL simulator [Men94b]. While
building the HML-to-VHDL system, we mainly used QuickVHDL and AutoLogic
as simulator and synthesizer respectively.

QuickVHDL is a full IEEE 1076 simulation environment using Direct-Compiled
Code technology. It allows users to quickly model and test a system at a high

level of abstraction. The tool has a graphical interface for inputing VHDL code

42

and direct viewing of simulation results. It also supports batch operation which is
faster and prints output in text format.

AutoLogic synthesizes generic, gate-level implementations from VHDL language
models and can optimize a design for area and performance. It supports a subset
of VHDL IEEE.

QuickVHDL is integrated with Design Architect for schematic or VHDL code

entry and AutoLogic VHDL for synthesis.

4.2 HML-to-VHDL Translation Rules

HML-to-VHDL translation targets the synthesizable subset of VHDL that is listed
in Table 4.1. To appropriately translate HML into VHDL, for each programming
construct and object in HML, we need to find its counterpart in VHDL with the
same hardware meaning.

This section examines the HML-to-VHDL translation rules, and other imple-
mentation issues of the translator. It starts from the top-level translation and
then goes further into the lower levels, which include behaviors, expressions, etc.

Table 4.2 summarizes the basic translation rules.

4.2.1 Top-level Translation

As discussed in Chapter 2, the core part of an HML program is a hardware function
declaration at the top level, which represents a hardware module. In VHDL, this
is translated into a VHDL entity declaration and architecture body, in the main
VHDL file. Other top-level declarations (val, type, and fun) of HML are grouped
into a VHDL package, including package declaration and package body. The VHDL
package is stored in a separate file. This package is used (with a USE clause) in the
main VHDL file. The top-level translations are shown in Figure 4.1.

In an HML hardware function declaration, the arguments represent hardware

Table 4.2: HML-to-VHDL translation rules

HML constructs

H VHDL constructs

Hardware declaration

Entity and architecture

Structure (£1 || £2)

Structural architecture, port map

Behavior expression

Behavioral architecture body

Behavior Process, with sensitivity list

bl || b2 Concurrent processes inside architecture

el ; e2 Multiple statements inside process

Global type/val/fun Type/constant /function declaration

declaration in package

Local type/val/fun Type/signal /function declaration

declaration inside architecture/process

Intern declaration Signal declaration inside
architecture/process

s =V s <=v

s <— vV s <= v,

add clock information in the program

Let_declin_exp_end

Declaration in architecture/process
and statement in process

Fn expression

Function declaration
in package/architecture/process
and function application

* div

./ for simulation
sla, sra for synthesis(power of 2)

Object name

Rename, append unique number
to the name

1f then else
Case exp
bin_op_exp

Direct translation with syntax change

43

' Package

' Val_decl

¢ type_decl |
+ fun_decl

" Package Body Package file

. Entity hwl Is .
' Port(al :... ! Main ﬁleg

' hw hwl (al, a2, . .9

behavioral_exp —.
briv2i...

¢ or structural_exp
: clilc2ll...

. | Architecture hw1_behavior Of hwl I |
signal_declarations . . . P
i + and/or componet_declarations . . .
| 1 Begin L
i+ » pl:Process... :

HML Program

(behavior) | |

p2: Process . . .
' orcl: Port Map . . . D

c2: Port Map . .. (structure)

VHDL Programs

Figure 4.1: HML-to-VHDL Top-level Translation Graph

44

45

ports (inputs and outputs). In a VHDL entity, the inputs and outputs have to
be specified. Therefore, the HML type checker not only checks the types of the
function arguments, but also checks their input and output information. This is
done by checking whether the argument is only used on the right-hand side of
expressions (implying it should be IN in VHDL) or only on the left-hand side of
an assignment (OUT) or both (INOUT).

A valid HML hardware function with the construct £1 || £2 ||... in which
f1, £2, ... are instances of hardware functions represents the composition of
modules; it is translated into structural VHDL. Otherwise, the HML hardware
function has a behavioral form and is translated into a behavioral VHDL descrip-
tion. In Section 2.1.3, a 1-bit full adder example is described using both structural
and behavioral formats of HML. Figure 4.2 and Figure 4.3 shows the corresponding
VHDL code, which was automatically generated by the HML-to-VHDL translator.

The structural HML full adder is translated into structural VHDL: three com-
ponents XOR, AND and OR are declared in the declaration part of the architecture
and instantiated inside the architecture; the ports of the instances are mapped into
signals and ports of the entity (Figure 4.2).

The behavioral HML full adder is translated into behavioral VHDL with pro-
cesses (Figure 4.3).

The HML description that contains both structural and behavioral expressions
is translated into the hybrid VHDL — structural expressions are translated into
component port maps; behavioral expressions are translated into processes. The
example used in Figure 2.9 is automatically translated into the VHDL program

shown in Figure 4.4.

46

hw fullAdder (cin, a, b, sum, cout) =

let intern aXb, ab, abc

in structure(XOR (a, b, aXb);
X0R (cin, aXb, sum);
AND (cin, aXb, abc);
AND (a, b, ab);
(ab, abc, cout))

end

OR

(a) HML structural description of a 1-bit full-adder

ENTITY fullAdder IS
PORT(cin : IN

a : IN
b : IN
sum : 0OUT
cout : OUT

END fullAdder;

bit;
bit;
bit;
bit;
bit);

ARCHITECTURE fullAdder_structure OF
COMPONENT XOR

PORT(a: IN bit; b: IN bit; c:

END COMPONENT,;

COMPONENT AND
PORT(a: IN bit; b:
END COMPONENT;

COMPONENT OR
PORT(a: IN bit; b:
END COMPONENT;

SIGNAL aXb: bit;
SIGNAL ab: bit;
SIGNAL abc: bit;

BEGIN

cl:
c2:
c3:
cé:
ch:

XOR PORT MAP
XOR PORT MAP
AND PORT MAP
AND PORT MAP
OR PORT MAP

(a =>
(a =>
(a =>
(a =>
(a =>

END fullAdder_structure;

IN bit; c:
IN bit; c:
a, b =>
cin, b =>
cin, b =>
a, b=>
ab, b =>

fullAdder IS

ouUT

ouUT

ouUT

b,
aXb,
aXb,
b,
abc,

bit);

bit);

bit);

=> aXb);
=> sum);
abc);
=> ab);

=> cout);

o o o0 00
U
v

(b) VHDL description

Figure 4.2: Translated VHDL description for the fullAdder example — structure

47

hw fullAdder (cin, a, b, sum, cout) =
sum := a xor b xor cin
|| cout := (a and b) or (cin and (a xor b))

(a) HML behavioral description of a 1-bit full adder

ENTITY fullAdder IS
PORT(cin : IN bit;
a . IN bit;
b : IN bit;
sum : OUT bit;
cout : OUT bit);
END fullAdder;

ARCHITECTURE fullAdder_behavior OF fullAdder IS
SIGNAL aXb, ab, abc;

BEGIN
pl: PROCESS(a,b,cin)
BEGIN
sum <= a xor b xor cin;
END PROCESS p1;

p2: PROCESS(a,b,cin)
BEGIN
cout <= (a and b) or (cin and (a xor b));
END PROCESS p2;
END fullAdder_behavior;

(b) VHDL description

Figure 4.3: Translated VHDL description for the fullAdder example — behavior

48

hw sum2 (a, b, s1, s82) =
add (a, b, s1) (*structural formatx*)
Il s2 <- s1 (¥behavioral formatx)

(a) HML description

ENTITY sum2 IS
PORT(clk: IN bit;
a: IN integer;
b: IN integer;
s1l: INOUT integer;
s2: 0OUT integer);
END sum2;

ARCHITECTURE sum2_behavior OF sum2 IS
COMPONENT add
PORT(a: IN integer;
b: IN integer;
c: OUT integer);
END COMPONENT;

BEGIN
cl: add PORT MAP (a => a, b => b, ¢c => s1);

p2: PROCESS
BEGIN
WAIT ON clk;
IF (clk=’1’ AND clk’LAST_VALUE=’0’ AND clk’EVENT) THEN
82 <= s1;
END IF;
END PROCESS p2;
END sum2_behavior;

(b) VHDL description

Figure 4.4: Translated VHDL description for an adder with output latch (mixture
of structural and behavioral description)

49

4.2.2 Translation of Behaviors: Concurrent vs.
Sequential Constructs

Inside an HML hardware function, the major part is the behavior expression, which
consists of one or several behaviors. Translation of these behaviors involves the
issue of distinguishing between concurrent and sequential constructs. As we have
discussed in Section 2.3.3.3, concurrent and sequential operators “||” and “;” have
the same hardware meaning but different writing styles.

The HML behaviors composed by operator “||” run concurrently; they form
the top level behavior expressions. On the other hand, inside each HML behavior,
all the hardware description expressions (composed by operator “;”) are evaluated
sequentially in zero time in each evaluation cycle.

These features of HML behaviors are like those of VHDL processes: different
processes in an architecture execute concurrently, while inside a process, the state-
ments are evaluated sequentially in zero time. Therefore, we translate an HML
behavior into a VHDL process. The example of the simple adder with output latch
in Figure 2.8 has two concurrent behaviors; it is translated automatically into the
VHDL description shown in Figure 4.5.

Note that if “||” is used to compose submodules in structural HML descriptions,
each submodule is translated into a VHDL component port map, not a process.

VHDL processes are always active if not suspended. A mechanism for condi-
tionally activating a process is the use of a sensitivity list, a list of signals that can
activate the process if an event occurs on any of these signals. HML behaviors do
not need to specify a sensitivity list because all the information is included inside
the behavior and can be inferred. For a process that is controlled by clock signals,
the process is only active when there is a clock edge; for a process that is purely
combinational, all the inputs of the process are included in its sensitivity list. In

Figure 4.5, process p1l has a sensitivity list of a and b; p2’s sensitivity list is the

hw sum (a, b, si1, s2) =
sl (= a+b
Il 82 <- s1

(a) HML description of a simple adder

ENTITY sum IS

PORT(clk: IN bit;

: IN integer;
b: IN integer;
s1l: INOUT integer;
s2: 0OUT integer);

END sum;

a:

ARCHITECTURE sum_behavior OF sum IS
BEGIN
pl: PROCESS(a,b)
BEGIN
sl <= a + b;
END PROCESS p1;

p2: PROCESS
BEGIN
WAIT ON clk;
IF (clk=’1’ AND clk’LAST_VALUE=’0’ AND clk’EVENT) THEN
82 <= s1;
END IF;
END PROCESS p2;
END sum_behavior;

(b) VHDL description

Figure 4.5: Translated VHDL description for the simple adder sum

30

51

clk signal and is specified with a WAIT statement.

4.2.3 Translation of Signal Assignments

HML has two different assignments for signals: combinational and register assign-
ment. A combinational assignment updates the signal immediately; it is translated
into a signal assignment in VHDL. A register assignment updates the signal at the
next clock cycle; it is translated into a signal assignment controlled by a clock.

Translation of signal assignments is shown in Figure 4.6.

HML ! VHDL

Combinational Assignment s :=v ' |, § <=V}

Register Assignment s<-v —+ o+ If (cdk="1" And
clk’Last_Value =0’ And
clk’Event) Then
: S <=V
: End If ;

Figure 4.6: Translation of signal assignments

Because of this feature, an HML program does not necessarily include clocking
information even for sequential circuits. As long as a register signal assignment
appears in a behavior, it implies that the behavior is sequential. The translator
will add clock signals to the process into which the behavior is translated, and
prompt the user for the kind of clock they wish to use at compile time. The user

can also choose to have a global reset signal. In the example of Figure 4.6, a rising

edge clock is added.

4.2.4 Adding Declarations in Translation

As discussed, HML does not require users to specify types and interfaces. VHDL
has a very verbose type system; all the objects have to have specified types, and

for those used in entities as ports, interfaces must be specified. Therefore the type

52

and interface information obtained by the type-checker is added to the VHDL
description.

In addition to adding type and interface specifications and directly translating
the HML wval, type and intern declarations, declarations have to be added in the

following cases:

1. Entity declarations are added for each hardware function declaration, as

discussed in Section 4.2.1.

2. Component declarations are added into the architecture body declarative
part while translating a structural HML description. As in Figure 4.2, com-
ponents XOR, AND and OR are declared before they are instantiated in the

architecture body.

3. The declarations in let-in-end expressions should also be extracted and put in
the appropriate location. HML’s let-in-end expression provides a convenient
way of declaring local objects. Since let-in-end is treated as an expression
and not a declaration, it can appear anywhere in hardware expressions and
can even be nested. VHDL does not have such a flexible construct, so the
declarations that appear in let-in-end expressions must be popped to a higher
level in VHDL. Usually these declarations are placed at the declaration part

of the architecture body or that of the process.

4. HML has a shorthand for function declarations: anonymous functions defined
by fn expressions. When translating to VHDL, this kind of function has to
first be assigned a name, and then translated into a VHDL function declara-
tion and added at an appropriate location. Figure 4.7 shows an example of a
4-bit counter, implemented with an increment function. Note that it can be

written without the function; the function is added purely for the purpose of

33

illustrating function translation. Part (a) and (b) of Figure 4.7 are the HML
program using fn notation and using a regular function declaration. Part (c)

is the automatically translated VHDL program for both (a) and (b).

4.2.5 Translation for Simulation and Synthesis

The translator may generate different VHDL code from the same HML program.
It VHDL is used only for functional simulation, the HML code is translated into
VHDL without doing any optimization and the VHDL code is not necessarily
synthesizable. On the other hand, if the VHDL code is used in synthesis, the
translator does some simple optimizations (e.g. replace multiplication and division
with shift if possible) and generates synthesizable VHDL.

Figure 4.8 part(a) gives a fragment of an HML description which contains a
division in it. Included are also the translated VHDL descriptions for both the
simulation (part(b)) and the synthesis version (part(c)).

The synthesis version of VHDL is the same as that of simulation except that:

1. If one operand is a constant of power of two, Multiplications and divisions are
replaced by arithmetic shifts (division itself is not synthesizable by AutoLogic,

the Mentor Graphics synthesis tool).

2. The integer type is transformed into bit_vector if the HML description has
multiplications or divisions in it, because shift operations can only apply to

bit_vectors in AutoLogic (this can also be done by the Mentor Graphics tool).

3. Some bidirectional ports are changed to single direction ports (QUTPUT); in-
ternal bidirectional signals are added as a replacement. At the end, the
ports are assigned to the internal signals. For example, in Figure 4.8 in the
synthesis version of VHDL, bidirectional port a is changed into an output;

an internal signal a_in is added to replace a. The reason for this change is

hw counter (a)
(a<- (fn x => if x = 15 then 0 else x + 1) (a))

(a). HML program using fn notation

hw counter (a)
let fun incl x = if x = 15 then 0 else x + 1
in (a <- inc1l (a))
end

(b). HML program using regular function declaration

ENTITY counter IS
PORT (clk : IN bit;
a : INOUT integer);
End counter;

ARCHITECTURE counter_behavior OF counter IS
FUNCTION incl (x : IN integer) RETURN integer IS
variable result : integer;
BEGIN
IF result = 15 THEN
0;

result
ELSE
result := result + 1;
END IF;
RETURN result;
END inci;

BEGIN
pl: PROCESS
BEGIN
WAIT ON clk;
IF (clk=’1’ AND clk’LAST_VALUE=’0’ AND clk’EVENT) THEN
a <= incl (a);
END IF;
END PROCESS p1;
END counter_behavior;

(c). Translated VHDL description for (a) and (b)

Figure 4.7: Translation of functions: Example of a 4-bit counter

o4

hw example(a, ...) =
(
a <- a/ 4;
)

(a) HML description

Entity example_sim IS Entity example_syn IS
PORT(clk: IN bit; PORT(clk: IN bit;
a: INOUT integer; a: OUT bit_vector(3 DOWNTO 0)
) cee D3
END example_sim; END example_syn;
ARCHITECTURE sim_behavior ARCHITECTURE syn_behavior
OF example_sim IS OF example_syn IS
SIGNAL a_in:
bit_vector(3 DOWNTO 0);
BEGIN BEGIN
pl: PROCESS pl: PROCESS
BEGIN BEGIN

WAIT ON clk; WAIT ON clk;

IF (clk=’1’ AND IF (clk=’1’ AND
clk’LAST_VALUE=’0’ AND clk’LAST_VALUE=’0’ AND
clk’EVENT) THEN clk’EVENT) THEN

a <= a /4; a_in <= a_in sra 2;

END IF; END IF;

END PROCESS pi; END PROCESS pi;

a <= a_in;

END sim_behavior; END syn_behavior;
(b) VHDL — simulation version (c) VHDL — synthesis version

Figure 4.8: Different translation for simulation and synthesis

)

56

to eliminate bidirectional ports. AutoLogic requires that bidirectional ports
be BUSes, which makes them become guarded signals. Since guarded signals

have to be assigned in a Block, they would increase the complexity of the

VHDL generated.

Users can choose between the two options by setting the synthesis flag in the
translation command line; the default is to generate VHDL for simulation. Why
don’t we simply generate all synthesizable code? Because of the differences listed

above,

1. synthesis version VHDL programs are usually slightly harder to read than

the simulation programs,

2. synthesis version VHDL programs take slightly longer to generate with the
HML-to-VHDL translator, and

3. synthesis version VHDL programs take slightly longer to simulate on VHDL

simulation tools.

4.2.6 Other Issues in the Translation

Other than the issues that were addressed in previous sections, there are some

relatively less prominent but still important issues to take into consideration.

e HML expressions vs. VHDL statements: In HML, expressions are
used in hardware behaviors. Constructs such as signal assignments, if-then-
else, case and let-in-end all are expressions. In VHDL, the architecture are
formed by statements. HML expressions are much more flexible than VHDL
statements, for example,

s := if condition then vl else v2 and

if condition then s := vl else s := v2

57

are equivalent and valid HML expressions. But In VHDL, only the latter
format is acceptable:

IF condition THEN s <= v1; ELSE s <= v2; END IF;

Therefore the translator can not just do a simple syntax mapping, it must
identify different formats of HML expressions and translate them properly.
Also, all VHDL statements are ended by semicolons; the translator adds

semicolons when needed.

e Object renaming: Since all the basic types supported by HML are also
supported by VHDL, the translation of objects is direct, except for names.
HML allows name overloading of objects, and its flexible construct let-in-end
makes it possible to define local objects almost anywhere. Therefore, it is
possible for several objects with different scopes to share the same name. For
example, in Figure 4.9 two x’s in the HML description have different scopes
and values. But in VHDL, declarations can only appear at the declarative
part of architecture, process, etc. The two declarations for x are both put
in the declarative part of a process. In this case, renaming is needed. In
fact, the translator renames all HML objects. The general methodology is
to generate numbers by a sequence counter, and put the number at the end

of each object name.

In addition to renaming, there are some names that need to be created,

including process names, component names and architecture names.

4.3 HML Features Not Implemented by
HML-to-VHDL Translator

For most of the HML features that were addressed in Chapter 2, we have imple-

mented their translation into VHDL in the HML-to-VHDL translator. However,

38

hw rename (a,b,c...) = ENTITY rename IS ...
C.ooo e ARCHITECTURE ...
let val x = 2 e e
in b := a *x x pl : PROCESS(a, ...)
end; SIGNAL x1 : interger := 2;
cee e SIGNAL x2 : integer := 4;
let val x = 4 BEGIN
in ¢ := a % x e e
end; b <= a *x x1;
L) c <= a * x2;
(a) HML description (b) VHDL description

Figure 4.9: Object renaming in HML-to-VHDL translation

the following features are not implemented by the translator.

4.3.1 Recursive Functions

The feature of recursive functions is useful in describing regular structure genera-
tors. VHDL does not support recursive functions; recursions are simulated using
while or for loops (although there are some kinds of recursions that can not be
simulated by loops). We can restrict the recursions that could be used in HML
and translation these recursions into VHDL loops. Note that while-loops are not

supported by AutoLogic for synthesis.

4.3.2 High-order Functions

We have not implemented the translation of high-order functions. A possible way
of translating high-order functions is to use structural VHDL to describe the high-
order arguments as a component. This can be illustrated by the examples in
Figure 4.10.

Figure 4.10 shows two structural compositions (sequential composition and
parallel composition) of two cells celll and cell2. Figure 4.11 gives the HML de-

scriptions of the two compositions. In hardware functions SeqComp and ParaComp,

39

(a) Sequential composition (b) Parallel composition

Figure 4.10: Two high-order structural compositions

arguments celll and cell2 are hardware functions themselves. They can have
any internal behaviors with the interfaces of an input port and an output port.
Hardware functions SeqComp and ParaComp are general descriptions for compos-
ing two cells; they can not be translated into VHDL without specific information
about the types of the two cells. Therefore the translation strategy is to generate
VHDL description for each type of cell used. Assuming that celll is of type
(in, bit-vector(3,0)) * (out, bit-vector(3,0) — behavior
and cell?2 is of type
(in, bit-vector(3,0)) * (out, bit-vector(7,0) — behavior
then SeqComp and ParaComp can be translated into VHDL, as shown in Figure 4.12

and Figure 4.13.

60

hw SeqComp (celll, cell2, inp, outp) =

let
intern temp
in
celll(inp, temp)
Il cell2(temp, outp)
end

(a) HML description for sequential composition

hw ParaComp (celll, cell2, inp, outp) =
let
intern outpl, outp2
in
celll(inp, outpl)
Il cell2(inp, outp2)
|| outp := outpl @ outp2
end

(b) HML description for parallel composition

Figure 4.11: HML descriptions for two high-order structural compositions

ENTITY SeqComp IS
Port(inp : IN Bit_vector(3 downto 0);
outp: OUT Bit_vector(7 downto 0));
END SeqCompl;

ARCHITECTURE SeqComp_arch 0F SeqComp IS
COMPONENT celll
PORT(a: IN bit_vector(3 downto 0);
b: OUT bit_vector(3 downto 0));
END COMPONENT;

COMPONENT cell2
PORT(a: IN bit_vector(3 downto 0);
b: OUT bit_vector(7 downto 0));
END COMPONENT;

SIGNAL temp: bit_vector(3 downto 0);

BEGIN
cl: celll PORT MAP (a => inp, b => temp);
c2: cell2 PORT MAP (a => temp, b => outp);
END SeqComp_arch;

Figure 4.12: Translated VHDL descriptions for sequential compositions

61

ENTITY ParaComp IS
Port(inp : IN Bit_vector(3 downto 0);
outp: OUT Bit_vector(ll downto 0));
END ParaComp;

ARCHITECTURE ParaComp_arch OF ConComp IS
COMPONENT cell1l
PORT(a: IN bit_vector(3 downto 0);
b: OUT bit_vector(3 downto 0));
END COMPONENT ;

COMPONENT cell2
PORT(a: IN bit_vector(3 downto 0);
b: OUT bit_vector(7 downto 0));
END COMPONENT ;

SIGNAL outpl: bit_vector(3 downto 0);
SIGNAL outp2: bit_vector(7 downto 0);

BEGIN
cl: celll PORT MAP (a => inp, b => outpl);
c2: cell2 PORT MAP (a => inp, b => outp2);
outp <= outpl & outp2;

END ParaComp_arch;

Figure 4.13: Translated VHDL descriptions for parallel composition

62

63
4.4 Conclusion

This chapter discussed the translation from HML to VHDL. To summarize, the

major considerations in the translation are:

1. To specity types and interfaces that are not specified in HML but are inferred

by the type-checker.
2. To translate structural and behavioral descriptions appropriately.
3. To add/move HML declarations into appropriate places in VHDL.

4. To properly translate constructors and composers of HML into VHDL con-

structs.
5. To translate HML expressions into appropriate VHDL statements.
6. To rename the HML objects.
7. To incorporate clock and timing information if needed.

8. To translate differently for simulation and synthesis.

In Chapter 1 we have compared the two languages. Looking at the examples
(both HML and VHDL descriptions) in this chapter, we can notice a significant
difference between the programs of the two languages: the length. For the same
example, the VHDL description is usually several times longer than the HML
description. The comparison clearly shows HML’s conciseness. First, this can
definitely be attributed to HML’s type system: there is no need to specify types
or interfaces, while VHDL’s type system is very verbose. Second, HML is concise
due to its clean syntax for behaviors, functions and expressions. In VHDL, most
constructs (e.g. architecture, process, case expression, if expression, etc.) have

to be enclosed by BEGIN and END; HML’s grammar is carefully designed so that

64

HML behaviors and expressions do not have to do so. Reviewing the example in
Figure 4.7, a two-line HML program describes a behavioral hardware module even

with a software function defined and used in it!

Chapter 5

Implementation in SML

The HML system that we have implemented includes a front-end HML parser,
a type-checker which automatically infers types and interfaces and also checks
the typing errors and some design rule errors, and an HML-to-VHDL translator
which translates HML programs into synthesizable VHDL programs. The imple-

mentation is in SML of New Jersey (SML-NJ) [AT93]. This chapter explains the

organization of the source programs, important data structures and functions.

5.1 Organization of HML Source Programs

The HML system has three major parts: parser, type-checker and the HML-to-

VHDL translator. The HML source directory includes the following files:

base.sml, ast.sml, message.sml
hml.lex --> hml.lex.sml

hml.grm --> hml.grm.sig, hml.grm.sml
join.sml

typedef.sml, typecheck.sml

vhdl.sml, hml2vhdl.sml

65

66

export.sml, all.sml

Figure 5.1 illustrates the organization of these programs.

base.sml

ast.sml Basic utilities
message.sml

HML parser

export.sml

Y

_________________ I Export binary

sml-yacc
_—

all.sml

A

hml.grm hml.grm.sig :

hml. grm.smli

Top-level program

typedef.sml

typecheck.sml | HML type-checker

vhdl.sml
hml2vhdl.sml HML-VHDL translator

Figure 5.1: Organization of HML source programs

Base.sml, ast.sml and message.sml are the basic utilities that are used
throughout the system. Base.smlis the base environment of SML-NJ and contains
the common modules for the lexer and the parser; it also provides some useful
functions. Ast.sml is the structure of the abstract syntax tree of HML, which is
the basis of the whole system. The abstract syntax tree is defined by defining the
nonterminals as datatypes. Message.sml defines functions for printing messages
such as error messages.

The HML parser is generated by applying the SML lexer generating tool
SML-lex [AT93] and the SML parser generating tool SML-Yacc [AT93]. Hml.lex

67

is the lexer program written in SML-Lex. SML-Lex produces an SML program
hml.lex.sml from hml.lex , which is the HML lexical analyzer. Hml.grm defines
HML LALRI grammar rules in SML-Yacc. SML-Yacc creates two SML programs
hml.grm.sig and hml.grm.sml as programs for the primitive parser.

To create the final parser, some functors must be applied. This is done by
the program join.sml which joins the lexer and the primitive parser to create a
parsing function called parse.

The HML type-checker mainly consists of two programs: typedef.sml and
typecheck.sml. Typedef.sml is a structure that defines the data structures used
in type-checking and some common functions that are used in both the type-checker
and the HML-to-VHDL translator. Typecheck.sml is the major part of the type-
checker; it defines the type-checking and type inference functions of HML based
on the HML abstract syntax tree defined in ast.sml.

Programs vhdl.sml and hml12vhdl.sml form the HML-to-VHDL translator.
Vhdl.sml defines the translation functions for all HML constructs; hm12vhdl . sml
is the top-level code for both the type-checker and the HML-to-VHDL translator
that defines the top-level type-checking and translation functions visible to users.

All the source programs can be loaded in an SML environment by simply
loading program all.sml which includes all the source programs in the cor-
rect order. Program export.sml includes functions to export executable bi-
nary in SML-export [AT93]. If loaded into SML-export, it exports programs called
parse, typecheck, and hm12vhdl which are the executable parser, type-checker

and HML-to-VHDL translator respectively.

5.2 Data Structures and Functions

The HML system is built by functions grouped in different SML structures. There

are some important data structures that are used across several structures and

63

in many functions. These data structures and the top-level functions of each
structures are explained in this section. Refer to Appendix C for a list of the
signatures for these structure.

Data Structures

o Abstract syntax tree : The HML abstract syntax tree is defined in file
ast.sml as a structure consisting of datatypes. The datatypes are the
defined-types for HML nonterminals, such as dec (declaration) and exp (ex-

pression), etc.

e Data structures used in the parser : SML-Yacc takes the HML gram-
mar as input and produces structures and functors used in the parser. The
functions and usage of these structures and functors are discussed in the
SML-Yacc user’s manual [AT93]. The parsing result uses the datatypes de-
fined in the HML abstract syntax tree and the output is used as the interface

to the type-checker and the HML-to-VHDL translator.

e Environments : In typedef.sml, a datatype called env(environment) is
defined. It is a very important data structure used in the type-checker and
as the interface of the type-checker and the HML-to-VHDL translator. It
is defined as a dynamic list of objects used in the program. There are two
kinds of environments: global environment and local environment. The global
environment is used mainly for interfacing the type-checker to the translator;
it keeps track of all the objects ever used in the program. While translating
HML to VHDL, the translator simply looks up the global environment and
gets the typing information needed in VHDL. The local environment changes
dynamically; it only keeps the objects that are still needed by the programs
and throws out the obsolete ones. It is mainly used in the type-checker. The

global environment can be seen as the main output of the type-checker; with

69

the information in the global environment, the type-checker can be interfaced

to various back-ends.

e Object information : Environments are stored as lists of objects. Each el-
ement of those lists records all the key information associated with an object.
This includes the following features of an object: name, type, input/output,
type decidability and object scope. These features are put into an SML
record. Type decidability is a boolean representing whether the type of an
object has been decided. Object scope is important because HML allows
overloading of object names and the global environment has to keep all the
objects used in the program so that it is possible to have two objects with

the same name but different scopes.

e Type information : Type information is a tuple of mode (which is either

constant or variable) and pure type.
Functions

e HMLBatchParser file, parse file : HMLBatchparseris the internal pars-
ing function that takes a file name as input and returns the result in data
structure parse-result (defined by SML-Yacc [AT93]). Parse is a user visible

image of HML Batchparser, it is exported to an executable file.

e EnvOfDec dec, TopTypeOfDec dec : These two functions are internal
type-checking functions: EnvOfDec can do type checking on any declara-
tions and updates the environments accordingly; TopTypeOfDec is based on
EnvOfDec and does the type-checking of the top-level program which is a

sequential declaration; it returns the global environment of the program.

o typecheck file_name : This is the user visible version of combined parse and

Top TypeOfDec. 1t first parses the program file_name. Besides type-checking

70

and type inference, it prints all the error messages to standard output and

puts the type-checking result in file file_name.log.

TopCodeOfDec, MainCodeOfDec, PackageCodeOfDec,

PackageBodyCodeOfDec, CodeOfDec : MainCodeOfDec, Package-
CodeOfDec and PackageBodyCodeOfDec are functions that generate VHDL
code from an HML declaration. The three functions generate three pieces
of VHDL code that are the main code with VHDL entity and architecture,
the VHDL package code, and the code for the package body. TopCodeOfDec
puts the three functions together and returns a tuple of the three pieces of

the VHDL code.

hml2vhdl file syn_flag clk_flag : The is the user visible HML-to-VHDL
translation function. The syn_flag indicates whether to generate VHDL code
for synthesis. The clk_flag indicates whether to add clocks automatically.
It takes a file name as input, first does the parsing and type-checking and
then HML-to-VHDL translation. The VHDL code is save in files file.vhd (the
main VHDL program with entity and architecture definitions) and file.lib.vhd
(the VHDL package program).

Chapter 6

Examples

This chapter contains two examples: a description of an integer square root and
an adder/subtracter ALU. Both the HML descriptions and the VHDL descriptions
generated by the HML-to-VHDL translator are given, as well as the results of

simulation /synthesis of VHDL descriptions on Mentor-Graphics tools.

6.1 Non-restoring Integer Square-root

This section describes how to implement a subtractive, non-restoring integer square

root algorithm in HML and how it is translated to VHDL.

6.1.1 The Non-restoring Integer Square Root Algorithm

Definition: Correct integer square root

y is the correct integer square root of x if y? < x < (y +1)?

An integer square root calculates y = \/x where x is the radicand, y is the root,
and both = and y are integers. We define the precise square root (p) to be the real

valued square root and the correct integer square root to be the floor of the precise

71

72

root.

We have implemented a subtractive, non-restoring square root
algorithm [OLHA95]. Subtractive methods begin with an initial guess of y =
2(7=1) (assume that the input is a 2n bit integer) and then iterate from i = (n —
1) downto 0. In each iteration we square the partial root (y), subtract the squared
partial root from the radicand and revise the partial root based on the sign of the
result. In binary arithmetic, each bit in the partial result is effectively modified
only once.

The resulting value of y in the non-restoring algorithms is not correct because
there may be an error in the last bit position. For the algorithm used here, we can
show that the final value of y will always be either the precise root (for radicands
which are perfect squares) or will be odd and be within one of the correct root.

We have shown how a non-restoring integer square root algorithm can be trans-
formed to a very efficient hardware implementation [OLHA95]. The top level algo-
rithm is an SML function that operates on unbounded integers. Figure 6.1 shows

the level 2 algorithm written in SML, evolved from the top level SML algorithm.

6.1.2 Describing the Integer Square Root in HML

The SML algorithm described in Section 6.1.1 can be easily transformed into a
behavioral hardware description in HML, shown in Figure 6.2.

This example assumes an 8-bit input. This is specified by declaration width
7,0, meaning the bit-vectors synthesized are labeled from 7 downto 0. initb is
the initial guess of the result.

The major part of the program is the hw specification. Thanks to HML’s concise
syntax and that fact that types do not need to be specified, the program emphasizes
the abstract behavior of the hardware, and therefore is almost a straight-forward

translation of the level 2 SML algorithm shown in Section 6.1.1. Clock information

73

fun init2 (n,radicand) =
State{diffx = radicand,
yshift = O,
b 2 *xx (2x(n-1))}

fun updatel (State{diffx, yshift, b}) =

let
val (diffx’,yshift’) =
if diffx > 0 then (diffx - yshift - b, yshift + 2*b)
else if diffx = O then (diffx , yshift)
else (* diffx < O *) (diffx + yshift - b, yshift - 2*b)
in
State{diffx = diffx’,
yshift = yshift’ div 2,
b =b div 4
+
end

Figure 6.1: Non-restoring integer square root Level 2 algorithm in SML

is omitted in the program. An major difference between Figure 6.1 and Figure 6.2
is the use of init and Done signals. In the SML description of the algorithm, the
initiation and the termination of the algorithm are handled by the SML interpreter.
Because hardware is “free running” there is no built in notion of initiation or
termination of the algorithm. Therefore init and Done are added to explicitly
initialize the algorithm and to detect when the algorithm has terminated.

In computing a four-bit result, the level 2 algorithm terminates after four itera-
tions of its loop. An efficient way to detect termination of the hardware algorithm
makes use of some knowledge of the high level algorithm. An informal analysis of
the level 2 algorithm reveals that B contains a single bit, shifted right two places
in each cycle, and that the 1’ bit of B is shifted to the least significant bit before
the execution of the last iteration and B becomes 1. Consequently, the Done signal
is generated by testing whether the B is 1. Done is therefore set during the clock

cycle following the final iteration. Because hardware is free running, the program

width 7,0 (*8-bit input*)
val initb = 64 (x0x40%)

hw sqrt (Init, XIn, YShift, Done) =
let
val DiffX = 0
val B =0
in
if Init=’1’ then
(DiffX <- XIn;
YShift <- 0;
B <- initb;
Done <- ’0’)
else
if Done=’0’ then
(if DiffX = 0 then
(DiffX <- DiffX;
YShift <- YShift div 2;
B <- B div 4)
else if DiffX > O then
(DiffX <- DiffX - YShift - B;
YShift <- (¥YShift + B * 2) div 2;
B <- B div 4)
else (x DiffX < 0 *)
(DiffX <- DiffX + YShift - B;
YShift <- (YShift - B * 2) div 2;
B <- B div 4) ;
Done <- B[0])
end

Figure 6.2: HML description of integer square root Level 2 algorithm

75

will run through all the iterations until the terminating condition is satisfied and

therefore Done is set.

6.1.3 VHDL Code and Simulation/Synthesis on
Mentor-Graphics Tools

To simulate and synthesize the HML description in Figure 6.2, the HML-to-VHDL
translator is called to translate the HML code into VHDL. Figure 6.3 shows the
generated VHDL code for simulation.

The global val declaration in the HML code is put into the package of VHDL.
An integer type declaration is added to limit the bus width. An VHDL entity for
sqrt is added based on the type checking information.

A clk signal is added because there are register assignments in the original
HML code. Note that this clk is not necessarily the clock that is used in the
actual circuit, since the multiplications and divisions inside the process might take
one or more cycles(synthesized as shift operations). However, this simplified clock
signal is enough for a functional simulation. Other translation is direct mapping
according to the rules described in Table 4.2. Refer to the comments in the VHDL
code. The comments were added by hand.

Mentor Graphics V8.4_1 software QuickVHDL [Men94b] is used to simulate the
VHDL program. The simulation stimulus file is shown in Figure 6.4. Two input
values 49 and 28 are simulated. Figure 6.5 shows the simulation waveforms of all
the signals. It is clear that after 4 iterations, we get the correct square roots of
Xin, i.e. 7 and 5.

To synthesize the HML description, the translator is called with the synthesis
flag set. The generated VHDL specification (Figure 6.6) has the following difference

from the simulation version:

1. Multiplications and divisions are replaced by arithmetic shifts.

76

ENTITY sqrt IS -- sqrt.vhd
PORT(clk : IN bit;
Init : IN bit;
Xin : IN integer;
YShift : INOUT integer;
Done : INOUT bit);
END;

ARCHITECTURE sqrt_behavior OF sqrt IS
SIGNAL DiffX: integer :=0;
SIGNAL B : integer := O;

BEGIN
pl: PROCESS(clk)
BEGIN
IF (clk=’1’ AND clk’EVENT AND clk’LAST_VALUE=’0’)THEN -- clk added

IF (Init = ’1°) THEN

DiffX <= Xin;

Yshift <= 0;

B <= initb;

Done <= ’0’;

ELSE IF (Done = ’0’)THEN

IF (DiffX = 0) THEN
DiffX <= DiffX;
Yshift <= Yshift / 2;
B<=B/ 4 ;

ELSE IF (DiffX > 0) THEN
DiffX <= DiffX - Yshift - B;
Yshift <= (Yshift + 2 * B) / 2;
B <= B /4;

ELSE
DiffX <= DiffX + Yshift - B;
Yshift <= (Yshift - 2 *x B) / 2;
B<=B/ 4 ;

END IF;

END IF;

Done <= B(0);

END IF;
END IF;
END IF;
END PROCESS pil;
END sqrt_behavior; -- end of sqrt.vhd

Figure 6.3: VHDL description of integer square root produced by VHDL-HML

translator — Simulation Version

force clk 1 50, 0 100 -repeat 100
force init 1 50, 0 100, 1 600, O 700
force Xin 0 0, 49 50, 28 550

run 1200

Figure 6.4: QuickVHDL simulation stimulus file of square root example

Figure 6.5: Simulation wave form of square root example

77

78

ENTITY sqrt IS

PORT(clk : IN bit;
Init : IN bit;
Xin : IN bit_vector(7 DOWNTO 0);
YShift : OUT bit_vector(7 DOWNTO 0);
Done : OUT bit);
END;

ARCHITECTURE sqrt_behavior OF sqrt IS
signal DiffX: bit_vector(7 DOWNTO O) "00000000" ;
signal B : bit_vector(7 DOWNTO 0) := "0OO0O00000";
signal Yshift_in:bit_vector(7 DOWNTO O);
signal Done_in: bit;

BEGIN
pl: process(clk)
BEGIN
IF (clk=’1’ AND clk’EVENT AND clk’LAST_VALUE=’0’) THEN
IF (Init = ’1°) THEN
DiffX <= Xin;
Yshift_in <= "00000000";
B <= initb;
Done_in <= ’0’;
ELSE IF (Done_in = ’0’) THEN
IF (DiffX = "00000000") THEN
DiffX <= DiffX;
Yshift_in <= Yshift_in sra 1;
B <= B sra 2 ;
ELSE IF (DiffX(7) > "00000000") THEN
DiffX <= DiffX - Yshift_in - B;
Yshift_in <= (Yshift_in sra 1) + B;
B <= B sra 2;
ELSE DiffX <= DiffX + Yshift_in - B;
Yshift_in <= (Yshift_in sra 1) - B ;
B <= B sra 2;
END IF; END IF;
Done_in <= B(0);
END IF; END IF;
END IF;
END PROCESS p1;
Yshift <= Yshift_in;
Done <= Done_in;
END sqrt_behavior;

Figure 6.6: VHDL description of integer square root produced by VHDL-HML

translator — Synthesis Version

79

2. The integer type is transformed into bit_vector.

3. Yshift and Done are changed to single direction signals. To keep the func-
tionality two internal bidirectional signals, Yshift_in and Done_in, are added.

In the end, Yshift and Done are assigned from Yshift_in and Done_in.

6.2 Adder/Subtracter ALU

The design in this section is an adder/subtracter ALU with input/output latches
and result registers. It is controlled by signals start, do_add, do_subtract,
and do_hold to decide whether to reset, to do addition/subtraction, or to hold the
result. Section 6.2.1 presents the HML description for the design. Section 6.2.2

discusses the generated VHDL code for the synthesis version.

6.2.1 Describing Adder/Subtracter ALU in HML

To write well-structured HML programs, a complicated specification of a design
can be partitioned into several behaviors. Fach behavior represent a submodule in
a design. According to the specification of the adder/subtracter ALU, we partition
it into five parts: input latch, output latch, a state machine, result registers and the
core ALU (combinational part). Each part of the ALU functionality is represented
by a behavior expression and all the behaviors are grouped together using the

concurrent operator “||”. The HML description is shown in Figure 6.7.

6.2.2 Generated VHDL Description of
Adder/Subtracter ALU
Using the HML-to-VHDL translator, the VHDL description is generated based on
the HML description in Section 6.2.1 (see Figure 6.8, Figure 6.9 and Figure 6.10).
This design was used in the Mentor-Graphics AutoLogic Synthesis Guide [Men94a]

as an example of writing VHDL programs for synthesis. The VHDL description

80

width 3,0 (% set the bit-vector width to be 4 %)
hw add_sub_alu(
rst, (*resetx*)
enable_in, enable_out, (*control of data input/output*)
start, do_add, do_subtract, do_hold, (*control of statex)
data_in, data_out) = (*data input and output*)
let
type states = hold | reset | add | subtract (*define states typex*)

intern state_var, reg,int_reg, latched_data_in (*internal signalsx)
in
(*1. data input*) if enable_in = ’1’ then
latched_data_in <- data_in

[l ((¥2.fsm: set state_var according to control inputs & current statex)
if (rst = ’1’) then
state_var <- reset
else
case state_var of
hold => if (start = ’1’) then
state_var <- reset
| reset => if (do_add = ’1’) then
state_var <- add

else if (do_subtract = ’1’) then
state_var <- subtract
| add => if (do_hold = ’1’) then
state_var <- hold
else if (do_subtract = ’1’) then

state_var <- subtract
| subtract =>if (do_hold = ’1’) then
state_var <- hold
else if (do_add = ’1’) then
state_var <- add

)
[l ((*3. alu *) case state_var of
add => int_reg := reg + latched_data_in
| subtract => int_reg := reg - latched_data_in
| reset => int_reg := "0000"
| hold => int_reg := reg

)

[l (*4. mem: store result of alu *) reg <- int_reg
Il (5. output data*) if (enable_out = ’1’) then

data_out <- reg
end

Figure 6.7: HML description of an adder/subtracter ALU

81

-- Start of file "alu.lib.vhd"
-- Package
PACKAGE t_alu_1lib IS
TYPE subinteger IS RANGE -128 TO 127 ;
END t_alu_1lib;

-- Empty Package body
PACKAGE BODY t_alu_lib IS
END t_alu_1lib;

-- End of file "alu.lib.vhd"

-- Start of file "alu.vhd"
LIBRARY WORK;

USE WORK.t_alu_lib.ALL;

LIBRARY mgc_portable;

USE mgc_portable.gsim_logic.ALL;

-- Entity : the interface
ENTITY add_sub_alu IS

PORT(
clk : IN BIT ;
rst : IN BIT ;
enable_in : IN BIT ;
enable_out : IN BIT ;
start : IN BIT ;
do_add : IN BIT ;
do_substract : IN BIT ;
do_hold : IN BIT ;
data_in : IN BIT_VECTOR (3 DOWNTO O);
data_out : OUT BIT_VECTOR (3 DOWNTO O)
);

END add_sub_alu;

-- Architecture
ARCHITECTURE add_sub_alu_behavior 0OF add_sub_alu IS
TYPE states IS (hold,reset,add,substract);

SIGNAL state_var : states ;

SIGNAL reg : BIT_VECTOR (3 DOWNTO O);
SIGNAL int_reg : BIT_VECTOR (3 DOWNTO O);
SIGNAL latched_data_in : BIT_VECTOR (3 DOWNTO O);

BEGIN

Figure 6.8: VHDL description of the adder/subtracter ALU produced by
VHDL-HML translator (Part 1, to be continued)

pl : PROCESS -- (*1. data input*)
BEGIN WAIT ON clk ;
IF (clk=’1’ AND clk’LAST_VALUE=’0’ and clk’EVENT) THEN

IF enable_in = ’1’ THEN
latched_data_in <= data_in ;
END IF ;
END IF ;

END PROCESS p1l ;

p2 : PROCESS -- (*2. fsmx*)
BEGIN WAIT ON clk ;
IF (clk=’1’ AND clk’LAST_VALUE=’0’ and clk’EVENT) THEN
IF (rst = ’1°) THEN state_var <= reset
ELSE
CASE state_var IS
WHEN hold => IF (start = 21’) THEN
state_var <= reset ;
END IF ;
WHEN reset => IF (do_add = ’1°) THEN
state_var <= add ;
ELSE

b

82

IF (do_substract = ’1’) THEN

state_var <= substract ;
END IF ;
END IF ;
WHEN add => IF (do_hold = ’1’)THEN
state_var <= hold ;
ELSE
IF (do_substract = ’1’) THEN
state_var <= substract ;
END IF ;
END IF ;
WHEN substract => IF (do_hold = ’1’) THEN
state_var <= hold ;

ELSE

IF (do_add = ’1°) THEN
state_var <= add ;

END IF ;

END IF ;

END CASE ;
END IF ;
END IF ;

END PROCESS p2 ;

Figure 6.9: VHDL description of the adder/subtracter AL
VHDL-HML translator (Part 2, continued)

U produced by

83

p3 : PROCESS (state_var, latched_data_in, reg) --(*3. alu *)
BEGIN
CASE state_var IS

WHEN add => int_reg <= reg + latched_data_in;
WHEN substract => int_reg <= reg - latched_data_in;
WHEN reset => int_reg <= '"0000";
WHEN hold => int_reg <= reg;

END CASE ;

END PROCESS p3 ;

p4 : PROCESS -- (*4. mem: store result of alu *)
BEGIN
WAIT ON clk ;
IF (clk = ’1° AND clk’LAST_VALUE = ’0’ and clk’EVENT) THEN
reg <= int_reg ;
END IF ;
END PROCESS p4 ;

p5 : PROCESS -- (*5. output datax)
BEGIN
WAIT ON clk ;
IF (clk = ’1° AND clk’LAST_VALUE = ’0’ and clk’EVENT) THEN
IF (enable = ’1’) THEN
data_out <= reg ;
END IF
END IF ;
END PROCESS p5 ;

END add_sub_alu_behavior ;

Figure 6.10: VHDL description of the adder/subtracter ALU produced by
VHDL-HML translator (Part 3, continued)

84

generated is about the same as that give by the AutoLogic Synthesis Guide. Com-
paring the VHDL description and the HML description, it is quite obvious that
the VHDL description is significantly longer that the HML description.

The length difference is caused by several factors: VHDL has an entity declara-
tion which declares the interface while HML does not need to do so; in VHDL all
the signals have to be declared before use; HML’s clock information is implied by

register assignment “< —”

while in a VHDL process, clock information has to be
described by an [F statement; and VHDL has very verbose syntax for its program-

ming constructs: most constructs are enclose by BEGIN and END. This example

again shows HML’s conciseness.

Chapter 7

Conclusions and Future Plans

7.1 Conclusions

This thesis presents the HML language and describes how it can be translated to
VHDL and used with tools for the latter language. We believe HML has many

advantages over existing HDLs. These includes:

1. HML’s advanced type system makes HML unique compared with other
hardware description languages. Firstly, HML’s polymorphic functions en-
courage code reuse since structure generators and commonly used modules
can be shared among multiple types and multiple designs. Secondly, the
automatic type inference allows users to write descriptions without specify-
ing types and interfaces, therefore users can focus on functionality. Thirdly,
strong type checking is able to flag many design rule violations early in the
design process. Finally, HML as a high-order language provides an abstract

and high-level notation for hardware structures.

2. HML has extremely concise syntax and is very easy to read and write.
For the same design, most of the other HDLs that have been compared with

HML can not gives a shorter or cleaner description than HML. This is due

89

86

to the type system that does not require type and interface specification.
More importantly, it is because of the carefully designed grammar that HML

descriptions are very succinct.

3. HML has an open back-end: Our methodology provides an HML front
end (including that parser and the type checker), which can be linked to
different back ends for use with other tools. The implementation of the
interface to VHDL make it possible to take advantage of the wide variety of
available VHDL tools. Generating synthesizable VHDL is also attractive:
users can write HML hardware descriptions which can be synthesized and
can also be easily integrated with other VHDL designs. Other back-
ends might be an HML behavior simulator, an HML behavior synthesizer or

a verifier.

7.2 Future Work

Future work includes continuing to test the current system and improving the
language and the system. HML should be applied to more examples in order to

debug the current system. Future improvements could include:

e Specifying a formal semantics and improving the formal definition of the

language.

e Adding more features such as multiple clocks, hardware combinators, and

implementing dependent types.

e Building HML’s own behavior simulator: Since HML only uses a subset of
VHDL and there are some unique features of HML that are not supported
by VHDL, we believe an HML simulator could be much smaller and faster

that the current Mentor-Graphics VHDL simulator that we are using. In

87

addition, not needing to do the HMIL-to-VHDL translation can shorten the

simulation cycle.

Building library support: HML has a small predefined library of basic gates,
this ought to be expanded to include more useful functions and hardware

modules.

Embedding HML within theorem provers. HML’s description is similar to
structural descriptions in higher order logic theorem provers such as

HOL [BGG192] and Nuprl [Lee92]. The Computer Science Department of
Brigham Young University is already doing some work on embedding HML

in the HOL system.

Improving the pretty printing functions in the HML-to-VHDL translator:
The current translator performs some pretty printing while doing the trans-

lation, but it is very limited and should be improved.

Appendix A

HML Grammar

This appendix contains the grammar of HML. The grammar is LALR1 and can be

used with SML-Yacc. Names in lower-case are nonterminals, names in upper-case

are HML tokens.

(* global
sdecs :
I

sdec

decs *)
sdec sdecs
sdec

: VAL vb

FUN £b

TYPE tb

HW hb

RANGE INTEGERO COMMA INTEGERO
WIDTH INTEGERO COMMA INTEGERO

(* local decs, including INTERN *)

ldec
I
I
I

: VAL vb

FUN fb
TYPE tb
INTERN pat_1c

88

ldecs :
| 1dec ldecs

(kmmmmmmmmmm - vb - *)
vb : pat EQUAL exp
constraint :

| COLON ty
(kmmmmmmmmmm - fo -—---- - *)
b : clauses

clauses : clause
| clause BAR clauses

clause : ID pats constraint EQUAL exp

hb : hclauses

hclauses: hclause
| hclause BAR hclauses

hclause : ID pats constraint EQUAL hwexp

tb : ID EQUAL ty_dec

ty_dec : ty
| id_21ist

ty : INT
BOOL

BIT

UNIT

LPAREN ty RPAREN
ID

(* used in EnuTy *)
id_21ist: ID BAR ID
| ID BAR id_2list

BITVECTOR LBRACKET INTEGERO COMMA INTEGERO RBRACKET

89

(k=mmmmmmme match, rule, pat -------- *)
match : rule
| rule BAR match

rule : pat DARROW exp
constraint_pat : ID COLON ty

pat : WILD

INTEGER

INTEGERO

HIGH

LOW

TRUE

FALSE

ID

LPAREN RPAREN
LPAREN pat RPAREN
LPAREN constraint_pat RPAREN

pat_1lc : pat
| pat COMMA pat_1ic

(* use in fun-decl as parameters *)
pats : pats’
| LPAREN pat_1c RPAREN

pats’ : pat

| pat pats
(kmmmmmmmmmme e exXp ——-------——------- *)
hwexp : beha_exp

| stru_exp

| LET ldecs IN beha_exps END
| LET ldecs IN aexp END
| LET ldecs IN stru_exp END

beha_exp : aexp
| beha_exps

beha_exps : exp DOUBLEBAR exp
| exp DOUBLEBAR beha_exps

90

stru_exp : STRUCTURE LPAREN app_exps RPAREN

app_exps : app_exp
| app_exp SEMICOLON app_exps

option_exp :
| COMMA exp

else_exp:
| ELSE exp

exp : aexp
| let_exp

aexp : LPAREN exp_2ps RPAREN

LPAREN exp RPAREN

INTEGERO

INTEGER

HIGH

LOW

TRUE

FALSE

VECTOR

1d_exp LBRACKET exp option_exp RBRACKET
LPAREN RPAREN (k unit exp *)
pat_exp COLONEQUAL exp
pat_exp LARROW exp

exp ORELSE exp
exp ANDALSO exp
NOT exp

exp ADD exp
exp SUB exp
exp MUL exp
exp DIV exp
exp GT exp

exp GE exp

exp LT exp

exp LE exp

exp NE exp

exp EQUAL exp
exp AND exp
exp OR exp

91

let_exp :

pat_exp :

fn_exp

id_exp

exp NAND exp
exp NOR exp
exp XOR exp
exp XNOR exp
INV exp

IF exp THEN exp else_exp

CASE exp OF match
fn_exp
pat_exp
app_exp

LET ldecs IN exp_1ps END

id_exp

: FN match

app_exp :

exp_2ps :

exp_1lps :

exps

exp_1lc

ID

id_exp exps
LPAREN fn_exp RPAREN

exp SEMICOLON exp
exp SEMICOLON exp_Z2ps

exp
exp SEMICOLON exp_1ps

LPAREN exp_1c RPAREN

exp COMMA exp_1c
exp

exps

Appendix B

HML2VHDL User’s Manual

This appendix explains how to use the HML system. For details about how to
write programs in HML, refer to Chapter 2 and Chapter 6.

The HML package includes an HML parser, a type checker and an HML-to-
VHDL translator. It provides three executable files:

1. parse : This is the parser only. If invoked, it will check the syntax of the
HML program. The format for the parse command is:

parse filename
It prints out syntax errors and does not have an output.

2. type check : This is the combined parser and type checker. It invokes
the parser first and if there are no syntax errors it does the type checking and type
inference, prints out the type checking errors on standard output if there are any,
and exports the type checking and type information to file “hml_file name.log”.
The format for the type check command is:

typecheck filename

3. hml2vhdl : This includes all three stages in our HML system: parsing,
type checking and then translation to VHDL. It doesn’t proceed to the next stage

if there are errors at the current stage. The format for this command is:

93

94

hml12vhdl [-syn] [-clk] filename

There are two optional flags: if the -syn flag is set, the translator generates
VHDL code synthesizable by Mentor tools, otherwise the default is to generate
VHDL for simulation. The -clk flag will add clock information automatically
while translating the HML program into VHDL. The -cl1k flag should be set only
if the HML program doesn’t specify clocking.

hm12vhdl produces three output files: filename.log is the type checking
log file, it lists the type information of all the objects used in the HML pro-
gram filename. filename.vhd is the main VHDL file that includes the en-
tity declaration and architecture body; filename 1ib.vhd is the package file for
filename.vhd. When doing the simulation or synthesis, filename 1ib.vhd should

be compiled before filename.vhd by a VHDL compiler.

Bibliography

[Ash90]
[ASUSG]

[AT93]

[BGGT92]

[IEESS]

[7390]

[Lee92]

[Men94al

[Men94b]

[MPTS85]

[MTH90]

Peter J. Ashenden. The VHDL Cookbook. 1990.

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers - Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

AT&T Bell Laboratories. Standard ML of New Jersey - User’s Guide,
1993.

R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van
Tassel. Experience with embedding hardware description languages
in HOL. In V. Stavridou, T. F. Melham, and R. T. Boute, editors,
Theorem Provers in Clircuit Design. North-Holland, 1992.

Institute of Electrical and Electronic Engineers, Inc., New York. VADL
Language Reference Manual, 1988. TEEE Standard 1076-1987.

Geraint Jones and Mary Sheeran. Circuit design in Ruby. In
J. Staunstrup, editor, Formal Methods for VLSI Design. North-
Holland, 1990.

Miriam E. Leeser. Using Nuprl for the verification and synthesis of
hardware. In C. A. R. Hoare and M. J. C. Gordon, editors, Mechanized

Reasoning and Hardware Design. Prentice-Hall International, 1992.

Mentor-Graphics Corporation. AutoLogic VHDL Synthesis Guide,
1994.

Mentor-Graphics Corporation. QuickVHDL Reference Manual, 1994.

J. D. Morison, N. E. Peeling, and T. L. Thorp. The design rationale
of Ella, a hardware design and description language. In C. J. Koomen
and T. Moto-oka, editors, Computer Hardware Description Languages
and Their Applications. North-Holland, 1985.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. The MIT Press, 1990.

95

[Nav93]

[OLHA95]

[OLLA93]

[OW94]

[Pau9l]

[Real9]

[TMO1]

96

Zainalabedin Navabi. VHDL: Analysis and Modeling of Digital Sys-
tems. McGraw-Hill,Inc., 1993.

John O’Leary, Miriam Leeser, Jason Hickey, and Mark Aagaard. Non-
restoring integer square root: A case study in design by principled op-
timization. In Ramayya Kumar and Thomas Kropf, editors, Theorem
Provers in Circuit Design: Theory, Practice and Erperience, volume
901 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

John O’Leary, Mark Linderman, Miriam Leeser, and Mark Aagaard.
HML: A hardware description language based on SML. In David Ag-
new, Luc Claesen, and Raul Camposano, editors, Computer Hardware
Deseription Languages and their Applications, IFIP Transactions A-32,
pages 327-334. Elsevier, North-Holland, 1993.

Douglas E. Ott and Thomas J. Wilderotter. A Designer’s Guide to
VHDL Synthesis. Kluwer Academic Publishers, 1994.

L.C. Paulson. ML for the Working Programmer. Cambridge University
Press, 1991.

Chris Reade. FElements of Functional Programming. Addison-Wesley,
1989.

Donald E. Thomas and Philip Moorby. The Verilog Hardware Descrip-
tion Language. Kluwer Academic Publishers, 1991.

