
NORTHEASTERN UNIVERSITY

Graduate School of Engineering

Thesis Title: Accelerating Explicit State Model Checking on an FPGA: PHAST

Author: Mary Ellen Tie

Department: Electrical and Computer Engineering

Approved for Thesis Requirements of the Master of Science Degree

Thesis Advisor: Prof. Miriam Leeser Date

Thesis Reader: Prof. Stefano Basagni Date

Thesis Reader: Prof. Laurie Smith King Date

Department Chair: Prof. Ali Abur Date

Graduate School Notified of Acceptance:

Dean: Prof. Sara Wadia-Fawcetti Date

Copy Deposited in Library:

Reference Librarian Date

Accelerating Explicit State Model Checking on an FPGA:

PHAST

A Thesis Presented

by

Mary Ellen Tie

to

The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements
for the degree of

Master of Science

in

Electrical Engineering

in the field of

Computer Engineering

Northeastern University
Boston, Massachusetts

February 2012

c© Copyright 2011 by Mary Ellen Tie
All Rights Reserved

Abstract

Verification has become an increasingly important part of the hardware design pro-

cess. One technique used to verify digital circuits is explicit state model checking.

PHAST, a Pipelined Hardware Accelerated STate Checker, achieves a 30x speedup

for explicit state model checking of Murϕ models over software implementations used

in industry. PHAST is a reimplementation, to accommodate FPGA hardware and

to utilize SDRAM, of the Murϕ verifier developed at Stanford University. Murϕ has

been used to verify hardware and protocols, cache coherency protocols particularly.

Murϕ is used in industry due to its success in finding real design errors. PHAST takes

advantage of the flexible memory architecture and inherent concurrency provided by

an FPGA to accelerate model checking. In designs such as PHAST, where the data

is created and managed locally and the connection is not the bottleneck, FPGAs

can yield very good acceleration. The PHAST architecture can handle hundreds of

transition relations and tens of thousands of states. Using PHAST, we achieved a

thirty times application speedup in actual running hardware compared to Murϕ on

an example of a counter. The same structure developed for this simple example

was also reused for a model of the DASH multiprocessor. The model of the DASH

protocol is similar in size and complexity to models Intel uses to validate features of

processors. Preliminary analysis of the DASH model as verified by PHAST indicates

the speedup will stay constant across a large number of models. PHAST is the first

complete implementation of model checking in FPGA hardware.

Acknowledgements

First I would specially like to thank my advisor, Professor Miriam Leeser. This

work would not have been possible without her guidance, editing, and high standards.

She has provided me with the oppurtunites and support necessary for my personal

and professional growth.

Many thanks to Tim Leonard who provided the impetus for this work and spent

many long hours providing much of the background, ideas, and name for this work.

I would also like to thank my colleagues in the Reconfigurable Computing Lab-

oratory at Northeastern University for creating an interesting and engaging work

environment and my family for always being there. My gratitude goes to Kevin Tie

and Linda Nguyen for providing me with much needed daily sanity, love, encourage-

ment and support.

Finally, I would like to acknowledge Intel, without whose funding this would not

have been possible.

Contents

1 Introduction 1

2 Background 4

2.1 Model Checking . 4

2.1.1 DASH Cache Coherency Protocol 8

2.2 Field Programmable Gate Arrays . 9

2.3 Related Work . 11

2.4 Conclusion . 12

3 PHAST 13

3.1 Model Checking on an FPGA . 13

3.2 PHAST Architecture . 15

3.2.1 Next State Generator and Invariant Checker 19

3.2.2 Hash Compaction . 20

3.2.3 Hash Table Lookup . 22

3.3 Conclusions . 29

4 Murϕ Models 30

4.1 DOWN . 30

4.2 DASH . 32

4.2.1 Implementation on PHAST 36

4.3 Experimental Results . 38

4.3.1 DOWN . 39

4.3.2 DASH . 40

4.4 Conclusion . 41

5 Future Work and Conclusions 42

5.1 Automatic Translation from Murϕ to VHDL 42

5.2 Future Work . 44

5.3 Conclusion . 44

Glossary 46

List of Figures

2.1 Xilinx FPGA chip (from Xilinx) . 10

3.1 Algorithm Pseudo-code . 14

3.2 Hardware Block Diagram . 15

3.3 Parallel Processes Implemented in PHAST 17

3.4 Hash Compaction . 21

3.5 XOR Tree Hash Compaction . 21

3.6 CAM waveform . 25

3.7 Hash Table Lookup and Collision Detection 28

3.8 Collision Reintroduction . 28

4.1 Murϕ Rule . 33

4.2 Murϕ Rule translated to VHDL . 34

Chapter 1

Introduction

As verification and validation become larger portions of the design process, finding

methods and tools to speed that process become more important. The 2006 update

of the International Technology Roadmap for Semiconductors states that verifica-

tion is the dominant cost in the design process and, “without major breakthroughs,

verification will be a non-scalable, show-stopping barrier to further progress in the

semiconductor industry” [1]. Industry currently finds that verification consumes as

much as 70% of the engineering effort required to develop new products. Even with

this effort, bugs still make it into the final design. For example, the Pentium FDIV

(Floating point DIVision) bug led to a $475 million write-off by Intel. Intel estimates

a similar bug in modern Intel processors would cost about $12 billion [2].

Verification methodologies are needed that do not solely rely on simulation of the

design. Intel runs simulations involving thousands of machines running for several

years to simulate less than a minute of actual running time on the processors they

test [2]. Formal verification differs from simulation in that the goal is to prove or

CHAPTER 1. INTRODUCTION 2

disprove the validity of a design with respect to its specification. Formal verification

tools are static in nature; given an input they verify the entire design without testing

individual combinations of inputs. A promising formal verification technique is model

checking.

Model checking is an emerging method for demonstrating the correctness of hard-

ware and protocols. A designer models a hardware design as a finite state machine,

states the properties the design implements, and invokes a model checker to verify

that the properties are indeed true in every reachable state of the design. As explicit

state model checkers utilize a breadth first search of a very large state space with

large states, these model checkers are slow; sometimes extremely slow. An explicit-

state model checker enumerates the reachable states of the model being verified, so

the runtime can increase exponentially with the size of the model.

FPGAs hold the potential for performance improvement when the application

can be reconstructed to take advantage of concurrency, which is the case in explicit-

state model checking. This has led many to consider multi-threaded or distributed

implementations of Murϕ. An FPGA implementation, however, has two advantages:

(1) the ability to pipeline steps like next state generation and (2) fast, high-bandwidth

access to local memory. Fast access to memory is particularly important, since access

to data structures such as the hash table is one of the main bottlenecks. The hash

table contains the states reached thus far in the graph traversal and accessing it is

difficult to distribute among concurrent threads.

CHAPTER 1. INTRODUCTION 3

In this thesis, we present an FPGA implementation of Murϕ with the goal of ac-

celerating the verification of specific hardware designs. We developed our approach

on the example model of a counter, DOWN, which is provided with the Murϕ verifier.

We illustrate PHAST’s capabilities with DASH, a cache coherency protocol, which

is representative of protocols that are of interest to today’s researchers. The imple-

mentation details of PHAST have been presented in [3].

This thesis is organized as follows. Chapter 2 provides the background and mo-

tivation behind accelerating model checking on an FPGA as well as introducing the

DASH cache coherency protocol. Chapter 2 also explores related work on accelerat-

ing both model checking and breadth first searches on FPGAs and GPUs. Chapter 3

presents the PHAST architecture and implementation details. Chapter 4 provides de-

tails of both models used to test PHAST and the results from verifying these models.

Finally, Chapter 5 contains a discussion on automatic translation of Murϕ models to

VHDL and other future work.

Chapter 2

Background

As this work presented in this thesis touches on both a formal verification method

and the use of programmable hardware, this chapter provides background on model

checking, the DASH cache coherency protocol, and FPGAs. Section 2.1 explores the

different classes of model checking and explains why explicit state model checking and

specifically the Murϕ verifier was chosen for use in PHAST. Section 2.1.1 provides the

history and introduction for the verified protocol used to test PHAST. In Section 2.3

of this chapter related work in the area of hardware accelerated formal verification

and hardware accelerated breadth first search is explored.

2.1 Model Checking

Model checking [4] refers to several methods that automatically check if systems sat-

isfy their specifications. Specifications can include both safety and liveness properties

[5]. A designer models a hardware design as a finite state machine, states the proper-

ties the design implements, and invokes a model checker to verify that the properties

are indeed true in every reachable state of the design. A challenge in model checking

CHAPTER 2. BACKGROUND 5

is dealing with the extremely large state spaces that are generated. Despite many

efforts to make model checking methods efficient, managing these large state spaces

slows down model checking more than practitioners would like.

There are several classes of model checking tools currently used to verify hardware

designs. Most of the different classes of model checkers came into use to deal with

the state space explosion problem that happens with most models. These model

checkers explore the graph that corresponds to all the states that any specific model

can exhibit in different ways. Murϕ and PHAST are explicit-state model checkers.

For all classes of model checking, the model needs to be created by either a verification

specialist or the hardware designer, but acceleration of the model checker works best

when the verification is automatic.

The Murϕ verifier and language have been in use for more than ten years. The

Murϕ language easily describes hardware and protocol models. These models consist

of a description of the state of the hardware, a transition relation that defines how

the state can change, and an initial state of the model. The language further provides

the ability to specify symmetry in the states allowing the use of symmetry reduction

to improve verification [6]. The Murϕ verifier has been used in industry to model and

verify cache coherency protocols and other hardware designs. Murϕ supports both

breadth first and depth first search, and checks both liveness and safety properties.

In most model checkers, including Murϕ, probabilistic model checking is used to

manage the state space. Model checking is probabilistic when instead of creating,

CHAPTER 2. BACKGROUND 6

storing and examining every possible state a model can exhibit, the checker generates

a state, examines it, performs a lossy hashing method, and stores the hashed data.

The use of hashing does not change the verification from explicit to probabilistic

state model checking. The verification becomes probabilistic when instead of storing

a full state in a hash table, a portion of the hash data is stored as a tag. To do

this Murϕ uses a method called hash compaction, which was developed for Murϕ at

Stanford as an improvement over the “hashcompact” method of Wolper and Leroy

[7]. As software and hardware designs get larger and more complex, the use of

probabilistic model checking becomes more important since the state spaces created

by their models grow exponentially. Storing hashed states instead of full states in the

hash table saves a tremendous amount of memory at a small but measurable risk of

possibly pruning problematic areas of the state space. This pruning happens when

two states are hashed to the same hash value. Murϕ calculates the probability of

this happening for each model verified by Murϕ. The probability of omitting even

one state is reported during verification.

Symbolic model checking uses binary decision diagrams (BDDs) to represent the

state transition graph, without building it, which for small state sizes can make

symbolic model checking more efficient. However, when the size of the state is very

large, and for many protocols, explicit state model checking can be more effective in

finding bugs [8]. Unfortunately, even high-performance explicit state model checkers

are slow; sometimes extremely slow. An explicit-state model checker, unlike symbolic

CHAPTER 2. BACKGROUND 7

model checkers, enumerates the reachable states of the model being verified, so the

runtime can increase exponentially with the size of the model.

Bounded model checking [9] expands the state transition graph for some number

of iterations in order to limit the growth of the state space. Bounded model checkers

only do full verification for safety properties when induction techniques are used.

Bounded model checking needs further user input to fully verify the model. Explicit-

state model checking is a fully automatic technique that has been used to great

effect in verifying protocols. Explicit-state model checking tools like Murϕ have

been used to verify key design components that are high risk and have small models,

i.e., complex protocols. Even in these cases, the models are often restricted to keep

the runtime acceptable. Verifying the least-restrictive model of a design means that

the runtime of model checking may take days or weeks or even longer.

For the purposes of this project, we are accelerating a simplified version of the

Murϕ verifier. PHAST uses breadth-first search to explore the state space and checks

only for violations of safety properties, called invariants. Symmetry reduction has

not yet been implemented in hardware, but will fit into the PHAST architecture

by adapting the Next State Generator. In this thesis we present an FPGA imple-

mentation of Murϕ with the goal of accelerating the verification of specific hardware

designs. We illustrate our approach on an example model of a counter, DOWN,

and an example of a cache coherency protocol, DASH, which are provided with the

Murϕ verifier.

CHAPTER 2. BACKGROUND 8

2.1.1 DASH Cache Coherency Protocol

We are currently working on the verification of the DASH protocol [10], a direc-

tory based cache coherency protocol developed for the DASH multiprocessor. The

multiprocessor is made up of multiple nodes. Each node contains a small number

of processors, each with a private cache, a portion of the shared memory, a shared

cache, and a directory controller which interfaces the node to the rest of the network.

The distributed directory-based coherence protocol is provided as several exam-

ples with Murϕ. An elementary, abstract version of DASH is one of the smallest

protocol examples distributed with Murϕ, and takes Murϕ several minutes to ver-

ify. We chose to verify this model with PHAST for two reasons. First, we were

unsure of PHAST’s ultimate requirements in terms of area on the FPGA. It turns

out that there are plenty of FPGA resources available. Second, the elementary, ab-

stract version of DASH had the same size state, but much fewer transition relations.

Since DASH was handcoded, this meant less time could be spent translation those

relations. Once automated tools are in place to translate Murϕ models to PHAST,

larger protocol examples will be verified. Because of multicore architectures, verify-

ing cache coherency protocols has increased in interest and importance. Our intent is

to reduce the execution time for applying model checking to protocols that currently

take weeks to verify.

CHAPTER 2. BACKGROUND 9

2.2 Field Programmable Gate Arrays

FPGAs have long been used in the development of hardware designs. Traditionally

FPGAs were used to prototype hardware designs before deployment with an ASIC

device. While not a formal verification method, this allowed designers to run and test

their design before committing the design to an ASIC. More recently, FPGAs have

gained popularity accelerating formal verification methods including satisfiability [11]

[12]. This work represents the first effort we are aware of in accelerating model

checking.

FPGAs are chips made up of look-up tables, or LUTs, programmable switches,

and wires. This arrangement allows custom circuits to be built in software and then

downloaded to the FPGA. While FPGAs are mostly made out of small bits of RAM

for logic and programmable interconnect, most FPGAs also include larger blocks of

RAM for cache purposes as well as special purpose pieces of logic, such as multipliers

and DSP blocks. One of the advantages of FPGAs is the lack of forced architecture

or hierarchy inherent in the chip. With FPGAs, a designer can test different circuit

architectures, memory hierarchies and caching mechanisms until desired goals are

reached.

Figure 2.1 shows a Xilinx Virtex FPGA with the logic and RAM marked. This

is a conceptualized diagram of how a FPGA looks. New FPGAs are mostly made

up of interconnect that is necessary to support the sizable circuits that can fit on

the chips. Typical usage of an FPGA makes the connection between the FPGA

CHAPTER 2. BACKGROUND 10

Figure 2.1: Xilinx FPGA chip (from Xilinx)

and the host computer the bottleneck, but in designs where the data is created

and managed locally, FPGAs can yield very high speedups over equivalent software

implementations.

In this thesis, we present an FPGA implementation of Murϕ with the goal of

accelerating the verification of specific hardware designs. We developed our approach

on the example model of a counter, DOWN, which is provided with the Murϕ verifier.

Finally, we illustrate PHAST’s capabilities with DASH, a cache coherency protocol,

which is representative of protocols that are of interest to today’s multicore processor

designers.

CHAPTER 2. BACKGROUND 11

2.3 Related Work

FPGAs have been used to accelerate formal verification as well as state space ex-

ploration. Graph traversal, which shares algorithm similarities with explicit state

model checking, has seen great speedups when ported to an FPGA. An approach

using A* search [13] achieves a 50x speedup over software. Earlier efforts to ac-

celerate SAT solvers have been moderately successful, with speedups ranging from

zero to one order of magnitude [11]. More recently, a SAT solver, implemented on

an FPGA, saw a 70x speedup over state of the art software SAT solvers [14]. Ef-

forts using hardware to accelerate pieces of the model checking algorithm and other

formal verification techniques saw modest results. A 7x speedup has been achieved

for a bounded model checker using SAT-based verification techniques [15]. Another

approach uses Warshall’s algorithm to create a model checking coprocessor [16].

State space exploration applications developed on GPUs have good results or

small states, but none have managed to exhibit both characteristics. FPGAs are

better suited to state space exploration with large state spaces and large states than

GPUs for the following reasons. First, GPUs have a strict hierarchical memory

organization that hinders the designers ability to manipulate state storage. Second,

lack of communication across threads leads to GPUs frequently re-exploring pieces

of the search space. Due to memory bandwidth and memory latency bottlenecks,

state of the art model checking on GPUs currently see a 18x or less speedup [17].

An effort using GPUs and reversible hash functions with very small states achieves a

CHAPTER 2. BACKGROUND 12

27x speedup over software [18]. This research used much smaller states that we are

targetting with PHAST. Finally, an LTL model checker [19] cites data structures as

the main bottleneck to achieving more than the 14x speedup seen on the GPU.

Efforts have been made to translate Murϕ into HDLs automatically [20]. These

efforts begin with useable Murϕ and attempt to generate synthesizable VHDL. The

resulting circuits are unlikely to fit onto FPGAs or generate speedup because of this

top down approach, which results in very large HDL descriptions. The research

presented in this thesis is unique because it uses a hardware accelerator to improve

the end to end runtime of Murϕ, an explicit state model checker, using models that

exhibit real-world characteristics.

2.4 Conclusion

In this chapter, we presented some background and context for explicit state model

checking and Murϕ. We also introduced DASH and the use of FPGAs to accelerate

breadth first search. Finally, we presented related work on accelerating model check-

ing and breadth first search applications on both FPGAs and GPUs. In the next

chapter, we cover the PHAST architecture and implementation details.

Chapter 3

PHAST

In this chapter, we present the PHAST implementation and architecture. PHAST

is the FPGA implementation that accelerates Murϕ, introduced in Section 2.1. To

ease the understanding of PHAST, this chapter begins with a section that bridges

the gap between the Murϕ explicit state model checking software and the hardware

implementation. The chapter continues by briefly touching on the modules that vary

with the model under verification. Finally, the focus of this chapter is on those

modules that provide the infrastructure of PHAST. The specifics of how models are

handled and translated from the Murϕ language are further addressed in Chapter 4.

3.1 Model Checking on an FPGA

As previously presented [3], using an FPGA to accelerate explicit state model check-

ing provides two advantages. The first is the flexible memory hierarchy offered by

the FPGA. This permits the intense memory management required for explicit state

model checking. The next is the lack of communication required between the host

and the FPGA. Communication is the most frequent and difficult bottleneck for ap-

CHAPTER 3. PHAST 14

plication acceleration on an FPGA and the reason other approaches to accelerating

formal verification achieve smaller speedup. While models verified with PHAST are

currently hand-coded, we plan to implement a generator in the future that will allow

models specified in Murϕ to be verified with PHAST.

Murϕ starts with a start state, transition relations, and safety properties, pro-

vided by the user, and checks that the properties hold in all possible states. Several

terms used in this thesis are specific to model checking or the Murϕ verifier. The

start state of a model is the first state or set of states that passes through the verifier.

Murϕ uses rules to specify the transition relations that generate a new state. Unvis-

ited states are those that have been generated and are legal, but have not yet had the

rules applied to them. Legal states are those that have not violated any invariants,

or safety properties.

Add start state(s) to unvisited queue
While queue contains unvisited states

remove unvisited state from top of queue
generate all new states from current
for each new state

lookup in hash table
if state has been visited before

discard state
check state against invariants

if state violates a safety property
stop application
print trace

add state to bottom of unvisited queue
Model is verified successfully

Figure 3.1: Algorithm Pseudo-code

The pseudo-code, shown in Figure 3.1, is a simplified version of the Murϕ algorithm

CHAPTER 3. PHAST 15

using breadth-first search. In PHAST, the entire process is mapped to the FPGA,

and both data structures, the hash table and the unvisited queue, are mapped to

RAM. PHAST implements the checking of a particular model in hardware by di-

rectly implementing the rules. The rules, safety properties and the state state(s) are

encoded in the model. To begin verification, only a signal to begin is necessary.

3.2 PHAST Architecture

 Next State
 Generator

 enqueue

 dequeue

 Unvisited
 States Queue -
 Top

 Hash
 Compaction

 Hash Table
 Lookup

 Lookup-
 Pending
 Queue

Full State

 Full State Full State

 Full State - Shifted

 Full State

 Full State

All Reached States
Hash Table

 Full State

 Unvisited
 States Queue -
 Bottom

 Collision
 Queue

 Shifted
 Collision
 Queue

 Full State

 Invariant
 Checker

RAMRAM

RAM

RAM

RAM

Model

PHAST PHAST

PHAST PHAST

RAM

Model

Full State

 Hashed Value

Unvisited Queue

RAM

Figure 3.2: Hardware Block Diagram

Figure 3.2 shows a block diagram of PHAST. The boxes represent modules in the

design. There are three types of modules in the PHAST design: Model, PHAST, and

RAM. The modules labelled Model (Next State Generator and Invariant Checker) are

derived from the model needing verification. The rest of the design, labelled PHAST

CHAPTER 3. PHAST 16

and RAM, implements the Murϕ verifier independent of the model being verified.

The Hash Table is labelled as RAM, but the location, on-board memory or on-chip

memory, depends on the model. In PHAST, states are tracked through the use of

the Lookup Pending Queue, the Collision Queue and the Shifted Collision Queue.

A state exists in either the Next State Generator, the Lookup Pending Queue, the

Collision Queue, or the Unvisited Queue and only in one of these locations. Hashed

versions of the states exist in the Shifted Collision Queue or the Hash Table. Each

module is described in more detail later in the chapter.

Figure 3.3, which describes concurrent processes implemented in hardware, shows

the steps that PHAST takes to validate a model. A state is created in Step 1, the Next

State Generator, and expires in Step 6, the Dequeue module. It is possible for a state

to visit some modules multiple times in the case that a state’s hash value collides in

the Hash Table; however, the Unvisited Queue and the Next State Generator handle

only unvisited states, assuming that the Hash Table Lookup Module successfully

removes all duplicate states. In the case that a duplicate is not caught by the Hash

Table, PHAST will revisit states. Duplicate states can arise because PHAST revisits

parts of the graph or because an unvisited state generates a previously visited state.

Collision and duplicate states are discussed in Section 3.2.3.

The RAM modules in the diagram represent queues. On-chip RAM buffers states,

hiding latencies in reading states from the board’s RAM. In Figure 3.1, we refer to a

queue with unvisited states, and in the block diagram, there is a top and bottom for

CHAPTER 3. PHAST 17

Process 1: Next State Generator
read Current State from Unvisited Queue
generate Next State

write Next State to Enqueue if valid
else discard Next State

Process 2: Enqueue
if Next State available

read State
else read State from Collision Queue
write State to Lookup Pending Queue
write State to Invariant Checker
write State to Hash Compaction

if State is Collision State
mark State as Collision

Process 3: Invariant Checker
check State against safety properties
if State violates properties

stop verification
Process 4: Hash Compaction

read State from Enqueue
if State is Collision

read State from Shifted Queue
compute Hash Value from Shifted State

else generate Hash Value
write Hash Value to Hash Table Lookup

Process 5: Hash Table Lookup
read Hash Value from Hash Compaction
check address from Hash Value
if address is empty

write Hash Value to Hash Table
mark State as new for Dequeue

if data at address matches Hash Value
discard Hash Value
mark State as duplicate for Dequeue

if data does not match Hash Value
write Shifted State to Shifted Queue
mark State as collision for Dequeue

Process 6: Dequeue
read State from Lookup Pending Queue
wait for status from Hash Table Lookup
if new, write to Unvisited Queue
if duplicate, discard
if collision, write to Collision Queue

Figure 3.3: Parallel Processes Implemented in PHAST

CHAPTER 3. PHAST 18

that unvisited queue. This top and bottom are buffers for the whole unvisited queue

that resides in the RAM on the board. All new states, including start states, enter the

design from the Next State Generator and are stored in the Lookup-Pending Queue

while states are hashed and the hashed values are looked up in the Hash Table. When

the results of the lookup are known, the state is moved out of the look-up pending

queue into either the collision queue, the unvisited states queue or deleted if it has

already been visited. Collision handling is described in Section 3.2.3.

Several differences exist between the Murϕ and PHAST implementations of ex-

plicit state model checking. Because PHAST is a hardware interpretation of Murϕ,

PHAST takes advantage of concurrency in many places. The most obvious differ-

ence is when the state is checked against the invariants. In Murϕ a state is checked

against the invariants after it has been found to be unique, so that the fewest number

of states need be examined. In PHAST, states are checked when they are generated.

As PHAST uses concurrency to get the best hardware performance, a state is checked

for all invariants in the same cycle. Thus, each cycle a new state can be checked, and

moving the invariant checker earlier in the verification process does not slow PHAST

down and allows verification to halt immediately after finding a state that violates a

safety property. Another difference is in the manner that Hash Compaction is imple-

mented, for efficiency, in hardware. Where Murϕ performs a read and xor for each

row of the hash matrix, PHAST computes the bits of the hash value concurrently. A

final difference between Murϕ and PHAST is the ordering of states. In Murϕ states

CHAPTER 3. PHAST 19

are kept in a strict order, whereas PHAST reorders states in order to process a state

every cycle. States may be processed much later in PHAST than they would be in

Murϕ because of collisions in the Hash Table.

3.2.1 Next State Generator and Invariant Checker

The two modules that change completely with each model that PHAST verifies are

the Next State Generator and the Invariant Checker. The Next State Generator is

the implementation of the transition relations for the model. All of the new states,

including the start states, begin in this module. The only input to the Next State

Generator is a start or reset signal. All transition relations, including the start state,

are encoded in the module. The Next State Generator applies one rule to a Current

State every cycle, and compares the generated state against the Current State. While

the Next State Generator can generate a state nearly every clock cycle, some cycles

are empty because the generated state is a replica of the Current State or because

the Next State Generator is busy getting a Current State from the Unvisited Queue.

The Next State Generator outputs new unvisited states.

The Invariant Checker encodes the safety properties or invariants for the model.

This module checks every new state immediately after it is generated. The Invariant

Checker implements each invariant independently, so a state can be checked for all

properties concurrently. This module can process a state every cycle. It also stops

verification as soon as a violation is discovered. The only output from this module

is the stop signal. That signal is only asserted in the case that a state violates one

CHAPTER 3. PHAST 20

of the safety properties.

In Murϕ a state is checked against the invariants after the hash table lookup.

In PHAST the state is checked against the invariants immediately after creation, in

parallel with hash compaction. The invariant checker processes more states than in

the Murϕ verifier, but since the checker can process states at the same rate that they

are generated, this does not introduce any delay.

3.2.2 Hash Compaction

The Hash Compaction module takes a full sized state as an input and outputs a

hash value. The module is based on the hash compaction used in Murϕ [7] that was

developed at Stanford as an improvement over the “hashcompact” method of Wolper

and Leroy [21]. The hash compaction method required changes from Murϕ when

implemented in hardware. When performing hash compaction, each bit that is set in

the state necessitates a read of a hash matrix. The hash matrix is a list of random

values that is as long as the number of bits in the state and as wide as the width

of the hash values. The bits of the matrix are randomly set when a new verification

model is created for Murϕ. Data is read out of the hash matrix at an address that

corresponds to the one bits that are set in the state. These values are XORed together

to generate the final hash value. Figure 3.4 demonstrates hash compaction with an

8 bit state and a 5 bit hash value. The values in the hash matrix and state are

randomly set for the purpose of demonstration.

In order to achieve the best possible performance for PHAST, we did not imple-

CHAPTER 3. PHAST 21

Figure 3.4: Hash Compaction

ment the hash compaction as shown in Figure 3.4. The number of cycles needed to

compute the hash value would depend on how many bits were set in the state. For

long states, this meant the hash compaction could possibly take hundreds of cycles.

Not knowing exactly how many cycles it would take to compute a hash value also

means the hash compaction could not easily be pipelined.

Figure 3.5: XOR Tree Hash Compaction

In PHAST, we implemented the hash compaction as an XOR tree for each bit

of the output hash value. As with the Murϕ hash matrix, the bits of state that are

XORed together are chosen randomly for each new model verified by PHAST. Figure

3.5 has the same hash matrix and state as Figure 3.4. In Murϕ, the hash compaction

CHAPTER 3. PHAST 22

is computed from sequential reads of the hash matrix, performing the running xor

computation after ever read. PHAST computes all bits of the hash value in parallel.

For bit 0 of the hash matrix, the xor tree is derived from column 0 in the hash matrix.

The bits in the column that are set represent the bits in the state that would affect

that bit of the hash value. Those bits in the state that are selected by the hash

matrix column 0 are bitwise XORed together to form bit 0 in the hash value. The

columns in the hash matrix have a one to one correspondence with the bits in the

hash value. The computation can be pipelined by inserting registers between the

levels of the xor trees. For small states with only one level of xor computation, as in

Figure 3.5, the hash value can be computed in one clock cycle by computing all the

bits in parallel.

3.2.3 Hash Table Lookup

The purpose of this module is to determine whether a state should be written to

the working queue, removed as a duplicate, or reintroduced as a collided state. To

that end, the Hash Table Lookup Module takes in a hash value, splits it into an

address and tag, then asserts one of these signals: duplicate, unique or collision.

Both PHAST and Murϕ use a large table to store generated hash tags. In Murϕ, the

table is stored in main memory and lookup involves a simple comparison between the

Hash Table data structure and the newly created hash value. For PHAST, the table

and the lookup present some design challenges. For anything but very small models,

the Hash Table can not fit in on-chip memory. Using external memory requires each

CHAPTER 3. PHAST 23

lookup to generate a read and possibly a follow-up write to the board memory. The

addresses generated in the Hash Compaction Module, discussed in Section 3.2.2, was

calculated by Murϕ to have less than 0.000001% probability of omitting even one

state. For a state size of 1500 bits, this module, and the accompaning probability of

an omission, remains the same no matter which model is verified by PHAST. These

probabilities are reported by Murϕ, when verifying a model.

Since the latency of a read or write to SDRAM is long, the Hash Table Lookup

hardware implementation uses a few techniques to overlap the memory transactions

as well as remove duplicates to reduce the need to access memory. Since many of the

same states are generated close together in the exploration, a Content Addressable

Memory (CAM) is used to eliminate duplicates.

Duplicate Removal

The implementation of the Hash Table Lookup Module is partially dependent upon

the specifications of the memory interface for the FPGA board and the characteristics

of the state generation. The memory interface queues a number of read and write

accesses to the memory banks. As the addresses for the transactions to memory

are not sequential, the amount of time for a read or write to complete is variable

from one transaction to the next. Naive implementation relied upon transactions

being initiated on an as-need basis. The variable latency of a transaction and the

lack of regulation for initiating transactions resulted in unpredictable performance

that altered with small changes in details of the memory interface to the Hash Table

CHAPTER 3. PHAST 24

Lookup. Part of this stems from the state generation characteristics. Frequently,

duplicate states are generated within a few cycles of each other, resulting in the

Hash Table reporting that all states are not present in the Table. The use of the

CAM allows the consistent removal of duplicate states, resulting in both better and

more predictable performance.

In contrast to standard memory which returns content at a certain address, a

CAM takes content and returns whether the content already exists in the memory as

well as the address or addresses where that content is located [22]. Depending upon

the implementation, if a duplicate is present, a CAM might only return the address

of the first or last location where the content is stored, or the information that the

data is in memory. Our implementation of the Hash Table Lookup Module needs to

know of the presence of a state in the CAM and does not care about the possible

location. To this end, the CAM used in PHAST only report if a match exists.

The number of states stored in the CAM is a balance between the need to cover

the memory latency and to budget the FPGA chip resources. Duplicate states can

result in thousands of extra duplicate states being created and can diminish any

speedup that would be gained from the use of PHAST instead of Murϕ. However,

a very large CAM would essentially be a Hash Table stored on the FPGA chip. To

this end, the size of the CAM was tuned until it eliminated duplicates that were

incurred during a memory transaction without becoming so large as to consume too

many FPGA resources. After investigating CAM sizes ranging from 4 entries to 128

CHAPTER 3. PHAST 25

entries, we chose a 32 entry CAM.

Content Addressable Memory improves state lookup in 2 ways: it removes dupli-

cates as they arrive in the module, and it spaces out the transactions to memory by

a consistent number of cycles. As the Hash Compaction Module computes hashes,

they are queued up in the Hash Table Lookup. During the CAM phase, each state

is checked against the contents of the CAM. The CAM begins empty, but each state

that does not hit in the CAM is immediately written to it. States not in the CAM

initiate a read request to memory. If a read request is needed, additional states are

checked against the CAM while the Hash Table Lookup Module waits on the re-

sults of the read for the first state. The CAM and memory reads continue until the

read result for the first state comes back. However, an unknown number of duplicate

states may be processed during this CAM phase before that first memory transaction

returns.

Figure 3.6: CAM waveform

CHAPTER 3. PHAST 26

Figure 3.6 demonstrates the CAM phase in more detail. In this example, only

three states are shown for illustrative purposes. The first state, State 0 (S0), demon-

strates a new unvisited state. Thus the state does not exist in the CAM or in the

Hash Table, and so S0 misses in the CAM, which causes a write to the CAM. This

write takes 2 cycles. S0 also misses in the Hash Table, which originates a write to the

Hash Table. State 1 (S1) demonstrates a duplicate state that was originally visited

sometime in the previous 32 unvisited states seen by the CAM. S1 hits in the CAM

and was marked for deletion without necessitating a lookup to the Hash Table. By

hitting in the CAM, the CAM is ready for a new state in the next cycle. In that

next cycle S1 is also marked for deletion without impeding either the CAM or the

Hash Table lookups. S2 has not been seen in the previous 32 unvisited states and

thus does not exist in the CAM and is not known to be either a new or duplicate

state without results from a Hash Table lookup. S2 misses in the CAM in cycle 5.

In Figure 3.6, the result from memory for S0 occurs after the lookup for S2 is sent.

In this example, no other lookup request will be sent to the Hash Table until the

results for S2 come back. This demarcation between the sending of the read requests

and the waiting for read results is an arbitrary transition point between reading the

memory and writing to the memory that allows a controlled number of transactions

to occur in sequence that limits memory thrashing while maximizing work to cover

the memory latency. At that time the writes for S0 and possibly S2 will be written

to the Hash Table and more states will be processed by the CAM.

CHAPTER 3. PHAST 27

The Hash Table Lookup Module is never idle as results are constantly incoming

from the Hash Compaction Module and from the Hash Table. The CAM always has

states available for processing. The write portion of the Hash Table Lookup Module,

and the commit, delete or collision results for each state are sent to manage the

working queue once the first state’s lookup result comes back.

Collisions

Collisions occur when two different states hash to the same location in the hash

table. Collisions are a common problem when hashing. When trying to compress

the state space, we exacerbate the problem of collisions because we are compressing

a very large state description into a relatively small location in the hash table. We

can detect when a collision has occurred by checking the tag at the address specified

in the hashed state. The tag consists of a valid bit and state bits. If the valid bit is

set, and the tag from the table does not match the tag from the state we are looking

up, then a collision has occurred. We try to reduce the number of collisions by using

an effective hash function and keeping the number of entries in the hash table large.

In the Murϕ algorithm, collision handling is part of the lookup. In PHAST,

collisions had to be integrated into the pipeline. Collisions are detected in the Hash

Table Lookup, as they are in Murϕ, but are not resolved immediately. Resolution

happens when the address in the Hash Table for a collision state is empty and the

Hash Value can be stored at that address. To handle modified collisions in PHAST

we created two Collision Queues, one for original states and one which stores modified

CHAPTER 3. PHAST 28

versions of the full states. These two queues are important because hashed values

for collision states are generated from a shifted version of the original state instead

of the original itself. The original state is kept to reinsert into the Lookup Pending

Queue. When a new lookup into the Hash Table is performed on the rehashed state,

the results will match the state in the Lookup Pending Queue that had the original

collision.

Hash Table Lookup reads Hash Value address
if Hash Table contains no data at address

Hash Value data written to Hash Table
Dequeue reads State from Lookup Pending Queue
Dequeue writes State to Unvisited Queue

if Hash Table has data
if data matches Hash Value data

Dequeue reads State
if data does not match Hash Value data

Hash Table Lookup shifts State
Hash Table Lookup writes Shifted State
Dequeue reads State
Dequeue writes State to Collision Queue

Figure 3.7: Hash Table Lookup and Collision Detection

Hash Compaction recieves State from Enqueue
if Collision bit is set

Shifted State read from Queue
Hash Compaction performed on Shifted State
Shifted State sent to Hash Table Lookup

else
Hash Compaction performed on State
State sent to Hash Table Lookup

Figure 3.8: Collision Reintroduction

The Hash Table Lookup module handles collision states by shifting the state by

CHAPTER 3. PHAST 29

one bit. Then the Hash Table Lookup module and the dequeue module write the

shifted state and full state into the appropriate collision queues. Figure 3.7 outlines

this detection. To see how the state gets inserted back into the design, we have to

go back to the enqueue module, which handles writing new states into the Lookup-

Pending Queue and sending those states to the Hash Compaction module. The

enqueue module waits for a new state from either the Next State Generator or the

Collision Queue. When the state is from the Collision Queue, the only difference

from a new state is a signal sent to the Hash Compaction that the state is a collision.

When this signal is set, the Hash Compaction module reads the shifted state out

of the Shifted Collision Queue and performs the same hash function on the shifted

version of the state. The original state is sent to the Lookup-Pending Queue just

as new states are. Figure 3.8 provides pseudo-code for the reintroduction of the

Collision State in PHAST.

3.3 Conclusions

This chapter discussed the model checking algorithm modified from Murϕ and imple-

mented in the architecture of PHAST. The model and infrastructure specific modules

are separated in order to accommodate different models easily. We also presented

implementation details that were both changed or ported from Murϕ. In the next

chapter, we discuss in more detail the models used to test and explore PHAST’s

architecture.

Chapter 4

Murϕ Models

For the purposes of displaying PHASTs abilities, we chose two Murϕ models, DOWN

and DASH. PHAST was developed using the smaller DOWN model, then expanded

to fit DASH, which was based upon a real cache coherency protocol as discussed

in Section 2.1.1. All references to DASH in this chapter refer to the elementary ab-

stracted model of DASH provided in Murϕ and not the actual DASH multiprocessor.

4.1 DOWN

For this project, we chose DOWN as an example for verification. DOWN is an array

of six counters that are decremented in a semi-connected manner. Counters one and

two are decremented together, as are two and three, three and four, and four and

five. Counters five and six are decremented independently. When all six variables

have reached zero, the safety property that the sum of all counters should be greater

than zero is violated.

In Murϕ, the DOWN state is represented as an array of six variables. The ruleset

checks if the variable is greater than zero and if so, decrements the variable and

CHAPTER 4. MURϕ MODELS 31

possibly decrements the next higher adjacent variable, if that portion of the rule

applies. Murϕ uses rulesets when the same rule can be applied with different inputs.

The ruleset for DOWN is the same for all six variables, so the rule does not have to

be replicated six times. Rulesets can be thought of as loops. In the case of DOWN,

the ruleset is a for loop, where the rule is applied to all six variables in sequence.

The representation of DOWN in Murϕ includes the array of variables, the range of

values those variables can take, the ruleset and the invariant for the model. The

Murϕ model for DOWN can be downloaded with the Murϕ verifier [23].

In PHAST, the DOWN state is built into the verifier. Because the variables are

initialized to five and are decremented to zero, the state is eighteen bits wide, three

bits for each variable. The Next State Generator has the same rule replicated four

times with slight changes for rules five and six. The Invariant Checker only has one

property to check against the states: that the sum of the variables is greater than

zero. The largest number of bits set in any state is twelve. The longest number of

cycles it would take a state to be compressed and looked up in the hash table is five,

ignoring extra cycles between modules and due to control signals.

DOWN is a relatively small example and fits completely on the FPGA we are

targeting. The final number of states generated for DOWN by Murϕ is over ten

thousand. The published results in [3] did not use actual hardware and the Hash

Table and the Unvisited Queue were implemented using block RAM. The second

implementation of PHAST ran on our Virtex 5 chip. The latest implementation of

CHAPTER 4. MURϕ MODELS 32

PHAST uses the on-board memory for the Hash Table and Unvisited Queue to match

the implementation of large models. For the Hash Table Lookup, the change from

one cycle reads into the block RAM on the chip to the many cycle reads to the RAM

on the board resulted in two changes in the number of duplicates and collisions. The

use of the on-board RAM necessitated the implementation of the CAM and other

changes to the architecture to reduce the large increase of duplicates. However, with

the Hash Table spanning an entire 256 MB bank of the on-board RAM, the number

of collisions dropped to 0 for DOWN.

4.2 DASH

DASH, Directory Architecture for Shared Memory, is a scalable machine that main-

tains a single address space with coherent caches. The model for this multiprocessor

is a network of multiple nodes. Each node contains a small number of processors

with private caches, a portion of the shared memory, a shared cache, and a directory

controller which interfaces that node to the rest of the network. Because the memory

is distributed over all the nodes, each node is responsible for maintaining only the

portion of the address space that resides within its shared memory. The directory

controller maintains pointers to every other node that has addresses from this node’s

shared memory in the other node’s cache. The DASH multiprocessor model connects

all nodes with a point to point interconnect so that every node can exchange mes-

sages directly with any other node. The interconnect has two dedicated fabrics, one

CHAPTER 4. MURϕ MODELS 33

for requests and one for replies. The limiting of messages to only those nodes that

have or maintain a specific address helps minimize the amount of communication

necessary to maintain coherence.

Rule "handle read request to home"
ReqChan.Count > 0
& Request = RD_H

==>
Begin
Alias
RAC : Procs[Dst].RAC[Dst][Addr];
Cache : Procs[Dst].Cache[Dst][Addr];
Dir : Homes[Dst].Dir[Addr];
Mem : Homes[Dst].Mem[Addr]

Do
Switch RAC.State
Case WINV:
-- cannot release copy
Send_NAK(Src, Dst, Dst, Addr);
Consume_Request(Src, Dst);

Else
[...] -- other cases in rule
End; --switch;

End; -- alias: RAC, Cache, Dir, Mem
End; -- rule

Figure 4.1: Murϕ Rule

The DASH state represents all processing nodes, each containing the private cache

for each processor in the node and the remote access cache for each node, the reply

and request fabrics for the interconnect, and the home node with the main memory

and directory. The Murϕ model contains safety properties and rules that describe

how these caches can change, which fabrics get related messages, and whether other

caches or cache states change as a consequence. In the model, there are three remote

CHAPTER 4. MURϕ MODELS 34

read_req_to_home_01 : process(regen,procs_par,homes_par,rep_par,req_par,
rep01,req01,home01,proc01,aux0,aux1,regstop)

--reqnet[0][1].count > 0 && reqnet[0][1].mess[0].mtype = RD_H
begin --src = 0 (Home), dst = 1 (Remote1)

if regen = ’1’ then
case procs_par(1)(6 downto 4) is
when "100" => --case 4 is WINV, cannot release copy

send_nak(rep_par(4),aux1,regstop,rep01(4));
req01(1) <= consume_request(req_par(1));
home01 <= homes_par;

[...] -- assign all other state bits to parent state values
same <= ’0’;

when others =>
[...] -- other cases in "Read Request to Home" Rule
end case;

else
regstop <= ’0’;

[...] --all bits in state are 0, not valid state
same <= ’1’;

end if;
end process read_req_to_home_01;

Figure 4.2: Murϕ Rule translated to VHDL

CHAPTER 4. MURϕ MODELS 35

processing nodes, one home node, and one home directory. Because the interconnect

for DASH is point to point and this model has four nodes, there are 16 connections

each for the reply and request fabric respectively. Most rulesets in the DASH model

have guards that ignore connections from a node to itself; however, since not all

rulesets have this guard, all 16 connections are counted.

The DASH model generates over 90,000 states at approximately 1500 bits per

state and close to 100,000 state transitions. The unvisited queue, at its longest

point, contains close to 8,000 states. The model contains 17 rulesets that result

in 220 individual rules. Our model of the DASH protocol is similar in size and

complexity to models Intel uses to validate features of modern processors: state sizes

between 1200 and 1800 bits and a transition relation with more than 100 rules [24].

One of the smaller and simpler examples of a DASH ruleset, as encoded in Murϕ,

is provided in Figure 4.1. This rule is replicated for every combination of processing

node. As an example, this rule is created for the connection from Remote Node 0 to

Remote Node 1 as well as Remote Node 0 to Remote Node 3. In this example, a RAC

is the acronym for Remote Access Cache, a NAK is a negative acknowledgement, and

WINV is a RAC state that is waiting for an invalidate acknowledgement. The code

shows that the Remote Access Cache, in the case that it is waiting for an invalidate

acknowledgement, sends a NAK to Remote Node 1 and consumes, or deletes, the

request from Remote Node 1 that originated the NAK.

CHAPTER 4. MURϕ MODELS 36

4.2.1 Implementation on PHAST

The DASH model was chosen because the state size and number of rules is large

enough to demonstrate PHAST’s capabilities. The framework has been tested with

DASH’s transition relations.

Figure 4.2 shows a simplified example of one of the DASH rules. The VHDL for

a ruleset is, on average, 40x more code than the Murϕ model. The large increase in

code does not result in more complicated logic on the FPGA. Murϕ takes advantage

of looping the rules to reduce the 220 rules to 17 rulesets, but these 220 rules are

actually completely independent of one another. While DASH’s transition relations

and safety properties are implemented and DASH is performing similarly to DOWN,

some techniques for reducing and managing the increase might be necessary for the

automatic translation of Murϕ models to PHAST.

The rule in Figure 4.2, which handles read requests to the home node, uses sup-

porting procedures that have been translated to VHDL from Murϕ. The rule is

typical of many of the other 219 rule implementations in a few ways. First, most of

the circuitry on the FPGA chip is used for simple logic circuits. The DASH rules

create a next state by checking a value in the parent state and assigning a new value.

Most DASH rules change only a small number of bits in the entire state; usually at

least one branch of the code results in the next state being exactly the same as the

parent state. PHAST generates an extra bit with the state that designates whether

the state has had bits changed from the parent. In Figure 4.2, this is the ‘same’

CHAPTER 4. MURϕ MODELS 37

bit that is set to ‘0’ when a bit has been changed in the next state and ‘1’ when

the parent state is copied to the next state. This bit is used to prevent a parent

state from generating multiple next states that are duplicates. Another way in which

Figure 4.2 is typical of the other 219 is that many of the rules are almost identical to

each other. This particular rule is identical in behaviour to 15 other rules that vary

only in the source and destination designations.

Nearly all of the rules rely upon a small set of auxiliary procedures to reduce

the amount of work performed within the rule itself. In PHAST, the Next State

Generator has all 220 rules explicitly defined along with all the auxiliary procedures,

which are coded as VHDL functions or procedures. In addition, although not shown

in Figure 4.2, many of the the rules for the DASH model have some assertions encoded

directly into the rules, so the Next State Generator as well as The Invariant Checker

for the DASH verifier has the ability to stop the verification.

In PHAST, the DASH state is built into the verifier. Because both the reply and

request messages fabrics are point to point and can store up to four messages from

one node to any other node, the reply and request fabrics need a large number of

bits. The data representing the four processing nodes is 48 bits and the home node

is an additional 15 bits. State management for DASH creates its own challenges,

independent of the rest of the circuit. These challenges stem from the size of the

state. In the Next State generator, PHAST initially used comparators to detect

unique newly generated states. The DASH state, at 1500 bits, required an alternative

CHAPTER 4. MURϕ MODELS 38

solution to avoid using that much hardware. Any implementations, such as the

comparators, that required an operation be applied to an entire state were avoided.

Other examples of challenges arising from the size of the state include storing the

state in registers and fanout from the parent state to all 220 rules in the Next State

Generator. To reduce fanout, PHAST replicates the parent state. Replication of the

state even once consumes over 3000 registers, from the parent and next state, in the

Next State Generator alone. Tradeoffs like these arise in almost every module in

PHAST and have resulted in modules that are capable of handling the verification

of real protocols with large states.

4.3 Experimental Results

This work compares two implementations of explicit state model checking: Murϕ and

PHAST. Murϕ was run on the host machine: an x86 machine with two Clovertown

processors running at 1.86 GHz and 8 GB of RAM. PHAST targets the ADM-XRC-

5LX, an FPGA board from Alpha Data Inc. The board contains a Xilinx Virtex

chip, 1 GB of DDR-II SDRAM and 16MB of Flash RAM, and connects to the host

through a 64-bit 133MHz PCI-X interface connection. The Virtex chip on the board

is a Xilinx Virtex 5 LX110. This chip contains 128 32Kb block RAMs and 17,280

logic slices. Two models were used for the comparison. Both ship with Murϕ. The

first is DOWN, and the second is DASH. DOWN is used to demonstrate the speedup

that PHAST can provide while DASH demonstrates the complexity that PHAST can

CHAPTER 4. MURϕ MODELS 39

handle.

4.3.1 DOWN

DOWN, a small example of a counter, was run with Murϕ and PHAST. Murϕ verifies

DOWN in 100 ms using one core. The final number of states generated for DOWN

by Murϕ is over ten thousand. In [3], PHAST achieved a 200x speedup with a faster

clock in simulation. This implementation did not use the memory interface as the

Hash Table and the Unvisited Queue were implemented in block RAM on the Virtex

chip. The one cycle reads to the block RAM also resulted in no duplicates. This

PHAST implementation of the DOWN verification required less than 1% of the slices

available on the Virtex chip and only 6 of the block RAMs. On the actual Virtex

chip, the design ran at 50x faster than Murϕ.

For the third implementation, the Hash Table and the Unvisited Queue were

moved to the on-board RAM. While the first two implementations reported no du-

plicates and only a slight increase over the number of states generated by Murϕ,

the best case implementation using the on-board RAM generated forty seven thou-

sand states and thirty six thousand duplicate states. The current implementation

of PHAST uses a CAM to decrease the number of generated states to twenty six

thousand and the number of duplicates to twenty thousand. PHAST now runs at

158 MHz and achieves a 30x speedup over Murϕ.

While the use of the board’s RAM did impact performance, the optimistic results

originally given by simulation are typical of FPGA implementations. Simulation

CHAPTER 4. MURϕ MODELS 40

results are typically faster because in real implementations, clock speed is limited by

memory interfaces and real world hardware concerns.

4.3.2 DASH

Murϕ verifies DASH in 15s using one core. Murϕ stores nearly 7800 states in the

Unvisited Queue at its deepest point. For the hardware implementation, this trans-

lates into less than 2 MB of space for the Unvisited Queue, which, while too big for

on-chip block RAM, fits easily into one of the four banks of on-board SDRAM. Each

bank is 256 MB. The Hash Table benefits from a large size, and thus was designed to

span an entire bank of SDRAM, but only contains 0.5 MB of data when the entire

state space is represented. The DASH model, with close to one hundred thousand

states and 220 rules, takes up less than forty percent on the Virtex chip and less than

thirty percent of the block RAMs. Hash Compaction, for example, when converted

for DASH, results in xor trees with up to 4 levels and hundreds of xor operations.

The block RAMs are consumed with caches to cover the latency from reading and

writing to the on-board RAM, the Lookup Pending Queue and Collisions Queues.

The DASH transition relations and invariants have been translated into VHDL

and implemented in the Next State Generator and Invariant Checker. Synthesis of

the DASH model, alongside PHAST, in VHDL reports 172 MHz clock speed. Because

the clock speed for PHAST is determined by the Hash Table Lookup Module, and

not the Next State Generator, this increase in the clock speed does not indicate

any additional improvements over the speedup demonstrated by the verification of

CHAPTER 4. MURϕ MODELS 41

DOWN with PHAST. The speedup given by the verification of DOWN with PHAST

holds true for DASH, despite the greater utilization of area on the Virtex 5 chip from

the increase in transition relations, safety properties and block RAM. Currently,

DASH has also not been tested in simulation or on real hardware.

4.4 Conclusion

In this chapter, we detailed the models used as proof of concept for PHAST. The

first, DOWN, was used to develop the PHAST infrastructure. The second, DASH,

showed that PHAST could handle models with real state and state space sizes. Both

models were translated by hand from Murϕ to VHDL and integrated into PHAST.

In the next chapter, we conclude this thesis and present future work.

Chapter 5

Future Work and Conclusions

The largest need for this work going forward would be to automate the translation

of the transition relations and invariants from Murϕ to VHDL. In this chapter, we

discuss this effort based upon the previous work with DASH and present other future

work.

5.1 Automatic Translation from Murϕ to VHDL

Currently any model we implement in FPGA hardware is hand-coded in VHDL,

which limits the usability of the PHAST verifier. Thus, after PHAST has been

tested on several examples, it will be expanded with a language compiler that will

translate models in the Murϕ language to the VHDL for that model. To assist in the

effort, we have kept the hardware as generic as possible. PHAST as implemented for

DOWN has some areas that would benefit from parallelization, but this paralleliza-

tion would be applied to this model only. The model specific components, The Next

State Generator and The Invariant Checker, have been kept separate from the con-

structs needed to implement the Murϕ algorithm. The language parser may require

CHAPTER 5. FUTURE WORK AND CONCLUSIONS 43

revisiting the hardware design, code parameterization, and some redesign. Hand-

coding the Murϕ models can take months. Once the PHAST language compiler has

been created, the speedup compared to Murϕ will take into consideration the amount

of time required for synthesis and implementation of a model with PHAST.

The most important part of translating from Murϕ to VHDL is in the design of the

state. Each model is based around a state which encodes the design under verification.

Poorly designed states can introduce difficulty into the transition relations. With

Murϕ, these state are described as objects. In VHDL these objects need to be further

encoded into a string of bits. With DASH, the state was changed as the transition

relations were translated. The first direct implementation had to be changed to

account for the use of ‘0’ values and undefined values. These settings in Murϕ have

different meaning than in VHDL. The state was again changed to have certain bit

ranges aligned instead of striped across the state. These values were used together

over and over in the transition relations, but the relationship was not inherent in

the state description given by the Murϕ model. While not all models might run

into these difficulties, checking for certain characteristics in the model might greatly

benefit the VHDL design.

After the design of the state is set, the transition relations themselves are fairly

straightforward. Each one needs to be checked for assertions that might cause veri-

fication to quit. Each relation otherwise checks certain bits in the parent state, then

depending on the values present, might reassign those or other bits to some new

CHAPTER 5. FUTURE WORK AND CONCLUSIONS 44

value. The most difficulty with regards to transition relations came about because

of the sheer number of cases present in any single rule.

5.2 Future Work

PHAST is based on the Murϕ verifier which has been successfully used in industry for

over ten years. During that time, much research has been done in the field of model

checking. We intend to incorporate the current state of the art, such as symmetry

reduction into the PHAST verifier. The advantages of symmetry reduction should

be the same in software and hardware implementations of Murϕ.

A possible expansion of PHAST’s capabilities is to incorporate run-time reconfig-

uration into the verifier. Since PHAST is partitioned to separate the model from the

verifier, we intend to investigate using run-time reconfiguration to change the hard-

ware from checking one model to checking another, making PHAST more flexible.

While the implementation of PHAST focuses on DASH and DOWN, which are

Murϕ models, PHAST’s structure is not limited to explicit state verification or a

reimplementation of Murϕ. PHAST explores a large state space to check for the ex-

istence of specific properties. PHAST uses transition relations to generate the states

in this space. Any application that fits this structure can use PHAST’s framework.

5.3 Conclusion

PHAST, a pipelined hardware accelerated state checker, succeeded in accelerating

the execution time of Murϕ, a software model checker. PHAST achieved over 30x

speedup in running hardware through a custom design and by taking advantage

of FPGA characteristics. We expect to continue to see consistent speedups over the

software implementations of explicit-state model checkers based on the characteristics

of circuitry created for the DASH model.

The DASH model has a relatively small number of rules and invariants, yet takes

up a fair amount of logic on the FPGA. The final amount of logic used with the

DASH model utilizes nearly fifty percent of the Virtex 5’s LUTs. Considering the

capabilities of newer Virtex chips, models containing more transition relations might

need to be ported to a newer chip.

Glossary

ASIC Application-Specific Integrated Circuit.

DASH Directory Architecture for Shared Memory; A multiprocessor, cache co-
herency protocol, and a model verified by Murϕ and PHAST.

DSP Digital Signal Processing.

FPGA Field Programmable Gate Array.

GPU Graphics Processing Unit.

Invariants see Safety Properties.

Legal States States that have not violated any safety properties.

LTL Linear Temporal Logic; also a class of model checker that uses temporal logic
to specify safety and liveness properties.

LUT LookUp Table.

Murϕ an explicit-state model checker developed at Stanford University.

PHAST Pipelined Hardware Accelerated STate checker.

Reachable States All states that a model can transition to from a given start state
or set of start states.

Rules see Transition Relations.

Safety Properties Referred to in Murϕ as invariants. These properties specify
what should never happen in any state in a model’s reachability graph.

SAT SATisfiability. The problem of determining if a given Boolean formula can
be assigned in a way to make teh formula evaluate to true. Also a class of
algorithms that can solve large subsets of SAT instances for the purpose of
verification.

Start State The state or set of states that is encoded with a model for verification.

Transition Relations The set of functions that defines the connections between
the states in the reachable graph.

Unvisited States States that have been generated, and are legal, but have not yet
had the rules applied.

Bibliography

[1] “International Technology Roadmap for Semiconductors,”
http://www.itrs.net/, 2006.

[2] B. Bentley, “Validating a modern microprocessor,” 2005, see URL http://-

www.cav2005.inf.ed.ac.uk/bentley CAV 07 08 2005.ppt.

[3] M. E. Fuess, M. Leeser, and T. Leonard, “An FPGA Implementation of Explicit-
State Model Checking,” in FCCM ’08: Proceedings of the 15th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, 2008, pp.
119–126.

[4] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 1999.

[5] P. Manolios and R. Trefler, “A lattice-theoretic approach to safety and live-
ness,” in Twenty-Second ACM Symposium on Principles of Distributed Com-
puting (PODC 2003). ACM, 2003.

[6] C. N. Ip and D. L. Dill, “Better Verification Through Symmetry,” Formal Meth-
ods System Design, vol. 9, no. 1-2, pp. 41–75, 1996.

[7] U. Stern and D.L. Dill, “Improved Probabilistic Verification by Hash Com-
paction,” in Correct Hardware Design and Verification Methods, P.E. Camurati
and H. Eveking, Eds., vol. 987. Stanford University, USA: Springer-Verlag,
1995, pp. 206–224.

[8] U. Costa, S. Campos, N. Vieira, and D. Deharbe, “Explicit-Symbolic Modelling
for Formal Verification,” Electronic Notes in Theoretical Computer Science, vol.
130, pp. 301–321, May 2005.

[9] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and
Y. Zhu, “Bounded Model Checking,” 2003. [Online]. Available:
http://www.cs.cmu.edu/∼emc/papers.htm

[10] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, “The
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor,” in

ISCA ’90: Proceedings of the 17th annual international symposium on Computer
Architecture, 1990, pp. 148–159.

[11] I. Skliarova and A. de Brito Ferrari, “Reconfigurable Hardware SAT Solvers: A
Survey of Systems,” IEEE Trans. Comput., vol. 53, no. 11, pp. 1449–1461, 2004.

[12] J. Davis, Z. Tan, F. Yu, and L. Zhang, “A Practical Reconfigurable Hardware
Accelerator for Boolean Satisfiability Solvers,” in 45th ACM/IEEE Design Au-
tomation Conference, June 2008, pp. 780 –785.

[13] Z. K. Baker and M. Gokhale, “On the Acceleration of Shortest Path Calcula-
tions in Transportation Networks,” in FCCM ’07: Proceedings of the 15th An-
nual IEEE Symposium on Field-Programmable Custom Computing Machines.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 23–34.

[14] M. Safar, M. El-Kharashi, M. Shalan, and A. Salem, “A reconfigurable,
pipelined, conflict directed jumping search sat solver,” in Design, Automation
Test in Europe Conference Exhibition (DATE), March 2011, pp. 1 –6.

[15] H. Yoshida, S. Morishita, and M. Fujita, “Hardware-Accelerated Formal Veri-
fication,” in IWLS ’08: 17th International Workshop on Logic and Synthesis.
Lake Tahoe, California, USA: IEEE Computer Society, 2008, pp. 247–252.

[16] J. Brandt, K. Schneider, and A. Willenbcher, “Hardware Acceleration for Model
Checking,” in Methoden und Beschreibungssprachen zur Modellierung und Ver-
ifikation von Schaltungen und Systemen (MBMV), C. Scholl and S. Disch, Eds.
Freiburg, Germany: Shaker, 2008, pp. 179–187.

[17] D. Bona?ki, S. Edelkamp, and D. Sulewski, “Efficient probabilistic model
checking on general purpose graphics processors,” in Model Checking Software,
ser. Lecture Notes in Computer Science, C. Pasareanu, Ed. Springer
Berlin / Heidelberg, 2009, vol. 5578, pp. 32–49. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02652-2 7

[18] S. Edelkamp, D. Sulewski, and C. Ycel, “Perfect hashing for state space explo-
ration on the gpu,” 2010, see URL http://www.aaai.org/ocs/index.php/-

ICAPS/ICAPS10/paper/view/1439.

[19] J. Barnat, L. Brim, M. Ceska, and T. Lamr, “Cuda accelerated ltl model check-
ing,” in Parallel and Distributed Systems (ICPADS), 2009 15th International
Conference on, Dec. 2009, pp. 34 –41.

[20] S. German and G. Janssen, “A tutorial example of a cache memory protocol
and rtl implementation,” in IBM Research Report, ser. Technical Report, vol.
RC23598, 2006.

[21] P. Wolper and D. Leroy, Reliable Hashing Without Collision Detection, ser.
Lecture Notes in Computer Science. Springer Berlin, 1993, vol. 697, pp. 59–70.

[22] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable Memory (CAM)
Circuits and Architectures: A Tutorial and Survey,” IEEE Journal of Solid-
State Circuits, vol. 41, no. 3, pp. 712 – 727, March 2006.

[23] “Murphi,” http://verify.stanford.edu/dill/murphi.html, 1996.

[24] T. Leonard, 2009, private communication.

