An Integrated Agent-Based and Queueing Model for the Spread of Outpatient Infections

Capstone Design Team:
Mohammed Alshuaibi
Guido Marquez
Stacey Small
Cory Stasko

Sponsor:
Dr. James Stahl

Advisor:
Dr. James Benneyan
Healthcare-Associated Infections

Inpatient

1. They’re common.
 - 1.7 million per year

2. They’re costly.
 - 99,000 deaths per year
 - $5B medical cost per year

3. It’s getting worse.
 - 36% increase over last 20 years

Healthcare-Associated Infections

Inpatient

1. They’re common.
 - 1.7 million per year

2. They’re costly.
 - 99,000 deaths per year
 - $5B medical cost per year

3. It’s getting worse.
 - 36% increase over last 20 years

Outpatient

1. How bad is it?
 - 1.7 million per year

2. What factors contribute?

3. What policies are most effective?
Healthcare-Associated Infections at MGH Urgent Care Clinic

Sponsor Objectives:
- Investigate ways to reduce the spread of infection in outpatient clinics
- Develop generalizable knowledge in addition to specific solutions

AIM Statement

Test potential methods for reducing infection transmission with a focus on compartmentalization and hand sanitization measured in terms of system-wide exposure and performance.
Five Opportunities for Compartmentalization

In terms of

• Environment / Equipment
• Personnel

Patient Flow
Patient Population

- Incoming Infections
- Care Profiles

Staff Behavior

- Hand Sanitization
- Staff Interaction

Risk of Transmission

Patient

Staff

Location

Process Architecture

Patient Flow
Integrated Risk Model

Patient Population

Staff Behavior

Front Desk

Triage

Exam

Lab

Check Out

Risk of Transmission

Integrated Risk Model
Model and Experimentation

Experimental Variables
- Compartmentalization
- Hand Sanitization Rates
- Resource Reduction

Sensitivity Variables
- Incoming Incidence Rates
- Cross Contamination Rates
- Initial Utilization Levels

System Metrics
- Infection Exposures
- System Performance
- Feasibility

Experimental Results

Comparing Improvement Policies

Compartementalization
11 values
- types of compartmentalization

Hand Sanitization
3^4 values
- low, med, high for 4 staff types

891 Combinations
- Newly Exposed Patients
- Patient Wait Time
- Difficulty
Experimental Results

All Improvement Scenarios

Difficulty

Newly Exposed Patient Rate

Wait Time (hours)

Pareto Optimal Points

Non-Optimal Points
Experimental Results

Pareto Optimal Improvement Scenarios

- Newly Exposed Patient Rate
- Wait Time (hours)
- Low Difficulty
- High Difficulty

Scenarios:
1. Low Difficulty
2. Medium Difficulty
3. High Difficulty
Experimental Results

Pareto Optimal Improvement Scenarios

Newly Exposed Patient Rate

Wait Time (hours)

Patient Sorting
- None
- Random
- Risk-Based

Scenarios:
1. None
2. Random
3. Risk-Based
Experimental Results

Sorting Algorithm Parameterization

- Newly Exposed Patients
- Specificity
- Sensitivity
Experimental Results

Sorting Algorithm Parameterization

Patient Wait Time

Specificity

Sensitivity
Recommended Policies

<table>
<thead>
<tr>
<th>Patient Sorting Type</th>
<th>None</th>
<th>Random</th>
<th>Risk-Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartmentalization Level</td>
<td>None</td>
<td>Early Medium</td>
<td>High</td>
</tr>
<tr>
<td>Hand Sanitization Improvement</td>
<td>Staff +5%, MD +10%</td>
<td>Staff +5%</td>
<td>Staff +10%, MD +10%, Nurse +8%</td>
</tr>
</tbody>
</table>

Newly Exposed Patients Change (%)

| Change (%) | -7 | -12 | -20 |

Wait Time Increase (Hours)

| Increase (Hours) | 0.14 | 0.3 |

Implementation Difficulty

| Difficulty | 4 | 9 | 20 |
Triple Aim Impact

<table>
<thead>
<tr>
<th>Patient Sorting Type</th>
<th>None</th>
<th>Random</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartmentalization Level</td>
<td>None</td>
<td>Early Medium</td>
<td>High</td>
</tr>
<tr>
<td>Hand Sanitization Improvement</td>
<td>Staff +5%, MD +10%</td>
<td>Staff +5%</td>
<td>Staff +10%, MD +10%, Nurse +8%</td>
</tr>
</tbody>
</table>

Cost Savings
- **None**
 - Additional Treatment Avoided ($56,300)
- **Random**
 - Additional Treatment Avoided ($96,400)
- **Risk**
 - Additional Treatment Avoided ($160,700)

Quality
- **None**
 - Increased Waiting Time (None)
- **Random**
 - Increased Waiting Time (5,100 Hours)
- **Risk**
 - Increased Waiting Time (10,500 Hours)

Health
- **None**
 - 21% Reduction in Exposure
- **Random**
 - 36% Reduction in Exposure
- **Risk**
 - 61% Reduction in Exposure
Conclusions and Extensions

Generalized Findings

• Proof of concept: queueing and agent-based infection spread model
Conclusions and Extensions

Generalized Findings

- Proof of concept: queueing and agent-based infection spread model
 - Tradeoff between efficiency and risk
Conclusions and Extensions

Generalized Findings

- Proof of concept: queueing and agent-based infection spread model
 - Tradeoff between efficiency and risk
 - Many assumptions necessary for such a model
Conclusions and Extensions

Generalized Findings

- Proof of concept: queueing and agent-based infection spread model
 - Tradeoff between efficiency and risk
 - Many assumptions necessary for such a model
- Diminishing returns of the same intervention

Before:

After:
Conclusions and Extensions

Generalized Findings

• Proof of concept: queueing and agent-based infection spread model
 • Tradeoff between efficiency and risk
 • Many assumptions necessary for such a model
• Diminishing returns of the same intervention
 • Need for multiple cross-functional interventions
Conclusions and Extensions

Generalized Findings

• Proof of concept: queueing and agent-based infection spread model
 • Tradeoff between efficiency and risk
 • Many assumptions necessary for such a model
• Diminishing returns of the same intervention
 • Need for multiple cross-functional interventions
• Risk based sorting only worthwhile for extensive compartmentalization
Conclusions and Extensions

Generalized Findings

• Proof of concept: queueing and agent-based infection spread model
 • Tradeoff between efficiency and risk
 • Many assumptions necessary for such a model
• Diminishing returns of the same intervention
 • Need for multiple cross-functional interventions
• Risk based sorting only worthwhile for extensive compartmentalization
• Compartmentalize where resources are least constrained
Conclusions and Extensions

Further Questions

• What opportunities do clinics actually have for “compartmentalization”?
Conclusions and Extensions

Further Questions

- What opportunities do clinics actually have for "compartmentalization"?
- How to best model different kinds of infections/risk?
Conclusions and Extensions

Further Questions

• What opportunities do clinics actually have for “compartmentalization”?
• How to best model different kinds of infections/risk?
• How will models be validated, improvements measured?
Conclusions and Extensions

Further Questions

• What opportunities do clinics actually have for “compartmentalization”?
• How to best model different kinds of infections/risk?
• How will models be validated, improvements measured?
• At what level is it best to conduct this analysis?
Conclusions and Extensions

Further Questions

Health Network

System Dynamics

Agent-Based

Queueing

Patient Flow

Front Desk Triage Exam Lab Check Out
Conclusions and Extensions

Further Questions

- What opportunities do clinics actually have for “compartmentalization”?
- How to best model different kinds of infections/risk?
- How will models be validated, improvements measured?
- At what level is it best to conduct this analysis?
 - Where data, model, and action can align...
Thank you.
[404 Slide Not Found]
Triple Aim Impact

<table>
<thead>
<tr>
<th>Compartmentalization Advantages</th>
<th>Compartmentalization Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fewer exposures, fewer infections</td>
<td>Dividing resources can limit throughput, revenue</td>
</tr>
<tr>
<td>Compartments may improve care coordination</td>
<td>Compartments may require additional staff</td>
</tr>
<tr>
<td>Fewer infections introduced into the population</td>
<td>Compartments may increase waiting times</td>
</tr>
</tbody>
</table>

Cost
- HAIs require additional treatment/admission
- Providers out sick reduce throughput, revenue

Quality
- Fewer infections
- Compartments may improve care coordination

Health
- Fewer infections introduced into the population

Advantages
- Compartmentalization

Disadvantages
- [No disadvantages identified]