Deconstructable Steel-Concrete Shear Connection for Sustainable Composite Floor Systems

Lizhong Wang, Jerome F. Hajjar
Department of Civil and Environmental Engineering
Northeastern University
Clayton Brown, Mark D. Webster
Simpson Gumpertz and Heger, Inc.
Introduction

Green buildings

- Material manufacture
 - Environmentally friendly, renewable and low embodied energy materials
- Use phase
 - Efficient heating, ventilating and lighting systems
 - Adaptation or reconfiguration
- End of life
 - Minimum amount of waste and pollution
 - Reusable and recyclable materials

Material flow of current buildings

- Extraction → Manufacturing → Construction → Operation → Deconstruction → Disposal

Image from US Energy Information Administration (2011)
End-of-life of construction materials

Image from SteelConstruction.Info
Composite Floor System in Multi-Story Frames

- Conventional composite floor systems are cost-effective solutions for multi-story buildings.
- The integration of steel beams and concrete slab prevents separation and reuse of the components.

Figure 1: Deconstructable composite beam prototype

- **Precast concrete plank**
- **Steel beam**
- **Cast-in channels**
- **Tongue and groove side joint**
- **Clamps**
- **Bolts**

Figure 2: Precast concrete plank cross section

- **a) Plank perpendicular to the steel beam**
- **b) Plank parallel to the steel girder**

Table of Contents

| Introduction | DfD Floor System | Clamp Connector Behavior | Conclusions |
Design for Deconstruction: Prototype Structural System

Typical floor plan for DfD system

<table>
<thead>
<tr>
<th>Introduction</th>
<th>DfD Floor System</th>
<th>Clamp Connector Behavior</th>
<th>Conclusions</th>
</tr>
</thead>
</table>
Design for Deconstruction: Experimental Testing Program

- Pushout test: evaluate a wide range of parameters and formulate strength design equations
- Beam test: study the clamp connector behavior in a realistic manner
- Precast connector test: test the strength and ductility of the plank connectors under tensile and shear loading
- Diaphragm test: investigate the in-plane seismic behavior of the composite floor system
Pushout Tests: Experimental Test Setup

Elevation view

Plan view

Introduction | DfD Floor System | Clamp Connector Behavior | Conclusions
Limit States for Cast-in Channels

• Tensile loading

 Local flexure of channel lips
 Bolt failure
 Concrete cone failure

• Shear loading

 Local flexure of channel lips
 Bolt failure
 Concrete edge failure
Pushout Tests: Experimental Test Matrix

<table>
<thead>
<tr>
<th>Name</th>
<th>Number of channels</th>
<th>Rebar configuration</th>
<th>Loading</th>
<th>Pretension</th>
<th>Shim</th>
<th>Intended Failure modes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-RH-LM-PS-SN</td>
<td>✓</td>
<td>Light</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2-RL-LM-PS-SN</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2-RH-LM-PL-SN</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2-RH-LM-PS-SY</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2-RH-LC-PS-SN</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2-RH-LC-PS-SY</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3-RH-LM-PS-SN</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3-RH-LM-PS-SY</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Introduction

DfD Floor System

Clamp Connector Behavior

Conclusions
Pushout Tests: Computational Simulation

Loading process
- Pretension in the bolt is obtained by assigning thermal coefficient to the shank and decreasing the temperature.
- The steel beam is then loaded in the axial direction using displacement control.

Boundary conditions and load application

Interaction
- Frictional coefficient: 0.3, except for the contact between the plank and the concrete strong floor, which is frictionless
- Rebar: embedded in the concrete plank
Pushout Tests: Constitutive Relations

Material constitutive model

- Concrete damaged plasticity model
 - Failure mechanism: tensile cracking and compressive crushing
 - Capture stiffness recovery due to crack opening and closing under cyclic loading

- Steel beam, rebar and cast-in channels: elastic-perfectly-plastic material

- Bolts: A325 bolts (Grade 8.8 bolts)

[Graphs showing stress-strain curves for C30 concrete and bolt material]
Pushout Tests: Computational Simulation Results

-200
-100
0
100
200
300
400
500
600

-15 -10 -5 0 5 10 15

2-RH-LM-PS-SN
2-RL-LM-PS-SN
2-RH-LM-PL-SN
2-RH-LM-PS-SY
2-RH-LC-PS-SN
3-RH-LM-PS-SN

Bolt bearing
Concrete crushing
Bolt bearing
Slip
Bolt bearing

Load (kN)
Displacement (mm)
Pushout Tests: Limit States Observed in Computational Simulation

- Slip of clamp and shim
- Local yielding of channel lips
- Compressive damage in the concrete plank with three channels
- Bolt bearing against the channel

Table of Contents

| Introduction | DfD Floor System | Clamp Connector Behavior | Conclusions |
Conclusions

• A new deconstructable composite floor system, consisting of steel framing, precast concrete planks and clamping connectors, is presented.

• The clamping connector has a relatively high ultimate strength and behave ductile; therefore, they can be used as connectors in composite beams.

• Using shims for thin flange sections reduces the frictional strength slightly.

• As a result of damage accumulation in concrete, the strength of the connector reduces under cyclic loading. Three channel configuration fails by concrete crushing.
Acknowledgement

• National Science Foundation
• American Institute of Steel Construction
• Northeastern University
• STReSS Laboratory at Northeastern University
• Simpson Gumpertz and Heger, Inc.
Questions?