Supporting Information

Caterpillar-like Graphene Confining Sulfur by Restacking Effect for High Performance Lithium Sulfur Batteries

Guiyin Xu, †‡ Jiaren Yuan, ‡ Xiumei Geng, † Hui Dou, ‡ * Liao Chen, † Xiaohong Yan, § Hongli Zhu †,*

†Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA

‡Jiangsu Key Laboratory of Material and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

§College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
Figure S1. High-resolution scanning electron microscopy (HRSEM) image of graphene. The HRSEM image shows that the caterpillar-like graphene has a wrinkled structure.
Figure S2. Raman spectra of the graphene. In the Raman spectra of the graphene, two bands at ~1355 and ~1582 cm$^{-1}$ correspond to the D-band (D) and the G-band (G), respectively. The D-band corresponds to the disorder induced the carbon and structural defects. The G-band corresponding to the sp2 carbon-bonded graphitic structure can enhance the electrical conductivity of carbon materials.
Figure S3. High-resolution TEM images of graphene-sulfur. After encapsulating sulfur, the layer distance of graphene-sulfur is 0.42 nm, indicating that graphene expands after sulfur intercalation.
Figure S4. Thermal gravimetric (TG) curve of the graphene. The mass loss before 200 °C may result from the evaporation of water.
Figure S5. SEM images of the graphene-sulfur electrode (a) before cycling and (b) after 200 cycles at a high current density of 1675 mA g$^{-1}$. The small particles are Super C65. After cycling
at a high current density, the laminar structure of the graphene-sulfur is still remained, indicating the graphene-sulfur electrode has excellent mechanical stability.
Figure S6. Impedance plots of the graphene-sulfur electrode before cycling and after 200 cycles at a high current density of 1675 mA g\(^{-1}\). The Nyquist plots consist of a depressed semicircle at high frequency region and an oblique line at low frequency region. The diameter of the depressed semicircle represents the charge transfer resistance (\(R_{ct}\)). The charge transfer resistance of the cycled graphene-sulfur electrode is smaller than that of the fresh graphene-sulfur electrode, indicating that the relocation of sulfur species to the caterpillar-like graphene decreases the tendency of passivation layer formation on the electrode.