Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Materials

Aligned and Stable Metallic MoS₂ on Plasma Treated Mass Transfer

Channels for Hydrogen Evolution Reaction

Lei Yang,¹ Alolika Mukhopadhyay,¹ Yucong Jiao,¹ Jonathan Hamel,¹ Mourad Benamara,²

Yingjie Xing,¹ Hongli Zhu^{1,*}

¹Department of Mechanical and Industrial Engineering, Northeastern University, Boston,

Massachusetts 02115, United States

²Institute for Nanoscale Materials Science and Engineering, University of Arkansas, Fayetteville,

Arkansas 72701, United States

*: Corresponding author: Hongli Zhu. E-mail: <u>h.zhu@neu.edu</u>

Figure S1: SEM image of CW/1T MoS₂ for measurement of the thickness \sim 1000 µm.

Figure S2: HRTEM image of various regions of carbonized wood.

Figure S3: HRTEM image of various regions of $1T MoS_2$ nanosheets.

Figure S4: TGA curves of carbonized wood, 1T MoS₂ and CW/1T MoS₂ at a heating speed of 10° C/min in air. The weight percentage of 1T MoS₂ in the CW/1T MoS₂ was presumed to be x. Assuming the carbonized wood was completely removed after combustion, 0.7203x=0.0511, therefore x=7.1%.

Figure S5: High-resolution XPS spectra of the Mo element in pure 1T MoS₂.

We further add the SEM and Raman spectra of CW/1T MoS₂ after HER test, as shown in Fig. S6. Fig. S6(a) shown that the morphology of 1T MoS₂ in the CW/1T MoS₂ sample after HER test, which shows the similar morphology with 1T MoS₂ in the CW/1T MoS₂ sample before HER test. The Raman spectra for 1T MoS₂ in the CW/MoS₂ after HER test is shown in Fig. S6(b). From the existence of the characteristic peaks located at 145, 213, 283 and 321 cm⁻¹ in the 145, 213, and 321 cm⁻¹, we concluded that the metallic phase MoS₂ is stable during the HER test. The peaks at 1358 cm⁻¹ and 1586 cm⁻¹ are attributed to the D and G bands of carbonized wood, respectively.

Figure S6: SEM images of (a) CW/1T MoS₂ after HER test. (b) Raman spectra of CW/1T MoS₂ after HER test.

Figure S7: SEM images of (a) 2H MoS₂ after coating on glassy carbon, displaying the apparent aggregation of MoS₂ nanosheets. (b) 1T MoS₂ after coating on glassy carbon displaying nanoflower like morphology. SEM image of the unique arrangement of the 1T MoS₂ nanosheets perpendicular array on the (c) carbonized wood channel with a pit hole on the channel wall. (d) carbonized wood surface.

Figure S8: Cyclic voltammogram (CV) curves in the region of 0.1-0.2 V vs. RHE for (a) $2H MoS_2$

(b) 1T MoS₂ (c) CW/2H MoS₂ (d) CW/1T MoS₂.

Supplementary Video 1: Snapshot from the video of the HER test using the freestanding CW/1T MoS_2 as the working electrode, where the H_2 bubbles were easily released from the surface of the working electrode benefiting H_2 production.

Supplementary Video 2: Snapshot from the video of the HER test using $1T \text{ MoS}_2$ coated on the glassy carbon as the working electrode showing huge H₂ bubbles strongly adsorbed on the surface of the glassy carbon hindering the interaction between active sites and electrolyte.

Supplementary Video 3: Snapshot from the video of contact angle measurement showing the wettability of CW/1T MoS₂.

Supplementary Video 4: Snapshot from the video of contact angle measurement showing the wettability of the rotating disk electrode coated with 1T MoS₂.