Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.



## **Supporting Information**

for Adv. Energy Mater., DOI: 10.1002/aenm.201702779

Ion Transport Nanotube Assembled with Vertically Aligned Metallic MoS<sub>2</sub> for High Rate Lithium-Ion Batteries

Yucong Jiao, Alolika Mukhopadhyay, Yi Ma, Lei Yang, Ahmed M. Hafez, and Hongli Zhu\*

## **Supplementary material**

## Ion Transport Nanotube Assembled with Vertically Aligned Metallic MoS<sub>2</sub> for High Rate Lithium-Ion Batteries

Yucong Jiao,<sup>1</sup> Alolika Mukhopadhyay,<sup>1</sup> Lei Yang,<sup>1</sup> Ahmed M. Hafez,<sup>1</sup> and Hongli Zhu<sup>\*,1</sup>

<sup>1</sup>Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States.



Figure S1 SEM images of the nanotube structure. a) Long-ranged nanotube structure under

low magnification. b) Nanotube structure under high magnification.



Figure S2 TEM images of the nanotube structure. a)  $MoS_2$  nanotube under low magnification. b, c) Nanotube structure assembled with flower-like nanosheets. d) High magnification image of c).



Figure S3 EDX elemental mapping of metallic  $MoS_2$  nanotube. a) TEM image of  $MoS_2$  nanotubes with flower-like structure. b) EDX mapping of Mo element. c) EDX mapping of S element. d) EDX spectrum of metallic  $MoS_2$  nanotube. (C, O and Cu elements are coming from the Cu grid)



Figure S4 HRTEM image for the atom arrangement of metallic MoS<sub>2</sub>



Figure S5 SEM images of 2H  $MoS_2$  nanosheets (a, b), and TEM images of 2H  $MoS_2$  nanosheets (c, d).



**Figure S6** a) TEM image of the metallic  $MoS_2$  nanotube after cycle, which proves the structure was robust enough and could still keep their structure even after 200 cycles. b) Raman spectra before and after 350 cycles of metallic  $MoS_2$ . c, d) EIS of  $MoS_2$  before cycle and after 200 cycles. Agreeing with the EC performance, after 200 cycles, the resistance of the metallic  $MoS_2$  electrode was improved because of the materials' activation during cycling.

Table S1. Summary of lithium-ion battery performance of  $MoS_2$  materials under high current density.

| Reference | Electrodes                              | method                | Battery Performance           |                           |
|-----------|-----------------------------------------|-----------------------|-------------------------------|---------------------------|
|           |                                         |                       | Current density               | Specific capacity         |
| [2]       | 2H MoS <sub>2</sub> /graphene           | L-cysteine-assisted   | 1 A g <sup>-1</sup>           | 900 mA h g <sup>-1</sup>  |
|           |                                         | hydrothermal          |                               |                           |
| [3]       | 2H MoS <sub>2</sub> nanoplates          | Hydrothermal route    | 1.06 A g <sup>-1</sup>        | 900 mA h g <sup>-1</sup>  |
| [4]       | $2H MoS_2/graphene$                     | L-cysteine-assisted   | 1 A g <sup>-1</sup>           | 800 mA h g <sup>-1</sup>  |
|           |                                         | hydrothermal          |                               |                           |
| [7]       | $2H MoS_2$ nanosperes                   | PVP-assisted          | 0.5 A g <sup>-1</sup>         | 1000 mA h g <sup>-1</sup> |
|           |                                         | hydrothermal          |                               |                           |
| [9]       | metallic MoS <sub>2</sub> /carbon fiber | Hydrothermal route    | 1 A g <sup>-1</sup>           | 750 mA h g <sup>-1</sup>  |
| [10]      | 2H MoS <sub>2</sub> /carbon nanofiber   | Hydrothermal route    | $1 \text{ A g}^{-1}$          | 688 mA h $g^{-1}$         |
| [11]      | 2H MoS <sub>2</sub> /graphene           | Acid-assisted         | $1 \text{ A g}^{-1}$          | 900 mA h g <sup>-1</sup>  |
|           |                                         | hydrothermal          |                               |                           |
| [12]      | 2H MoS <sub>2</sub> /carbon nanotube    | Hydrothermal route    | $5 \mathrm{A  g^{-1}}$        | 800 mA h $g^{-1}$         |
| [17]      | metallic MoS <sub>2</sub> /graphene     | Solvothermal route    | $3.5 \text{ Ag}^{-1}$         | 666 mA h $g^{-1}$         |
| [22]      | metallic @2H MoS <sub>2</sub> /carbon   | Solvothermal route    | 2 A g <sup>-1</sup>           | 510 mA h g <sup>-1</sup>  |
|           | cloth                                   |                       |                               |                           |
| [23]      | 2H MoS <sub>2</sub> /graphene           | Lithium intercalation | $1 \mathrm{A}\mathrm{g}^{-1}$ | $400 \text{ mA h g}^{-1}$ |
| [25]      | 2H MoS <sub>2</sub> /carbon nanotube    | Sonicate exfoliation  | $20 \text{ Ag}^{-1}$          | 580 mA h $g^{-1}$         |
| [30]      | 2H MoS <sub>2</sub> /graphene foam      | Hydrothermal reaction | $5 \text{ A g}^{-1}$          | $800 \text{ mA h g}^{-1}$ |
| [31]      | 2H MoS <sub>2</sub> /carbon nanosheet   | Heat-treatment        | $2 \text{ A g}^{-1}$          | 709 mA h $g^{-1}$         |
| [32]      | 2H MoS <sub>2</sub> /mesoporous carbon  | Hydrothermal route    | $10 \text{ Ag}^{-1}$          | $400 \text{ mA h g}^{-1}$ |
| [33]      | 2H MoS <sub>2</sub> /graphene nanosheet | Heat-induced process  | $20 \text{ Ag}^{-1}$          | $344 \text{ mA h g}^{-1}$ |
| [34]      | 2H MoS <sub>2</sub> / mesoporous carbon | Acid-assisted         | 6.4 A g <sup>-1</sup>         | 943 mA h g <sup>-1</sup>  |
|           |                                         | hydrothermal          |                               |                           |
| [35]      | 2H MoS <sub>2</sub> @graphene           | Chemical vapor        | $5 \text{ A g}^{-1}$          | 900 mA h $g^{-1}$         |
|           |                                         | deposition            |                               |                           |
| [36]      | 2H MoS <sub>2</sub> @graphene           | Hydrothermal route    | 2.5 A g <sup>-1</sup>         | $678 \text{ mA h g}^{-1}$ |
| [37]      | 2H MoS <sub>2</sub> @carbon             | PANI assisted         | 1 A g <sup>-1</sup>           | $320 \text{ mA h g}^{-1}$ |
|           |                                         | hydrothermal          |                               |                           |