

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.202105505

Amphipathic Binder Integrating Ultrathin and Highly Ion-Conductive Sulfide Membrane for Cell-Level High-Energy-Density All-Solid-State Batteries

Daxian Cao, Qiang Li, Xiao Sun, Ying Wang, Xianhui Zhao, Ercan Cakmak, Wentao Liang, Alexander Anderson, Soydan Ozcan, and Hongli Zhu*

Supporting information

Amphipathic Binder Integrating Ultrathin and Highly Ion-conductive Membrane for Cell-level High Energy Density All-solid-state Batteries

Daxian Cao¹, Qiang Li¹, Xiao Sun¹, Ying Wang¹, Xianhui Zhao², Ercan Cakmak³, Alexander Anderson¹, Soydan Ozcan², Hongli Zhu^{1, *}

¹Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA

²Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United

States

³Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN,

37831, United States

*Corresponding author. h.zhu@neu.edu;

This PDF file includes:

Figs. S1 to S14 Tables S2 to S5 References (S1 to S23)

Fig. S1. Membrane fabrication using flax as building blocks. Photos of (a) raw flax, (b) the dispersion of flax in toluene after mechanical stirring, and (c) membranes composing of flax and Li_6PS_5Cl . After the mechanical stirring, the length of flax fiber reduced a lot. Thus, flax can disperse in toluene. However, the obtained membrane broke a little while peeling off the filler paper, suggesting poor mechanical strength.

Fig. S2. Membrane fabrication using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulose nanofiber grafted with Polyethylene glycol (CNF-PEG) as building blocks. Photos of (a) CNF-PEG, (b) the dispersion of CNF-PEG in toluene after mechanical stirring, and (c) the dispersion of CNF-PEG in toluene after standing for 1 min, (d) membranes composing of CNF-PEG and Li₆PS₅Cl. To obtain a uniform dispersion of CNF in toluene, we grafted PEG on the CNF through an as-reported ion-exchange treatment. The CNF-PEG uniformly dispersed in toluene after mechanically stirring for 2 h, but precipitated after standing for 1 min. After filtration, the membrane broke into several pieces, suggesting poor mechanical strength.

Fig. S3. Photos of the dispersion of (A) cellulose and (B) ethyl cellulose in toluene to compare the solubility.

Fig. S5. Photo of SE membrane after punch to show the robustness.

Fig. S6. Tensile stress-strain curve of the thin SE membrane. The inset photos show the sample before and after the tensile test.

Fig. S8. Nyquist plots of thick SE pellet in (A) overall and (B) high frequencies range in ionic conductivity measurement at various temperature.

Fig. S9. Nyquist plots of thin SE membrane in (A) overall and (B) high frequencies range in ionic conductivity measurement at various temperatures.

Fig. S10. Photo of the dispersion of Li₆PS₅Cl and regular cellulose in toluene after standing for one min.

Fig. S11. (A) Photo of the as-prepared SE membrane composed with Li₆PS₅Cl and regular cellulose. (B) Photo of the as-punched membrane after cold press.

Fig. S12. Nyquist plots of SE membrane composed with 10 wt.% of regular cellulose in (A) overall and (B) high frequencies range in ionic conductivity measurement at 30 °C.

Fig.14. Critical current density investigation of SE with Li metal in a symmetric cell.

		Thir	n SE membrane	e	Thick SE pellet					
Temperature (℃)	Re (Ω)	Areal resistance $(\Omega \text{ cm}^2)$	Ion conductance (mS)	Ionic conductivity (mS cm ⁻¹)	Re (Ω)	Areal resistance $(\Omega \text{ cm}^2)$	Ion conductance (mS)	Ionic conductivity (S cm ⁻¹)		
30	3.43	4.32	291.55	1.65	60.17	75.81	16.62	1.67		
40	2.73	3.44	366.30	2.08	36.57	46.08	27.34	2.75		
60	1.67 2.10 598.80		3.40	16.17	20.37	61.84	6.23			
80	1.01	1.27	990.10	5.62	7.57	9.54	132.10	13.31		
100	0.63	0.79	1587.30	9.01	3.67	4.62	272.48	27.44		

Table S2. Ion conduction comparison between thin SE and thick SE at various temperatures.

Table S3 Performance comparison with other reported thin SE membranes.

* Estimated values.

Ref.	Sulfide	Binder or template	Mass loading (mg cm ⁻²)	Layer thickness (µm)	Ionic conductivity (mS cm ⁻¹)	Ion conductance (mS)	Areal (cm ⁻²)	Areal resistance $(\Omega \text{ cm}^2)$
This work	Li6PS5Cl	Ethyl cellulose	7.9	47	1.65	291	1.27	4.32
1	Li ₃ PS ₄	Nonwoven	5.7	70	0.2	37	1.32	35.85
2	Li ₃ PS ₄	Nonwoven	5.7	70	0.2	37	1.32	35.85
3	Li ₃ PS ₄	Kevlar	17.68	100 0.3		24 0.785		33.33
4	Li ₆ PS ₅ Cl _{0.5} Br _{0.5}	Polyimide	9.5	70	0.2	29	1.03	35.52
5	Li3PS4- Polyethylene sulfide	Kevlar	9.95	60	0.02	4.4	1.32*	300*
6	75Li2S:25P2S5	Poly(propylene carbonate)	13.92	59	0.52	14.4*	0.785	54.31*
7	Li6PS5Cl	PEO-SiO2	11.46	65	0.283 (40 °C)	34.2	0.785	22.97
8	77.5Li2S- 22.5P2S5	Methyl-imine	7.54	63.7	0.092	19.2	1.32665	69.24

	Gravim	etric energy density (Wh	kg ⁻¹)	Volumetric energy density (Wh L ⁻¹)				
Ref	E_1	E_2	E ₃	E ₁	E_2	E ₃		
	Cathode+SE	Cathode+SE+Anode	Calculated	Cathode+SE	Cathode+SE+Anode	Calculated		
This work	325.49	325.49 175.26		861.07	669.72	795.30		
9	21.18	11.20	24.85	37.43	30.83	41.76		
10	21.37	11.30	25.07 37.76		31.10	42.14		
11	24.05	12.72	28.22	42.51	35.01	47.43		
12	20.11	14.62	23.59	35.43	32.55	41.03		
13	20.98	15.26	24.61	36.97	33.97	42.81		
14	26.13	15.96	30.36	46.77	40.46	53.06		
15	26.63	16.26	30.94	47.66	41.23	54.07		
16	25.25	16.53	29.45 44.76		39.74	51.21		
17	33.75	17.85	39.59	60.19	49.49	67.12		
18	30.55	18.32	35.95	54.15	46.63	61.34		
19	2.86	1.90	3.33	4.89	4.12	5.56		
20	34.62	21.55	40.62	61.94	53.91	70.52		
21	38.12	25.24	44.28	68.74	57.44	77.95		
22	35.58	30.11	41.74	63.40	59.42	70.71		
23	6.75	3.82	7.81	11.61	9.84	13.09		

Table S4 Energy density comparison.

Energy densities evaluation

The energy densities were calculated, excluding the current collector and packing materials, because these materials can be further optimized. The E_1 was calculated based on the mass/volume of the cathode and SE. The E_2 was calculated based on the mass/volume of the cathode, SE, and anode. Finally, the E_3 was calculated based on the mass/volume of the cathode, SE, and Li metal anode.

$$E_1$$

 $\begin{array}{l} E_{1} \\ Gravimetric energy density \\ E_{G} = \displaystyle \frac{Mass_{CAM}*Specific \ capacity*Voltage}{Mass_{Cathode}+Mass_{SE}} \\ Volumetric energy density \\ E_{V} = \displaystyle \frac{Mass_{CAM}*Specific \ capacity*Voltage}{Volume_{Cathode}+Volume_{SE}} \\ E_{2} \\ Gravimetric energy \ density \\ E_{G} = \displaystyle \frac{Mass_{CAM}*Specific \ capacity*Voltage}{Mass_{Cathode}+Mass_{SE}+Mass_{Anode}} \\ Volumetric \ energy \ density \\ E_{V} = \displaystyle \frac{Mass_{CAM}*Specific \ capacity*Voltage}{Volume_{Cathode}+Volume_{SE}+Volume_{Anode}} \\ E_{3} \\ Gravimetric \ energy \ density \\ E_{G} = \displaystyle \frac{Mass_{CAM}*Specific \ capacity*Voltage}{Mass_{Cathode}+Mass_{SE}+Mass_{Li}\ metal} \\ Volumetric \ energy \ density \\ E_{V} = \displaystyle \frac{Mass_{CAM}*Specific \ capacity*Voltage}{Mass_{Cathode}+Mass_{SE}+Mass_{Li}\ metal} \\ Volumetric \ energy \ density \\ E_{V} = \displaystyle \frac{Mass_{CAM}*Specific \ capacity*Voltage}{Volume_{Cathode}+Volume_{SE}+Volume_{Li}\ metal} \\ \end{array}$

Ref	f SE layer		Cathode		Anode					Li metal anode			
	Mass (mg)	Thickness (um)	Mass of cathode (mg)	Ratio of CAM (%)	Thickness (um)	Mass of anode (mg)	Thickness (um)	Area (cm ²)	Capacity (mAh g ⁻ ¹)	Voltage (V)	Mass (mg)	Voltage (V)	Thickness (um)
This work	10.00	50.00	25.00	80.00	55.00	30.00	30.00	1.26	178.00	3.20	2.00	3.80	30.00
9	140.00	411.76	25.00	39.00	55.03	146.90	100.00	2.00	112.00	3.20	2.00	3.80	30.00
10	140.00	411.76	25.00	39.00	55.03	146.90	100.00	2.00	113.00	3.20	2.00	3.80	30.00
11	140.00	411.76	25.00	39.00	55.03	146.90	100.00	2.00	127.20	3.20	2.00	3.80	30.00
12	150.00	1124.02	12.70	70.00	52.19	61.00	104.00	0.79	115.00	3.20	2.00	3.80	30.00
13	150.00	1124.02	12.70	70.00	52.19	61.00	104.00	0.79	120.00	3.20	2.00	3.80	30.00
14	80.00	599.48	10.00	70.00	41.10	57.40	100.00	0.79 *	105.00	3.20	2.00	3.80	30.00
15	80.00	599.48	10.00	70.00	41.10	57.40	100.00	0.79	107.00	3.20	2.00	3.80	30.00
16	100.00	749.34	10.00	70.00	41.10	58.00 *	100.00^{*}	0.79	124.00	3.20	2.00	3.80	30.00
17	150.00	441.18	15.00	80.00	21.35	146.90	100.00	2.00	145.00	3.20	2.00	3.80	30.00
18	200.00	588.24	20.00	70.00	32.26	146.90	100.00	2.00	150.00	3.20	2.00	3.80	30.00
19	80.00	599.48	10.00	6.60	71.74	45.90	125.00	0.79	122.00	3.20	2.00	3.80	30.00
20	150.00	668.45	15.00	85.00	30.19	100.00	104.00	1.32	140.00	3.20	2.00	3.80	30.00
21	80.00	599.48	10.00	80.00	36.26	45.90	125.00	0.79	134.00	3.20	2.00	3.80	30.00
22	150.00	441.18	15.00	78.40	21.80	30.00	31.00	2.00	156.00	3.20	2.00	3.80	30.00
23	55.00	412.14	20.00	7.00	143.10	57.40	100.00	0.79	113.00	3.20	2.00	3.80	30.00

Table S5 Parameters for energy density evaluation.

* Estimated values.

References

- 1. Y. J. Nam, S.-J. Cho, D. Y. Oh, J.-M. Lim, S. Y. Kim, J. H. Song, Y.-G. Lee, S.-Y. Lee and Y. S. Jung, *Nano Lett.*, 2015, **15**, 3317-3323.
- 2. D. Y. Oh, D. H. Kim, S. H. Jung, J.-G. Han, N.-S. Choi and Y. S. Jung, *J. Mater. Chem. A*, 2017, **5**, 20771-20779.
- 3. R. Xu, J. Yue, S. Liu, J. Tu, F. Han, P. Liu and C. Wang, *ACS Energy Lett.*, 2019, **4**, 1073-1079.
- 4. D. H. Kim, Y.-H. Lee, Y. B. Song, H. Kwak, S.-Y. Lee and Y. S. Jung, *ACS Energy Lett.*, 2020, **5**, 718-727.
- 5. Y. Li, X. Wang, H. Zhou, X. Xing, A. Banerjee, J. Holoubek, H. Liu, Y. S. Meng and P. Liu, *ACS Energy Lett.*, 2020, **5**, 955-961.
- 6. M. Yamamoto, Y. Terauchi, A. Sakuda and M. Takahashi, *Sci. Rep.*, 2018, **8**, 1212.
- 7. S. Luo, Z. Wang, A. Fan, X. Liu, H. Wang, W. Ma, L. Zhu and X. Zhang, *J. Power Sources*, 2021, **485**, 229325.
- 8. J. M. Whiteley, P. Taynton, W. Zhang and S.-H. Lee, *Adv. Mater.*, 2015, 27, 6922-6927.
- 9. S. Choi, J. Kim, M. Eom, X. Meng and D. Shin, J. Power Sources, 2015, 299, 70-75.
- 10. J. Kim, M. Eom, S. Noh and D. Shin, J. Power Sources, 2013, 244, 476-481.
- 11. S. Noh, J. Kim, M. Eom and D. Shin, Ceram. Int., 2013, 39, 8453-8458.
- 12. N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada and T. Sasaki, *Adv. Mater.*, 2006, **18**, 2226-2229.
- 13. N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada and T. Sasaki, *Electrochem. Commun.*, 2007, **9**, 1486-1490.
- 14. H. Kitaura, A. Hayashi, T. Ohtomo, S. Hama and M. Tatsumisago, *J. Mater. Chem.*, 2011, **21**, 118-124.
- 15. S. Teragawa, K. Aso, K. Tadanaga, A. Hayashi and M. Tatsumisago, *J. Power Sources*, 2014, **248**, 939-942.
- 16. W. J. Li, M. Hirayama, K. Suzuki and R. Kanno, *Solid State Ionics*, 2016, 285, 136-142.
- 17. S. Noh, W. T. Nichols, C. Park and D. Shin, Ceram. Int., 2017, 43, 15952-15958.
- 18. S. Noh, W. T. Nichols, M. Cho and D. Shin, J. Electroceram., 2018, 40, 293-299.
- 19. W. Zhang, T. Leichtweiß, S. P. Culver, R. Koerver, D. Das, D. A. Weber, W. G. Zeier and J. Janek, *ACS Appl. Mater. Inter.*, 2017, **9**, 35888-35896.
- 20. Y. E. Choi, K. H. Park, D. H. Kim, D. Y. Oh, H. R. Kwak, Y.-G. Lee and Y. S. Jung, *ChemSusChem*, 2017, **10**, 2605-2611.
- 21. W. Zhang, D. A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schröder, R. Koerver, T. Leichtweiss, P. Hartmann, W. G. Zeier and J. Janek, *ACS Appl. Mater. Inter.*, 2017, **9**, 17835-17845.
- 22. M. Eom, S. Choi, S. Son, L. Choi, C. Park and D. Shin, *J. Power Sources*, 2016, **331**, 26-31.
- 23. H. Takahara, T. Takeuchi, M. Tabuchi, H. Kageyama, Y. Kobayashi, Y. Kurisu, S. Kondo and R. Kanno, *J. Electrochem. Soc.*, 2004, **151**, A1539.