Old Colony Bikeway

2009

Joe Conroy

Ryan Hipp

Erin Pacileo

Pat Ruby

Table of Contents

1.0 Background 6
1.1 Introduction 6
1.1.1 Purpose of Project and Objectives 7
1.2 Proposed Route \& Study Area 7
1.3 Report Organization 10
1.4 History 10
1.5 Need for Bike Route 10
2.0 Existing Conditions. 11
2.1 Introduction 11
2.2 Data Collection 12
2.2.1 Crash Data 12
2.2.2 Turning Movement Counts 14
2.3 Analysis of Existing Conditions 17
2.4 Southampton St. 18
2.4.1 Overview of Section 18
2.5 Preble Street 22
2.5.1 Overview of Section 22
2.6 Old Colony Avenue 24
2.6.1 Overview of Section 24
2.7 Morrissey Boulevard 26
2.7.1 Overview of Section 26
3.0 Future Conditions: Alternatives Considered 28
3.1 Introduction to the Designs 28
3.2 Design Alternatives Considered 28
3.2.1 Southampton Street (Melnea Cass Boulevard to Allstate Road) 28
3.2.2 Southampton St (Allstate Road to Dorchester Avenue) 30
3.2.3 Preble Street 31
3.2.4 Old Colony Avenue 33
3.2.5 Morrissey Boulevard 36
4.0 Future Conditions: Design Elements 38
4.1 Introduction 38
4.2 Cycle Track, Cycle Track Pavement Markings \& Separation 38
4.2.1 Cycle Tracks 38
4.2.2 Pedestrian and Cyclist Separation 39
4.3 Bus Stops 40
4.4 Catch Basins, Fire Hydrants \& Trees 42
4.5 Intersection Approaches 42
4.6 Signage 42
4.6.1 Destination Signage 42
4.6.2 Beginning/End of Path 43
4.8 Cycle Track Buffer Area 43
4.9 Crossings 44
5.0 Future Conditions: No Build 2014 46
5.1 Introduction to Future Conditions 46
5.2 Growth Analysis and Level-of-Service 46
6.0 Future Conditions: Selected Design 47
6.1 Introduction to the Selected Design 47
6.2 Southampton Street (Melnea Cass Boulevard to Allstate Road) 47
6.2.1 Overview of Selected Design. 47
6.2.2 Massachusetts Avenue Intersection Improvements 47
6.2.3 Roadway Improvements 49
6.3 Southampton Street (Allstate Road to Dorchester Avenue) 52
6.3.1 Allstate Road Intersection Improvements. 52
6.3.2 Roadway Improvements 53
6.4 Preble Street 53
6.4.1 Overview of Selected Design. 53
6.4.2 Roadway Improvements 54
6.4.3 Preble Circle Improvements 55
6.5 Old Colony Avenue 60
6.5.1 Overview of Selected Design 60
6.5.2 Roadway Improvements 60
6.6 Morrissey Boulevard. 62
6.6.1 Overview of Selected Design. 62
6.6.2 Roadway Improvements (Southbound Side) 62
6.6.3 Shaw's Driveway Improvements 64
6.6.4 Roadway Improvements (Northbound Side) 66
6.6.5 UMASS Boston Intersection Improvements 68
7.0 Cost Estimate 70
8.0 Acknowledgments. 72
8.1 References 72

List of Figures

Figure 1.1-A: Aerial View of the Area 6
Figure 1.2-A: Proposed Bicycle Route 9
Figure 2.1-A: Analyzed Intersections along Proposed Route. 12
Figure 2.2-A: 2009 Traffic Volume Counts 16
Figure 2.4-A: Southampton Street Existing One Way Cross-Section 19
Figure 2.4-B: Example of South Side Intersection Bicycle Crossing 19
Figure 2.4-C: Inadequate Storage Space for Left Turning Vehicles at the Intersection of Massachusetts Avenue/Melnea Cass Boulevard and Southampton Street 20
Figure 2.4-D: Southampton Street Existing Cross Section 20
Figure 2.4-E: Inadequate Loading Bay on South Side of Southampton Street 21
Figure 2.4-F: Southampton Street Existing Cross - Section Crossing I-93 21
Figure 2.4-G: Southampton Street St Approach to Dorchester Avenue Intersection 22
Figure 2.5-A: Preble Street Existing Cross Section 23
Figure 2.5-B: Example of Rotary Approach at Preble Street and Old Colony Avenue 23
Figure 2.5-C: Aerial View of Existing Preble Circle 24
Figure 2.6-A: Old Colony Avenue - Existing Cross Section 24
Figure 2.6-B: Columbia Road/Mt. Vernon Street at Kosciuszko Circle Bypass 25
Figure 2.7-A: Morrissey Boulevard Existing Cross Section 26
Figure 2.7-B: Two-Way North Section of Morrissey Boulevard 27
Figure 3.2-A: Southampton Street Alternative A Cross Section 28
Figure 3.2-B: Southampton Street Alternative B Cross Section. 29
Figure 3.2-C: Southampton Street (Narrow Section) Alternative A Cross Section 30
Figure 3.2-D: Preble Street Alternative A Cross Section 31
Figure 3.2-E: Preble Street Alternative B Cross Section 32
Figure 3.2-F: Preble Street Alternative C Cross Section 32
Figure 3.2-G: Old Colony Avenue Alternative A. 1 Cross Section 34
Figure 3.2-H: Old Colony Avenue Alternative A. 2 Cross Section. 34
Figure 3.2-I: Old Colony Avenue Alternative B Cross Section 34
Figure 3.2-J: Old Colony Avenue Alternative C. 1 Cross Section with Extended Sidewalk 35
Figure 3.2-K: Old Colony Avenue Alternative C. 2 Cross Section with Separated Cycle Track 36
Figure 3.2-L: Morrissey Boulevard Alternative A Cross Section 37
Figure 4.2-A: Typical Cycle Track Configuration 39
Figure 4.2-B: Typical Bicycle Legends to be Used on Cycle Track at Intersections 40
Figure 4.3-A: Typical Cycle Track Configuration at Bus Stop Locations 41
Figure 4.8-A: Typical Buffer Area at Grade with Roadway 44
Figure 4.9-A: Typical Pedestrian Crosswalk 44
Figure 4.9-B: Typical Cycle Track Crossing 45
Figure 6.2-A: Proposed Massachusetts Ave. and Melnea Cass Boulevard Intersection Improvements 48
Figure 6.2-B: Southampton Street Selected Design Cross Section for One-Way 50
Figure 6.2-C: Southampton Street Selected Design 3-Lane 2-Way Cross Section 50
Figure 6.2-D: Critical Volume Analysis for Westbound traffic along Southampton Streetbetween South Bay Center and Melnea Cass Boulevard51
Figure 6.3-A: Southampton Street Selected Design Cross Section at Railroad Crossing 53
Figure 6.4-A: Preble Street Selected Design Cross Section Looking East 54
Figure 6.4-B: Aerial View of Proposed Roundabout Improvements at Preble Circle. 56
Figure 6.4-C: Proposed Roundabout Improvements at Preble Street and Old Colony Avenue 58
Figure 6.5-A: Old Colony Avenue Selected Design Cross Section Looking South Wide Section 60
Figure 6.5-B: Critical Volume Analysis for Old Colony Avenue Proposed Modifications 61
Figure 6.5-C: Old Colony Avenue Selected Design Cross Section at Roadway Split 62
Figure 6.6-A: Cross-Section at Two-Way Morrissey Boulevard 63
Figure 6.6-B: Critical Volume Analysis for Morrissey Boulevard Southbound 64
Figure 6.6-C: Proposed Shaw's/Morrissey Boulevard Intersection Improvements 65
Figure 6.6-D: Critical Volume Analysis for Western Entrance Ramp to Morrissey Boulevard near Shaw's Supermarkets 65
Figure 6.6-E: Morrissey Boulevard Cross- Section 67
Figure 6.6-F: Proposed UMass Boston Intersection Improvements 68
List of Tables
Table 2.2-A: Intersection Crash Summary Table 13
Table 2.3-A: HCM LOS and Respective Delay.... 17
Table 2.3-B: Capacity Analysis Summary - Existing Conditions 18
Table 5.2-A: Capacity Analysis Summary - No Build - 2014 46
Table 6.2-A: Massachusetts Avenue Intersection Capacity Analysis Summary 49
Table 6.3-A: Southampton Street at South Bay Center Capacity Analysis Summary 52
Table 6.4-A: Intersection of Preble Street and Old Colony Avenue Capacity Analysis Summary 59
Table 6.6-A: Synchro Capacity Analysis Summary at Shaw's and Morrissey Boulevard Intersection 66
Table 6.6-B: Synchro Analysis Capacity Summary 69
Table 6.6-A: Selected Design Cost Estimate Break Down 71

Executive Summary

The LEAD group has completed an analysis of a proposed bicycle corridor that will provide a much needed connection between existing bicycle facilities within the City of Boston. The proposed route extends from the intersection of the University of Massachusetts (UMASS) Boston entrance and Morrissey Boulevard, continuing through the heart of Dorchester, and terminating at the intersection of Melnea Cass Boulevard and Southampton Street. Connections to existing bicycle facilities include the Neponset River Trail to the south, the Harbor Walk to the east and the South Bay Harbor Trail to the north.

Streets that will be included as part of the accommodation of bicycle facilities include: Morrissey Boulevard, Mount Vernon Street, Old Colony Avenue, Preble Street, and Southampton Street.

An inventory of existing conditions was taken throughout the corridor and subsequent traffic analysis was performed at major intersections. Intersections were analyzed based on whether there were higher than average crash rates and/or modifications were necessary to implement bicycle facilities. All intersections that had approach and/or signal timing improvements maintained or improved the intersection level-of-service (LOS).

Throughout the corridor, the selected design will implement the use of a separated bike facility (cycle track) to be incorporated with several intersection improvements. One particularly unique improvement being proposed at an intersection incorporates a modern roundabout at the existing rotary at the intersection of Old Colony Avenue and Preble Street. The proposed design drastically decreases the footprint of the intersection and creates all around safer traffic movements for roundabout approaches. These bicycle and pedestrian facilities encircle the roundabout to create shorter and safer crossings. This redesign also allows for the reclamation of approximately 9,000 square feet of accessible green space for groundwater infiltration and recharge.

The analysis allowed for the incorporation of bike facilities that have easy and safe connection throughout the corridor. The majority of the route incorporates a two-way cycle track with a minimum three foot buffer area that allows for separation between cyclists and vehicular traffic. The cycle track alternates between being raised above the road grade (i.e., at the same grade as the existing sidewalk) and at the same grade at the roadway. The buffer area incorporates the use of bollards and angled pavement markings to enforce the separation between cyclists and vehicles.

The proposed route was selected based on creating a bicycle facility that minimizes crossings while creating enough separation from vehicular and pedestrian traffic to appeal to bicycle users of all levels.

1.0 Background

1.1 Introduction

There has been a tremendous shift in the philosophy of local and state government when it comes to bicycles in the City of Boston. Previously, incorporating bicycle facilities into the overall designs of roadways was hardly considered a priority when it came to space and monetary considerations. But today, Boston is poised to be at the forefront of this philosophical shift with the incorporation of many bicycle facilities and corridors allowing for increased accessibility throughout the City. As the City increases its bicycling network, there is a critical connection which needs to be made in the Dorchester area. (Figure 1.1-A)

The creation of a bicycle corridor from the intersection of Massachusetts Avenue and Melnea Cass Boulevard to the University of Massachusetts (UMASS) Boston entrance will provide an attractive connection for all types of cyclists. These include connections to the South Bay Harbor Trail in the west and the Harbor Walk in the east. There is also a planned Harbor Walk extension which will incorporate a connection to the south with the Neponset River Greenway. There is also a hope that residents south of Boston will forgo their cars and use this new comfortable separated facility. While the main objective of this report is to address the main connection between UMASS Boston and Massachusetts Avenue and Melnea Cass Boulevard, it will also allow for numerous other bicycle facility connections throughout its route that will allow for future bicycle network expansions and also tie into several existing facilities.

Figure 1.1-A: Aerial View of the Area

1.1.1 Purpose of Project and Objectives

In an effort to create a critical connection between cyclists on the South Bay Harbor Trail and those on the Harbor Walk, a design has been created to integrate these facilities into a corridor from Massachusetts Avenue and Melnea Cass to UMASS Boston. The objectives of the project include the following:

* Creation of a critical link between existing bicycle facilities
* Design of a bicycle corridor to facilitate rapid and easy transportation between both ends as well as destinations within the corridor
* Design of a safe, separated and comfortable facility, for use by bicyclists of all abilities
* Significant modifications to the UMASS Boston and Morrissey Boulevard intersection to incorporate bicycle facilities and better manage traffic within the existing right of way
* Incorporation of facilities for connections to South Boston and other points of interest (e.g. UMASS Boston, MBTA Stations, South Bay Center), from proposed bicycle corridor
* Significant improvements to the traffic circle at the intersection of Preble Street, Columbia Road, and Old Colony Avenue to better manage traffic flow, incorporate anticipated bicycle traffic and increase safety.

1.2 Proposed Route \& Study Area

The proposed route was identified as a critical link to complete the cycling network in the City of Boston. The proposed route is approximately 2.3 miles long. For 1.1 miles it is orientated in the East/West direction and the North/South for 1.2 miles, as listed below (Figure 1.2-A):
o Southampton Street (East/West)
o Preble Street (East/West)
o Old Colony Avenue (North/South)
o Mt. Vernon Street (North/South)
o Morrissey Boulevard (North/South)
In selecting a route to accommodate cyclists, the limiting factor was the crossing of Interstate 93 (I-93). Of the available crossings, Preble Street/Southampton Street gave the most acceptable alternative, with its expansive right of way and lower traffic volumes. Other considered crossings included Columbia Rd and residential roads west of

Moakley Park. These connections were unacceptable due to high traffic volumes and the use of a rotary, in the case of Columbia Road, and an indirect route in the case of the residential streets. Based on this selection the rest of the proposed route was chosen to create the most direct corridor for cyclists.

Using the proposed route, the study area was identified to include all roadways and intersections along this corridor bounded by Massachusetts Avenue and Melnea Cass Boulevard in the northwest, Old Colony Avenue and Preble Street in the northeast and UMASS Boston and Morrissey Boulevard in the south. Along this route there are many significant intersections defined by being a signalized intersection or a decision point for cyclists using the facility. Major intersections include the following:
o Southampton Street at Massachusetts Avenue
0 Southampton Street at Allstate Road (South Bay Center)
o Dorchester Avenue at Preble Street/Southampton Street
o Preble Street at Old Colony Avenue
o Old Colony Avenue at Columbia Road
o Morrissey Boulevard at Mt. Vernon Street
o Morrissey Boulevard at UMASS Boston

1.3 Report Organization

The report begins by providing some historical context to the project area. Thereafter, the report is broken up into sections by significant links of the proposed route. These significant links were chosen because each link contains similar characteristics such as roadway width and function type. These links include the following from the west to east and north to south:

- Southampton Street
- Preble Street
- Old Colony Avenue
- Morrissey Boulevard

Each section describing the major links discusses existing conditions as well as proposed modifications. The existing conditions section of the report has a broad overview of the proposed corridor. This is followed by a section detailing design elements that are common throughout the corridor. Design alternatives, which were not chosen as part of the final design, are also mentioned. Following this is a detailed description which includes proposed modifications to the existing roadways to create the bicycle corridor. The report concludes with a closing and acknowledgement sections.

1.4 History

Southampton Street was originally laid out in 1877 by the City of Boston under the name of Swett Street. The name was changed in 1901 to Southampton Street and is currently maintained by the City of Boston. The right of way has remained the same. Preble Street was laid out in 1879 by the City of Boston and is still maintained by Boston. It was built to create a connection between the City of Boston Back Bay and Dorchester via Old Colony Ave. Old Colony Ave was originally built as a City of Boston Street but was then transferred to the Metropolitan District Commission (MDC) which has since become the Department of Conservation and Recreation (DCR) in 1956. It was built to create an entrance for residents of Dorchester into the City of Boston. Morrissey Boulevard was constructed in the 1950 's and has had some capacity improvements by way of adding lanes. It was scheduled to have a complete reconstruction in the 1990's which has yet to take place.

1.5 Need for Bike Route

The need for a separated bike route through this area is to provide a safe corridor for all of cyclists. A few historic connections for both tourist and permanent residents along to this route include Moakley Park, Castle Island, Bay Side Expo Center, University of Massachusetts Boston, Boston Medical Center, South Bay Center, and the City of Boston tow lot. This path also provides a necessary connection in the Boston bike path network. These connections include the Neponset River Greenway to the south and the South Bay Harbor trail to the west.

2.0 Existing Conditions

2.1 Introduction

In order to create a design for the proposed bikeway, an accurate analysis of the existing conditions was conducted. To do this, necessary traffic and field data had to be collected. These data were then analyzed at intersections along the proposed corridor. These key locations were defined by locations where roadway geometries were proposed to be changed (e.g. lane elimination). Such data includes crash data, turning movement counts, signal timings and field observations. These locations include (Figure 2.1-A):

- Southampton at Massachusetts Avenue
- Four-legged signalized intersection
- Southampton at Allstate Road
- Three-legged signalized intersection
- Preble Street at Old Colony Avenue
- Rotary with four approaches
- Morrissey Boulevard at Shaw's Supermarkets
- Three-legged signalized intersection
- Morrissey Boulevard at UMASS Boston
- Three-legged signalized intersection

Figure 2.1-A: Analyzed Intersections along Proposed Route

2.2 Data Collection

2.2.1 Crash Data

Analysis of crash data has been completed for the five previously stated intersections in the corridor. Data from the Massachusetts Highway Department (MHD) database for the most recent available years, 2004-2006 were compiled for the applicable intersections. At each intersection the crashes were stratified according to year, type, severity, weather, and time of day. (Table 2.2-A) Additionally, crash rates at each of the intersections were calculated and compared to the District 4 Average and State Average. (Appendix A). This comparison serves the purpose of observing how safely the intersection is operating in comparison with those throughout the district and the state.

This data is very important to review when proposing changes to an existing roadway or intersection. Looking at the types of crashes and the conditions surrounding them can help inform and mold a future design. The importance of incorporating crash data is found in the need to constantly improve safety on the roads and intersections.

Table 2.2-A: Intersection Crash Summary Table

	Signalized Intersections			Unsignalized Intersections	
	Southampton/ Mass Ave	Southampton/ Allstate Rd	Morrissey Blvd/ UMASS	Old Colony/ Preble St	Southampton/ Theo GlynnWay
Year					
2004	5	1	2	9	1
2005	42	0	10	7	5
2006	$\underline{42}$	$\underline{0}$	$\underline{10}$	7	5
Total	89	1	22	23	11
Type					
Angle	6	1	5	7	4
Rear-end	44	0	9	6	2
Head-on	0	0	0	0	0
Single Vehicle	0	0	6	1	0
Sideswipe	19	0	2	7	3
Unknown	$\underline{20}$	$\underline{0}$	$\underline{0}$	$\underline{2}$	$\underline{2}$
Total	89	1	22	23	11
Severity					
Property Damage	44	0	13	13	7
Personal Injury	21	1	9	7	2
Fatality	2	0	0	0	0
Other	$\underline{22}$	$\underline{0}$	$\underline{0}$	$\underline{3}$	$\underline{2}$
Total	89	1	22	23	11
Weather					
Clear	61	0	15	13	11
Cloudy	2	0	7	6	0
Rain	16	1	0	3	0
Snow	4	0	0	0	0
Ice	0	0	0	0	0
Sleet	0	0	0	1	0
Fog	0	0	0	0	0
Unknown	$\underline{6}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$
Total	89	1	22	23	11
Time					
7:00 AM to 9:00 AM	14	1	3	0	6
9:00 AM to 4:00 PM	22	0	14	5	2
4:00 PM to 6:00 PM	4	0	0	3	0
6:00 PM to 7:00 AM	$\underline{49}$	$\underline{0}$	$\underline{5}$	$\underline{15}$	$\underline{3}$
Total	89	1	22	23	11
Crash Rate	1.43	0.16	0.40	0.66	0.46
District 4 Average	0.88	0.88	0.88	0.63	0.63
State Average	0.87	0.87	0.87	0.66	0.66

Of the five analyzed intersections, two were of interest because the crash rates exceeded the state and district average. The other intersections, Southampton at Theo Glynn Way, Southampton at Allstate Road, and UMASS at Morrissey Boulevard, which were analyzed for crash data had calculated crash rates well below their respective averages. Although it is important to constantly improve safety for our roadways and intersections, analysis of these intersections was not furthered due to their satisfactory performance.

For this section of the corridor, special attention must be drawn specifically to the crash analysis conducted at Massachusetts Avenue and Melnea Cass Boulevard. In the 20042006 Statewide Top 200 Intersection Crash List (Appendix I), compiled by MHD, this intersection ranked the nineteenth highest. With 89 crashes over a three year period and a crash rate of 1.43 crashes per million vehicles, it is much higher than the District 4 average of 0.88 and the Statewide average of 0.87 . Most significantly, 2 of these 89 crashes were of a fatal nature, strongly suggesting a redesign of this intersection is needed.

Another intersection of interest, from a crash perspective, is the intersection of Southampton Street, Dorchester Street, Boston Street, Preble Street and Dorchester Avenue. This intersection's crash rate is 0.90 , which is slightly above both the District 4 average and the statewide average for signalized intersections. The most apparent reason for this slightly raised number of crashes is the odd geometry of the intersecting streets. This geometry leads to a wide variety of crashes including angle, rear-end, head-on, and sideswipe collisions.

The final intersection, where calculated crash rates were above the averages, is at the intersection of Preble Street, Old Colony Avenue and Columbia Road, known from here on as Preble Circle. This intersection currently operates as a rotary. As with many rotaries, the expansive pavement and ambiguous traffic movements create an unsafe situation which causes crashes. The crash rate of 0.66 is slightly above the District 4 average, 0.63 , and is equal to that of the State average for unsignalized intersections.

2.2.2 Turning Movement Counts

In order to prepare a sufficient analysis of the existing and future conditions along the corridor, traffic volumes were collected at four major intersections on the roadway (Figure 2.2-A):
o Southampton at Massachusetts Avenue
o Southampton at Allstate Road
o Preble Street at Old Colony Avenue
o Morrissey Boulevard at UMASS Boston

Turning movement counts were conducted at intersections where a geometric reconfiguration was being considered. As part of this data collection, turning movement counts were conducted at these intersections during both the AM and PM peak periods during the weekdays. (Appendix B) Also, due to the seemingly high volume of trucks and other heavy vehicles in the Southampton Street area, heavy vehicles were counted and percentages were calculated. In this area, approximately 6% of all traveling vehicles are considered heavy vehicles. This is important to point out due to the danger which they pose to pedestrians and cyclists.

2.2.3 Signal Timings

A final element of the data collection for this design was the collection of signal timings at the intersections where analysis was needed. These intersections are the same as listed previously. From these signal timings, phase diagrams were able to be completed and used to analyze the existing conditions along the corridor (Appendix J).

2.3 Analysis of Existing Conditions

With the turning movement counts and signal timings collected, an analysis of the existing conditions was completed. This analysis evaluated the existing Level of Service (LOS), capacity, and delay at each of the analyzed intersections. The analyses of these intersections were in accordance with methods established in the Highway Capacity Manual (HCM) (Table 2.3-A). The HCM defines LOS as "a qualitative measure describing operation conditions within a traffic stream, and their perception by motorists and/or passengers. It also defines capacity, "the maximum rate of flow that can reasonably be expected to pass a point on a uniform section of a lane or roadway under prevailing roadway, traffic, and control conditions." Delay can be defined as the average amount of time, in seconds, a driver is waiting at an intersection. A summary of these characteristics creates a picture of how the intersections currently operate. (Table 2.3-B) This analysis was completed using Synchro, traffic analysis software. Synchro analysis creates a realistic representation of the LOS, capacity, and delay, existing at each of the analyzed intersections (Appendix C). These analyses will be used as a basis for comparison for future improvements throughout the corridor.

Table 2.3-A: HCM LOS and Respective Delay

Control Delay per Vehicle (seconds)

Level Of Service	Signalized Intersections	Unsignalized Intersections
A	≤ 10.0	≤ 10.0
B	10.1 to 20.0	10.1 to 15.0
C	20.1 to 35.0	15.1 to 25.0
D	35.1 to 55.0	25.1 to 35.0
E	55.1 to 80.0	35.1 to 50.0
F	>80.1	>50.0

Table 2.3-B: Capacity Analysis Summary - Existing Conditions

Location		2009 Existing		
	Peak	LOS $^{\mathbf{1}}$	Delay $^{\mathbf{2}}$	V/C $^{\mathbf{3}}$
UMASS Boston at Morrissey Boulevard	Hour		AM	D
	PM	F	89.6	>1.0
				>1.0
Southampton Street at All State Road	AM	B	13.6	0.76
	PM	B	17.4	0.87
Massachusetts Avenue at Melnea Cass Boulevard	AM	D	47.8	>1.0
	PM	D	47.1	>1.0
Morrissey Boulevard at Shaw's Entrance				
	AM	A	2.4	0.36
	PM	A	7.7	0.69

1. Level-of-Service
2. Average vehicle delay in seconds
3. Volume to Capacity Ratio

2.4 Southampton St

2.4.1 Overview of Section

Cyclists and pedestrians, who are heading east on the South Bay Harbor Trail, have no option to continue east at the intersection of Massachusetts Avenue and Melnea Cass Boulevard. Towards the east, there is no continuation of a separated path and they are forced to merge and utilize the sidewalks. Currently, Southampton Street is a four-lane street. West of Theo Glynn Way, vehicular traffic is one way (Figure 2.4-A), and east of Theo Glynn Way the road supports two directions of travel. There are sidewalks on both sides of Southampton Street with many driveway crossings. Also, because there is no designated area for cyclists and a section of Southampton is one-way (in a westerly direction), cyclists are forced onto these crowded sidewalks or travel on the southern side of the street. This southern side of the street has many high volume driveways and intersections, which bicyclists would have to cross. (Figure 2.4-B).

Figure 2.4-A: Southampton Street Existing One Way Cross-Section

Figure 2.4-B: Example of South Side Intersection Bicycle Crossing
One noteworthy vehicular movement that causes queues during peak periods is the vehicular traffic heading westbound along Southampton Street who are turning left onto Melnea Cass Boulevard. Here drivers encounter limited storage space for the two left turning lanes and are unable to access the lanes without blocking traffic that is trying to head north onto Massachusetts Avenue Figure 2.4-C

Figure 2.4-C: Inadequate Storage Space for Left Turning Vehicles at the Intersection of Massachusetts Avenue/Melnea Cass Boulevard and Southampton Street

Heading east on Southampton, from Melnea Cass and Massachusetts Avenue, the street switches to two-way vehicular traffic with two lanes in each direction (Figure 2.4-D). The southern side of Southampton Street serves as a very busy loading area for large vehicles at various businesses. These loading docks on the southern side create a situation where loading trucks block lanes of traffic (Figure 2.4-E). Due to the industrial nature of the area, there are many heavy vehicles that use this section of roadway, approximately 6% of all vehicles. For both cyclists and vehicles traveling eastbound, this means dangerously weaving through traffic to continue towards the east.

Figure 2.4-D: Southampton Street Existing Cross Section

Figure 2.4-E: Inadequate Loading Bay on South Side of Southampton Street

Continuing to the east, Southampton Street approaches Dorchester Avenue, the street again narrows as it crosses the Southeast Expressway and rail road tracks, east of Interstate 93. (Figure 2.4-F). Very narrow sidewalks force cyclists into the road to travel as they approach the Dorchester Avenue intersection. At this location there is an intersection of six legs of traffic: Dorchester Avenue, Dorchester Street, Preble Street, Boston Street, and Southampton Street. At this intersection there are two lanes in the eastbound direction on Southampton Street and one lane in the westbound direction (Figure 2.4-G).Close to the intersection there is the Massachusetts Bay Transit Authority (MBTA) Andrew Station, where waves of pedestrians leaving the facility create possible conflicts with cyclists. Crossing this intersection towards the east on the corridor brings a traveler to Preble Street.

Figure 2.4-F: Southampton Street Existing Cross - Section Crossing I-93

Figure 2.4-G: Southampton Street St Approach to Dorchester Avenue Intersection

2.5 Preble Street

2.5.1 Overview of Section

Preble Street, east of the Dorchester Avenue and Southampton Street intersection, is a two-lane, two-way roadway with parallel parking on both the north and the south side (Figure $2.5-\mathrm{A}$) It is a wide street that functions as a connector road but is very residential. Cyclists leaving the Dorchester Avenue intersection, much like Southampton Street, are forced to either ride with traffic or on the sidewalks. Both present challenges with parking on both sides of street and a heavier pedestrian presence than on Southampton Street. As cyclists come to the eastern end of Preble Street, they are faced with the task of traversing a very large rotary regardless of their destination (Figure 2.5-B).

Figure 2.5-A: Preble Street Existing Cross Section

Figure 2.5-B: Example of Rotary Approach at Preble Street and Old Colony Avenue

This rotary is the intersection of Preble Street, Old Colony Avenue and Columbia Road, and is the northern boundary of the final two sections of the corridor (Figure 2.5-C). The rotary in its current condition provides several "straight-shots", where drivers can travel at rates of speed through the rotary that are higher than desirable. Desirable speeds would consist of speeds that are low ($15-25 \mathrm{mph}$) and consistent with other modern roundabouts. These high speeds also make it very difficult for pedestrians and cyclists to cross. There is also a high volume of traffic that travels north and south on Old Colony

Avenue. Between these high volumes and high speeds, there is less opportunity for drivers heading eastbound on Preble Street to enter the circulating traffic volume.

Figure 2.5-C: Aerial View of Existing Preble Circle

2.6 Old Colony Avenue

2.6.1 Overview of Section

Travelling south of the rotary, there is Old Colony Avenue. This avenue has ample space to accommodate vehicles, cyclists and pedestrians safely due to the wide existing right-of-way (approximately 148 '). Old Colony Avenue is an expansive thoroughfare with wide sidewalks, parking on both sides, and six lanes of traffic that is divided by a large median (Figure 2.6-A). The three lanes in each direction create a situation where there are under utilized lanes for the extent of the roadway. On the eastern side of Old Colony Avenue is Joseph Moakley Park.

Figure 2.6-A: Old Colony Avenue - Existing Cross Section

There are several bus stops along the route that service the \#5 \& \#16 MBTA bus lines. The presence of these bus routes makes it more challenging to integrate bicycle facilities. Old Colony Avenue also has one pedestrian bridge approximately 1000 feet south of the rotary, which connects the residential complex west of Old Colony Avenue to the Joseph Moakley park on the east. This bridge allows pedestrians to cross the large number of travel lanes on a separated path, although it is rarely used. Several pedestrian crossings also compliment this pedestrian bridge throughout, several of which have their own signal to expedite pedestrian crossings.

Continuing south on Old Colony Avenue, the roadway splits. Old Colony Avenue continues south, west of Columbia Road. Columbia Road continues to the east and connects with Kosciuszko Circle, an intersection of William J. Day Boulevard and Morrissey Boulevard. Old Colony then changes names and becomes Mount Vernon Street as it continues south under Columbia Road. It then ends at the MBTA JFK/UMASS Subway Redline Stop (Figure 2.6-B). This brief section of Mount Vernon Street contains a single lane of traffic in each direction with sidewalks on both sides of the street. Cyclists, pedestrians, and drivers all have ample room to maneuver as needed in a safe manner with limited potential conflicts.

Figure 2.6-B: Columbia Road/Mt. Vernon Street at Kosciuszko Circle Bypass

2.7 Morrissey Boulevard

2.7.1 Overview of Section

Morrissey Boulevard is another expansive roadway with a large right of way and at its widest it has seven lanes (4 through and 3 left turning) in the southbound direction and six lanes (4 through and 2 on a carriage road) traveling northbound (Figure 2.7-A). The area also contains narrow sidewalks on either side of the roadway that are available for pedestrian use. A carriage lane exists on the northbound side of Morrissey Boulevard, from south of Mount Vernon Street to UMASS Boston, to allow for access to several business' and Boston College high school without impeding on the main flow of traffic.

Figure 2.7-A: Morrissey Boulevard Existing Cross Section

At the northern end of Morrissey Boulevard, in front of the JFK/UMASS MBTA station, there is a median separated road which services the MBTA Station, Shaw's Supermarket, small offices buildings, and the Boston Globe. This section of roadway has two southbound lanes and a single northbound lane that continues until the end of the Shaw's Supermarket building, after which drivers can only travel southbound (Figure 2.7-B). These lanes continue south all the way to the intersection of UMASS Boston and Morrissey Boulevard, where they turn into three left turning lanes and one through lane.

Figure 2.7-B: Two-Way North Section of Morrissey Boulevard
This intersection is a conventional signalized intersection with the exception of the southbound approach. The southbound approach consists of a total of seven lanes, four through lanes and three left turn lanes. The irregular characteristics are three of the through lanes are to the left of the left turn lanes and there is one through lane to the right of the left turn lanes.

3.0 Future Conditions: Alternatives Considered

3.1 Introduction to the Designs

As part of the design process, a large variety of design options were explored. These designs are outlined below with descriptions as to why they were unacceptable as a final design choice. The main focus of the objectives was to provide a safe and comfortable bicycle facility for all types of users. These characteristics require adequate separation and space to allow all users to maneuver easily and safely along the corridor. For these reasons, many of the alternatives were rejected and not followed through to the final design. Some other objectives, which these alternatives did not achieve, include minimal roadway crossings, available right of way, and cost.

3.2 Design Alternatives Considered

3.2.1 Southampton Street (Melnea Cass Boulevard to Allstate Road)

Alternatives considered for this section of the proposed route:
> Alternative A: Add Bike Lane in Each Direction
> Alternative B: Cycle Track, South Side of Southampton Street

Alternative A: Add Bike Lane in Each Direction
Alternative A would incorporate four foot bike lanes in each direction to better accommodate cyclists along Southampton Street (Figure 3.2-A). This would involve the reduction of lane widths along this section of Southampton Street, while maintaining the same number of lanes.

Figure 3.2-A: Southampton Street Alternative A Cross Section

Viability

While this alternative is feasible, it is in conflict with the main objectives of the project. This type of facility does not provide the necessary separation from vehicles, which would create a safe and comfortable cycling area. Due to the age of the buildings on the south side, modern trucks are unable to fit entirely on the property while making deliveries (Figure 2.4-E). The bike lane on the south side of the roadway would have a high potential for conflicts with heavy vehicles making deliveries to buildings on this side of the street. They are often found blocking one or even two lanes of traffic while parked. This essentially renders the bike lane on the south side useless.

Alternative B: Cycle Track, South Side of Southampton Street

This alternative would involve the implementation of a cycle track on the south side of the street (Figure 3.2-B). A cycle track is a bike facility which follows the direction of the roadway, but has physical separation from travelling motor vehicles. This cycle track would be two-way allowing bicycle traffic to travel in both directions. This cycle track would need the elimination of a lane or the narrowing of lanes to obtain the necessary right of way.

Figure 3.2-B: Southampton Street Alternative B Cross Section

Viability

While feasible, this alternative has a high potential for conflicts with many heavy vehicles that utilize the south side of Southampton Street. This cycle track would also create an awkward and unsafe crossing at the intersections of Melnea Cass Boulevard and Massachusetts Avenue \& Southampton Street and Theodore Glynn Way. This crossing at Theodore Glynn Way would be an unsafe crossing due to the large number of travel lanes and lack of a traffic signal.

3.2.2 Southampton St (Allstate Road to Dorchester Avenue)

Alternatives considered for this section of the proposed route:
> Alternative A: Extend Sidewalk and Add Sharrows

Alternative A: Extend Sidewalk and Add Sharrows

Alternative A included extending the existing sidewalk to give pedestrians more room to maneuver while crossing narrow sections of Southampton Street. This would allow pedestrians, such as those leaving the MBTA's Andrew Station, to move more easily to points west such as the South Bay Center. Facilities for bicycles included the addition of Sharrows to the outermost lane in both directions (Figure 3.2-C). This would mean that cyclists would share the road with any vehicle traveling along this section of Southampton Street.

Figure 3.2-C: Southampton Street (Narrow Section) Alternative A Cross Section

Viability

Although this option addresses the needs of the pedestrians, it does not adequately address the needs of the cyclist. By placing cyclists in the roadway, they will be forced to negotiate for space with heavy vehicles and fast moving traffic. This would leave this section of the bike facility usable to only the most advanced riders. Since all of the other sections (e.g., Old Colony Avenue and Morrissey Boulevard) have space to provide more separated bike facilities, this alternative would also not be cohesive with the remaining sections of the proposed bike facility.

3.2.3 Preble Street

Alternatives considered for this section of the proposed route:
> Alternative A: Wide Bike Lane in Each Direction
> Alternative B: Bike Lane between Sidewalk and Parking
> Alternative C: Sidewalk Extension with Bike Lanes

Alternative A: Wide Bike Lane in Each Direction

In this option, the existing wide travel lanes are reduced in both directions and a bike lane in each direction would be incorporated between the travel lanes and parking (Figure 3.2-D). The wide bike lanes allow for bicycle users to move within the marked lane to avoid any potential conflicts without having to travel directly in the travel lane. Parking would be maintained.

Figure 3.2-D: Preble Street Alternative A Cross Section

Viability

This option creates ample space for cyclists; however, the facilities in the road do not make it appealing to users of all levels. Also, by having a wide lane next to traffic with little separation offers limited protection from drivers who decide to use the bike lane to their advantage. Having this configuration also creates problems when connecting to other sections of the path at Dorchester Avenue and also at the Old Colony Avenue rotary.

Alternative B: Bike Lane between Sidewalk and Parking
Alternative B moves the single bike lane between the existing sidewalk and the parked cars (Figure 3.2-E). This allows for more protection for the users of the bike lanes from moving vehicles, but does not provide protection from parked cars. There are also many driveways due to the residential nature of the street.

Figure 3.2-E: Preble Street Alternative B Cross Section

Viability

Although this alternative offers much more protection for path users from vehicles in the travel lanes, it does not offer much protection from people accessing parked cars and blocking the cycle track. Another consideration for this section is the number of driveways that are present. With the large number of driveways trying to access Preble Street, there are many cars pulling out to check for a break in traffic. By having the parked cars beyond the cycle track, this creates a situation where the car will need to pull forward in order to view traffic on Preble Street. This means that drivers pulling out would be blocking the cycle track and making cyclists wait for the car to vacate. Given the number potential conflicts this option is undesirable.

Alternative C: Sidewalk Extension with Bike Lanes
Alternative C addresses the residential nature of the street and incorporating the needs of pedestrians while also considering bike facilities (Figure 3.2-F). This alternative would extend the sidewalk on both sides to allow for increased space for pedestrians. At the same time, parking would be maintained and located next to the extended sidewalk. Two bike lanes would be added between the vehicular travel lanes and the parked cars.

Figure 3.2-F: Preble Street Alternative C Cross Section

Viability

Similar to Alternative B, having two one way bike lanes on either side of the street provides challenges when cyclists try to connect to other sections of the path. Also, it would require several street crossings, which creates potential conflicts between cyclists and drivers. Although this option provides space for pedestrians, having bike lanes in the street makes the path uncomfortable for lower level users, such as children. This alternative also does not provide sufficient space for cyclists to avoid potential conflicts with the parked cars to their right and would force them further into the vehicular travel lane at times.

3.2.4 Old Colony Avenue

Alternatives considered for this section of the proposed route:
> Alternative A. 1 \& A.2: Cycle Track on Western Side
> Alternative B: Bike Lane on Western Side and Shared Use Path on Eastern Side
$>$ Alternative C. 1 \& C.2: Angled Parking on SB Side with Path on NB

Alternative A. 1 \& A.2: Cycle Track on Western Side

Two similar alternatives were considered for this section of the proposed route that both are able to fit within the existing roadway width.
$>$ Alternative A. 1 would reduce the lane widths on the west side of Old Colony Avenue and add a two-way shared use path, located on the wide existing sidewalk along Moakley Park (Figure 3.2-G).
$>$ Alternative A. 2 would be similar to Alternative A. 1 except move the 2-way cycle track on the west side of Old Colony Avenue would be on the other side of the parked cars on the southbound side (Figure 3.2-H).

These alternatives kept the number of travel lanes and parking spaces the same. Old Colony Avenue also is the route for MBTA bus lines creating potential conflicts with cycling facilities.

Figure 3.2-G: Old Colony Avenue Alternative A. 1 Cross Section

Figure 3.2-H: Old Colony Avenue Alternative A. 2 Cross Section

Viability

These alternatives, although able to completely fit within the existing roadway width, were not chosen because they did not fulfill the stated objectives. The buffer zone between the cycle track and the parked cars does not provide adequate space to prevent conflicts with people entering and exiting their vehicles. This is especially true due to the proximity to the park; people entering and exiting their vehicles will need a prolonged period of time and additional space than is available in this alternative. Alternative A. 2 moves cyclists closer to the roadway, which does not appeal to all levels of riders.

Alternative B: Bike Lane on Western Side and Shared Use Path on Eastern Side

In Alternative B, a wide single bike lane is utilized on the southbound side of the roadway next to the travel lanes and a single bike lane is incorporated in the northbound side on the existing sidewalk (Figure 3.2-I). To accommodate the bike lane on the southbound side, the lane widths would be reduced and the northbound travel lanes are left untouched. The number of travel lanes and parking would be maintained with this alternative.

Figure 3.2-I: Old Colony Avenue Alternative B Cross Section

Viability

This option allows for cyclists to move in the same direction as the flow of traffic, creating some comfort for more advanced users. But similar to earlier alternatives, this might not be appealing to all levels of users. Also, this alternative does little to protect cyclists from the parked cars and any potential conflicts that they may encounter.

Alternative C. 1 \& C.2: Angled Parking on SB Side with Path on NB

Two similar alternatives were considered for this section of roadway that explore the use of angled parking to maintain the number of parking spaces, but move all of the parking to one side of the roadway (Figure 3.2-J \& Figure 3.2-K).
$>$ In Alternative C.1, angled parking would fit into the existing curb on the southbound side while still allowing for three travel lanes in both directions. Moving all of the parking to the southbound side creates an opportunity on the northbound side. A two-way cycle track on an extended sidewalk could be used in place of the parking as seen in Alternative C.1.
$>$ In Alternative C.2, one lane is eliminated in both directions. The extra space would be used for cyclists on a single bike lane headed south on the western side and a two-way cycle track on the eastern side. Back in angled parking would be provided, to create greater visibility for exiting vehicles.

By utilizing angled parking, the total number of parking spaces is maintained with this plan. Additional space creates the opportunity for additional green space.

Figure 3.2-J: Old Colony Avenue Alternative C. 1 Cross Section with Extended Sidewalk

Figure 3.2-K: Old Colony Avenue Alternative C. 2 Cross Section with Separated Cycle Track

Viability

These options, although feasible (i.e., maintaining the number of travel lanes and parking spaces) creates several concerns. The main concern is that Moakley Park is located on the eastern side of the roadway. With the position of the parking, park users would be forced to park their vehicles on one side of the roadway and then cross, creating a greater number of crossing pedestrians and potential conflicts between pedestrians and vehicles. Another concern is with the enforcement of back-in-only angled parking. There is the possibility that drivers will ignore the back-in-only regulations. This creates an unsafe situation for people trying to back their cars onto Old Colony Avenue after parking. Also, this alternative does not allow for easy connection with other sections of the proposed path: it would require additional street crossings (e.g., crossing the intersection at Columbia Rd on the southern end of Old Colony Avenue). This leads to additional conflicts between cyclists and motorists, decreasing the level of comfort and increasing delay experienced by the cyclists.

3.2.5 Morrissey Boulevard

Alternatives considered for this section of the proposed route:
> Alternative A: Cycle Track on Both Sides of Roadway

Alternative A: Cycle Track on Both Sides of Roadway

In this alternative, a new carriage road would be constructed on the southbound side to mimic the one that exists on the northbound side (Figure 3.2-L). This would increase the number of southbound lanes to three. In the carriage lane, there would be one vehicular travel lane next to a two-way cycle track. On the northbound side, the situation would be the same with a carriage road and two-way cycle track. The existing northbound carriage lane would be reduced to one travel lane and the added area would be allotted to the twoway cycle track to better accommodate users traveling to and from South Boston.

Figure 3.2-L: Morrissey Boulevard Alternative A Cross Section

Viability

Although this option would provide ample separation from the main travel lanes, it proves difficult for connections of the 2-way cycle track on the northbound side of the Morrissey Boulevard. It was determined that it was not safe to connect two way cycling traffic that is crossing Mount Vernon Street.

4.0 Future Conditions: Design Elements

4.1 Introduction

The intent of this section is to provide a basic understanding of concepts that are going to be employed throughout the proposed corridor. The items mentioned in this section are necessary at multiple locations and will be identified in plans but will not necessarily be discussed in detail under the individual sections.

4.2 Cycle Track, Cycle Track Pavement Markings \& Separation

4.2.1 Cycle Tracks

Cycle tracks, widely used throughout countries such as the Netherlands, are separated bicycle ways (Figure 4.2-A). The separation is from both vehicular and pedestrian traffic through the use of visual and physical separations (e.g., paint and curbing). Due to their separation and protection from other modes of transportation, they were chosen and implanted for the entire design corridor. A cycle track was utilized for this design because it allowed for bicycle movements in two directions while minimizing the necessary width required for the bicycle facilities. Below is the range of width which the cycle track will vary between along the corridor.

Minimum Width: $\quad 8^{\prime}$

$$
\text { Maximum Width: } \quad 12^{\prime}
$$

For sections where the right of way is constrained, the cycle track will not narrow to less than 8^{\prime}, to allow for a minimum level of comfort for cyclists that would be passing each other. Similarly, for areas where there is a large amount of space, the cycle track will not be greater than 12^{\prime}.

Figure 4.2-A: Typical Cycle Track Configuration

4.2.2 Pedestrian and Cyclist Separation

Where there are no grade separations between pedestrians and cyclists, it is recommended that separation indicators be installed and incorporated into the proposed design. Two elements of the design will delineate the pedestrian area from the bicycle area. The first of these is a change in material. The pedestrian sidewalk will be concrete, while the cycle track will be paved with asphalt. Additionally, the asphalt will be formed over a concrete base to avoid movement of the flexible material over the years.

The cycle track shall also be properly marked to indicate two-way bicycle traffic. This will be indicated by a dashed yellow line, down the center of the cycle track for the length of the cycle track. In addition to the center line, bicycle legends will be added at intersections to emphasize the intended direction of travel (Figure 5.2B).

Figure 4.2-B: Typical Bicycle Legends to be Used on Cycle Track at Intersections

4.3 Bus Stops

Bus stops will be maintained to include all existing signage, markings, and waiting structures. These facilities will be moved or replaced at the edge of all new curbing. Bus stops located on roadways where the cycle track is at grade with the roadway, a bulb out will be used (Figure 4.3-A). This bulb out allows pedestrians to cross the cycle track, wait, and board the bus without a change in grade, aiding those who may have difficulties boarding the buses. Bus stop locations and typical details are included in the plans.

Figure 4.3-A: Typical Cycle Track Configuration at Bus Stop Locations

4.4 Catch Basins, Fire Hydrants \& Trees

All catch basins and fire hydrants are to be moved to the edge of any extended sidewalks to facilitate the necessary drainage and ease of use for emergency personnel. Trees and shrubbery are to be removed at locations where they will impede on the proposed facilities and there is no evident method for avoiding them. Otherwise, they are to be preserved wherever possible.

Catch basins and fire hydrants that need to be moved will be called out in the proposal and included in the cost estimate. Tree removal has been estimated but not called out in the proposal.

4.5 Intersection Approaches

At all driveways and intersections, cyclists and pedestrians will have separate crossings, discussed further in Section 4.9. In many locations, identified on the plans, existing pedestrian ramps will be maintained. However, in locations where this is not possible, alternative ramp design was applied. This design includes the lowering of the entire sidewalk and bicycling facility, until they are at grade with the roadway. This design facilitates the crossings of all users by spreading the waiting area and point of exit and entrance onto the facilities. Generally, despite ability, all users utilize the ramps at crossings. The proposed design will avoid this bottle neck and allow users more comfort and an easier crossing.

An important aspect of this design is to deter drivers from encroaching on this at grade waiting area for those crossing. Two methods of keeping vehicles from intruding upon this area will be used. The first is a change in material. The newly lowered area shall be made of concrete. This change in material provides a visual barrier delineating the difference in space. A second delineation between the two areas will be bollards placed at the change in material, providing a physical barrier between vehicles, and the pedestrians and cyclists. The bollards will deter cars but allow free movement of pedestrians and cyclists.

4.6 Signage

4.6.1 Destination Signage

Because the proposed corridor route is over two miles in length, there is an opportunity to direct facility users to the numerous attractions located along the route. The final designs of these signs will be completed by others, but a list and potential location are to be included in the proposal. Below is a list of potential sites to call attention to:

[^0]* MBTA JFK/UMASS Station
* South Bay Center
* Bayside Exposition Center
* Moakley Park
* South Bay Harbor Trail [Existing Path]
* Neponset River Greenway [Existing Path]

Distances and travel times for these locations and others have been calculated for the use of destination sign design (Appendix G).

4.6.2 Beginning/End of Path

At the two biggest intersections (Southampton Street at Melnea Cass Boulevard \& UMASS Boston at Morrissey Boulevard) along the proposed route, it is recommended that signage be included to indicate to potential path users where they are able to enter the corridor.

4.7 Vehicular Signage/Markings

Additional signage and pavement markings will be necessary for vehicular traffic at several locations on the corridor to address limited sight lines and other safety concerns. One particular area where this will be necessary is at the rotary at the intersection of Preble Street and Old Colony Avenue. At this location, typical signage for roundabouts (Section 6.0) will need to be included. This includes yield signs and yield line pavement markings, also known as shark's teeth. At locations where sightlines are limited, warning signs will be installed on side streets to indicate to drivers that they are approaching a bicycle path.

4.8 Cycle Track Buffer Area

Along the majority of the proposed route, where ever a cycle track is to be located at grade with the roadway, significant separation between vehicles and cyclists is required to create a sense of comfort for users of the proposed bike facilities. The buffer will include the use of planters near residential areas and bollards elsewhere to enforce separation. These planters would be placed in the allotted buffer, in sections where the buffer is greater than four feet. These planters include small plants and other flowers that are intended to help beautify a section of roadway (Figure $4.8-\mathrm{A}$). Where the buffer is less than this, the use of paint and bollards will be implemented. The paint will consist of a solid white line delineating the edge of the buffer zone with angled hatching (Figure $4.8-\mathrm{A})$. The spacing of the bollards and planters shall be at 25 feet. The exception to this is in buffer zones which are shorter than 25 feet shall the divider (bollard or planter) at each end of the areas.

Figure 4.8-A: Typical Buffer Area at Grade with Roadway

4.9 Crossings

All pedestrian crosswalks will be 10 ' wide ladder crosswalks (Figure 4.9-A). A cyclist crossing area will be located adjacent to the pedestrian crossings. The width of the cycle crossing varies and will be consistent with the width of the cycle track at the location of the crossings (Figure 4.9-B). The bicycle crossing markings are inspired by those commonly used in the Netherlands. Each crossing will have a border along its limits to identify the path's continuation to cyclists, pedestrians and drivers.

Figure 4.9-A: Typical Pedestrian Crosswalk

Figure 4.9-B: Typical Cycle Track Crossing

5.0 Future Conditions: No Build 2014

5.1 Introduction to Future Conditions

The future conditions section of the report focuses on adjusting the traffic flows and Level-of-Service at the analyzed intersections to what they are expected to become by 2014. By utilizing the average daily traffic (ADT) values provided by the MHD data base, a growth rate of 1.8% per year was calculated. This growth rate was applied to each of the collected turning movement counts to anticipate conservative traffic volumes for the year 2014.

5.2 Growth Analysis and Level-of-Service

After growing the existing volumes to the estimated volumes of the year 2014, analyses were run on the same intersections as the existing analysis with the new volumes (Appendix D). The purpose of this analysis is to compare a baseline (existing) to the future designs (proposed). Similar to the existing conditions analysis a summary of the LOS, capacity and delay at each intersection, gives an impression of how the corridor operates as a whole (Table 5.2-A).

Table 5.2-A: Capacity Analysis Summary - No Build - 2014

Location		2014 No Build		
	Peak	LOS $^{\mathbf{1}}$	Delay $^{\mathbf{2}}$	V/C $^{\mathbf{3}}$
Hour				
UMASS Boston at Morrissey Boulevard	AM	E	75	>1.0
	PM	F	98.8	>1.0
Southampton Street at All State Road				
	AM	B	15	0.85
Massachusetts Avenue at Melnea Cass Boulevard	PM	B	17.8	0.88
	PM	E	59.6	>1.0
		E	58.0	>1.0
Morrissey Boulevard at Shaw's Entrance	AM	A	2.5	0.39
	PM	A	8	0.71

[^1]
6.0 Future Conditions: Selected Design

6.1 Introduction to the Selected Design

The selected design section of the report details the chosen design for the length of the corridor. Several improvements have been proposed for pedestrians, cyclists, and vehicles along the proposed route. Many of these improvements have been outlined in Section 5.0. This section will present the locations and integration of the noted improvements throughout the corridor. The description will begin at the intersection of Melnea Cass Boulevard and Massachusetts Avenue, continue east down Southampton Street until Preble Circle, and then will continue south to Old Colony Avenue and Morrissey Boulevard, ending at the intersection of Morrissey Boulevard and UMASS Boston.

6.2 Southampton Street (Melnea Cass Boulevard to Allstate Road)

6.2.1 Overview of Selected Design

Currently, Southampton Street is a four-lane roadway, including a one-way section, between Theodore Glynn Way until Massachusetts Avenue. The selected design includes a two-way cycle track on the north side of Southampton Street. As specified below, the cycle track will be either grade separated or at grade with the roadway with a buffer depending on the available space and the proximity to bus stops.

6.2.2 Massachusetts Avenue Intersection Improvements

The improvements at this major intersection involve a reconfiguration of the Southampton Street approach (Figure 6.2-A). The proposed design would utilize a section of the existing island that is located on the south side of Southampton Street and extend the storage lane length of the far left turning lane an additional 130'. This will allow more storage for left turning vehicles to eliminate wasted green time for drivers which are too far back in the queue to utilize it. This added lane length will also aide in decreasing the queue length for the entire approach. This is especially necessary because the existing channelized right turn lane's storage will be eliminated. The right most lane will be eliminated for the transition of the beginning of the proposed cycle track on the north side of Southampton Street.

Figure 6.2-A: Proposed Massachusetts Ave. and Melnea Cass Boulevard Intersection Improvements

Since the proposed design will be altering the configuration of the Southampton approach to the intersection analysis of the proposed conditions is necessary. Similar to the existing conditions, anticipated traffic volumes of the year 2014 have been analyzed with the proposed reconfiguration (Appendix E). The proposed design also modifies the existing signal timings to better manage the expected traffic and maintain the existing LOS (Table 6.2-A).

Table 6.2-A: Massachusetts Avenue Intersection Capacity Analysis Summary

Approach		2014 No Build			2014 Build		
		LOS ${ }^{1}$	Delay ${ }^{2}$	V/C ${ }^{3}$	LOS ${ }^{1}$	Delay ${ }^{2}$	V/C ${ }^{3}$
Melnea Cass Boulevard	AM	F	104.4	>1.0	E	73.5	>1.0
	PM	E	64.3	>1.0	E	63.5	>1.0
Massachusetts Avenue Connector	AM	C	27.0	0.87	C	26.4	0.87
	PM	C	26.7	0.88	D	51.6	>1.0
Southampton Street	AM	E	71.9	>1.0	D	54.2	>1.0
	PM	C	33.4	0.87	D	38.8	0.91
Massachusetts Avenue Eastbound	AM	D	42.0	0.62	D	45.8	0.81
	PM	F	113.6	>1.0	D	51.2	0.95
Overall Intersection	AM	E	59.6	>1.0	D	47.7	>1.0
	PM	E	58.0	>1.0	D	51.4	>1.0

1. Level-of-Service
2. Average vehicle delay in seconds
3. Volume to Capacity Ratio (max)

The comparison between existing LOS, capacity, and delay for each approach of the intersection and the proposed (Table 6.2-A) clearly shows how the new signal timings and configuration improve conditions. The proposed design provides a slight improvement for many approaches. The other movements, which have not improved, are maintained at the existing LOS.

6.2.3 Roadway Improvements

Continuing east from the Massachusetts Avenue intersection, this portion of Southampton Street includes the elimination of one westbound travel lane. The elimination of a vehicular travel lane allows for the incorporation of improved pedestrian and bicycle facilities (Figure 6.2-B \& Figure 6.2-C). Justification for removal of one travel lane is described later in this section. Beginning on the north side of the right of way, there will be the pedestrian area, which on average is 10 feet and is adjacent to buildings and property lines. The pedestrians will utilize the existing sidewalk. Continuing toward the center of the cross-section is a two-way cycle, as described in Section 5.0. The cycle track is going to be at grade with the existing roadway and will be separated by a minimum three foot wide buffer. Within this buffer are flexible bollards which provide physical separation from opposing vehicular traffic. Next to the proposed buffer is a one foot off set, three 11 foot vehicular travel lanes, followed by another one foot offset and the existing sidewalk on the southern side of Southampton Street.

Figure 6.2-B: Southampton Street Selected Design Cross Section for One-Way

Figure 6.2-C: Southampton Street Selected Design 3-Lane 2-Way Cross Section

In a few sections of this portion of roadway, identified in the plans, the cycle track narrows from 12 feet to 10 feet wide and the pedestrian area to 6 feet in width to accommodate bus stops. At these locations the cycle track is brought to grade with the sidewalk. This is to allow easy crossing and loading for those who may have difficulties boarding the buses.

As the roadway approaches the South Bay Center intersection, at Allstate Road, there is a transition from a single westbound lane to two westbound lanes. During this transition the cycle track is brought up to the same grade as the sidewalk. The grade transition, for the cyclists, provides sufficient space and separation due to the limited space with the second westbound travel lane. This lane elimination is unable to be carried through the intersection with Allstate Road due to queuing restrictions in the westbound movement during the AM peak period. The two lanes are continued at the western side of the intersection in order to properly store vehicles which pass through the signal. This is
important because if there were an obstruction further west of the intersection, the vehicles passing through the intersection on a green signal are clear of the intersection while being stopped.

In order to justify the elimination of a lane, it must be shown that vehicle operations can continue to function at an acceptable level. A single lane of traffic can generally process 1800 vehicles per hour, and some estimate with Boston drivers it can be as high as 2100 vehicles per hour. This being said traffic heading westbound during the AM peak hour (the highest measured traffic volume) contained 948 vehicles. This is far below the 1800 vehicles per hour it is able to process (Figure 6.2-D). Lane capacity in urban areas is determined by the amount of green time given during a signalized cycle. However between the intersection of Allstate Road and Massachusetts Avenue there are no signals, clearly showing that lane elimination is a viable design option.

Critical Volume Analyis (Westbound)

Figure 6.2-D: Critical Volume Analysis for Westbound traffic along Southampton Street between South Bay Center and Melnea Cass Boulevard

The westbound travel lane was also chosen to be eliminated because of a loading dock facilities located on the south side of the roadway near New Market Square. Because of the location of the building, there is inadequate space to allow for trucks to pull into the loading dock. This creates a situation where large trucks often block roadway traffic (2 lanes in some cases). The constant blocking of large sections of the roadway eliminated the possibility of locating any bicycle facilities on the south side of the roadway.

Locating the cycle track on the north side of the road provides the safest cycling facilities for this area. This location avoids the continuous conflict with the trucks utilizing the loading docks on the south side of Southampton Street. The separation between cyclists and heavy vehicles is extremely important when designing a safe bicycle facility. The north side cycle track maximizes this separation in this industrial and heavy vehicle saturated area. This cycle track location also eliminated an awkward and potentially dangerous connection at Massachusetts Avenue and Melnea Cass Boulevard. A south side cycle track would have ended/began in a median refuge next to left turning traffic from Southampton Street. This would leave cyclists stranded and unable to easily join traffic, connect to the South Bay Harbor Trail or continue on the sidewalk. The north side track creates an easy transition with the use of existing intersection facilities.

6.3 Southampton Street (Allstate Road to Dorchester Avenue)

6.3.1 Allstate Road Intersection Improvements

At this point in the corridor, the proposed two-way cycle track is still located on the north side of Southampton Street, continuing through the Allstate Road intersection. The cycle track is at grade with the pedestrian facilities. This was achieved through narrowing each of the four travel lanes. As mentioned before, lane elimination was not a design option for this intersection, especially in the west bound direction. This is so because of the long queues which build up and interfere with traffic signals east of Allstate Road. Syncrho analysis of the 2014 conditions confirms the impossibility. Therefore, the general configuration of the intersection remained the same and was analyzed with the expected 2014 traffic volumes (Appendix D). A comparison between the existing conditions and proposed show that operations will continue to operate at an acceptable LOS in the future (Table 6.3-A). Modifications to the signal timings were also completed in order to accommodate bicycle and pedestrian crossings, through the implementation of an all pedestrian phase.

Table 6.3-A: Southampton Street at South Bay Center Capacity Analysis Summary

Approach	2014 No Build				2014 Build		
		LOS $^{\mathbf{1}}$	Delay $^{\mathbf{2}}$	V/C $^{\mathbf{3}}$	LOS $^{\mathbf{1}}$	Delay 2	V/C $^{\mathbf{3}}$
Southampton Westbound	AM	B	12.6	0.85	B	11.5	0.76
	PM	A	7.9	>1.0	A	4.8	0.49
Southampton Eastbound	AM	B	14.5	0.43	C	29.9	0.56
	PM	C	22.7	>1.0	C	25.4	>1.0
South Bay Center							
	AM	C	24.6	0.53	D	42.9	0.77
		C	24.4	0.54	D	47.1	0.83
Overall Intersection	AM	B	15.0	0.85	C	21.7	0.77
	PM	B	17.8	0.88	C	21.0	0.85

1. Level-of-Service
2. Average vehicle delay in seconds
3. Volume to Capacity Ratio (max)

The current LOS for this intersection is B for both AM \& PM peak hour. Calculating the anticipated traffic flow in 2014, the LOS of the intersection is maintained at B . The reason for the slight increase in overall delay is due to the addition of a pedestrian phase which does not exist currently. This is extremely important to allow safe crossing for a highly desired destination.

6.3.2 Roadway Improvements

Continuing east on Southampton Street, the two-way cycle track remains on the north side of the road through the Allstate Road intersection to the intersection with Dorchester Avenue (Figure 6.3-A). This section of the cycle track is located on an extended sidewalk next to the pedestrian facilities. In this area, unlike when the cycle track is at grade with vehicular traffic, there will be no bollards due to the grade separation provided by the curb. The raised curb, along with the buffer for street furniture will provide an adequate separation.

Figure 6.3-A: Southampton Street Selected Design Cross Section at Railroad Crossing

As the cycle track approaches the intersection of Frontage Road, it is slightly deflected to the north to properly align for the crossing at the intersection. This allows for maximum visibility between the drivers and the cyclists and pedestrians. The cycle track and pedestrian facilities are brought down to grade to make the crossing. The refuge islands will contain cuts so that the crossing can be made entirely at grade. After the crossing, the path is again raised and proceeds at grade with the sidewalk as it crosses the railroad tracks towards Dorchester Avenue.

At the intersection of Southampton Street and Dorchester Avenue, the bike facility curves towards the north. Pedestrians and bicycles cross at a new crosswalk that is being proposed as part of a separate project for improvements along Dorchester Avenue. This crossing will continue on to the cycle track on Preble Street.

6.4 Preble Street

6.4.1 Overview of Selected Design

From the intersection with Dorchester Avenue heading east, the two-way cycle track continues on the north side of Preble Street. For the majority of this section the cycle track is located at grade with the roadway with a buffer zone separating the cycle track
from the parked cars. A lane diet, or the narrowing of travel lane widths, will allot a large amount of space to implement the proposed cycling facilities.

6.4.2 Roadway Improvements

The lane diet conducted on this road, created an acceptable amount of space for a new bicycling facility on the north side of Preble Street. This cycle track will be located between the existing pedestrian facilities and the new location of the on street parking (Figure $6.4-\mathrm{A}$). This location provides an easy connection to the proposed cycle track to the west of Preble Street. This easy connection creates a safe transition for cyclists to the east of Preble Street. On the west end at the proposed roundabout, Section 7.4.3, connections will not be a limiting factor in the placement of the cycle track on Preble Street.

Figure 6.4-A: Preble Street Selected Design Cross Section Looking East

East of the Dorchester Avenue intersection the cycle track begins at grade with existing sidewalk. The cycle track is located at this grade in order to accommodate the bus stop. After the cycle track passes a bus stop, the cycle track is then brought down the grade of the existing roadway. The cycle track is continued at this grade towards the east until 100 feet west of Vinton Street. At this point the cycle track will be brought back up to sidewalk grade to accommodate another bus stop.

Despite the lane diet all movements and roadways facilities have been maintained. There is still a single lane of traffic in each direction, reduced from 19 feet to 12 feet. The narrowing of the lanes not only provides adequate space for cyclists but also implements a method of traffic calming. With a narrower travel lane drivers will be forced to travel at a lower speed. This is desirable due to the large number of residential buildings along Preble Street. Parking is maintained throughout Preble Street along both sides of the roadway. Approximately two parking spaces will be eliminated on the southern side and eastern end of the roadway to accommodate the bus stop and additional roundabout lanes.

6.4.3 Preble Circle Improvements

At the eastern end of Preble Street is a rotary of the intersection of Old Colony Avenue and Columbia Road. This rotary is inadequate in terms of safety due to the expansive pavement and "straight shots" conducive to high speeds. In place of this rotary is a proposed modern roundabout (Figure $6.4-B$). This will increase the safety of the intersection and will continue exemplary operations.

The inscribed diameter of the proposed roundabout is 130 feet. Beginning from the center of the roundabout is a central island, 30 feet in diameter. Surrounding this central island is 24 feet of mountable apron. This allows heavy vehicles to traverse the roundabouts with ease and safety. This apron will be made of granite rumble block pavement. This will discourage passenger cars and smaller vehicles from using this area. Surrounding the mountable apron are two 12 foot circulating travel lanes. At the outermost limits of the roundabout are the pedestrian and cycling facilities.

4/23/2009

These facilities are located at grade with the roadway to avoid frequent changes in grade and to add to the comfort and continuity of the facility (Figure 6.4-C). The cycle track is two-way and 12 feet wide, and the pedestrian walkway is eight feet wide. Continuing the two-way track will allow for an easy connection to the facility which continues south on Old Colony Avenue. These facilities on the outside of the roundabout also created ideal connections to points north and further east for cyclists and pedestrians. Locating the crossing at the legs of the intersections also allows for easy and short crossings through the use of refuge medians between entrances and exits. Crossings will be marked as described in Section 5.0. Bollards will be placed at each end of the roadways in order to discourage vehicles from encroaching upon the pedestrian and bicycle facilities.

The pedestrian and cycling facilities are offset 25 feet from the circulating lanes. This provides many opportunities to promote pedestrian and bicycle safety. The 25 feet allows entering vehicles to wait to enter the roundabout and not block the crossings. This same area allots exiting vehicles a sufficient amount of space to yield to a pedestrian or bicyclist without blocking the circulating traffic.

Each approach contains two lanes. The exits northbound and southbound on Old Colony Avenue each have two lanes while the exits at Preble Street and Columbia Road have one. A single exit lane is safer because it eliminates an additional conflict between exiting vehicles and circulating vehicles. It also reduces the crossing distance for pedestrians and cyclists. The reason the exits on Old Colony Avenue are not single lanes is due to the necessary capacity. The majority of exits occur on this road, and therefore a single exit lane would work efficiently enough to continue with the implementation of the roundabout. The Preble Street approach begins as a single lane and is flared to two lanes over 160 feet. This increase to two lanes is necessary to maintain an acceptable LOS for this approach. The additional lane allows for more storage and also allows two vehicles to enter in an acceptable gap instead of just one.

Figure 6.4-C: Proposed Roundabout Improvements at Preble Street and Old Colony Avenue

With the implementation of the roundabout, all of the approaches will be realigned. This alignment is necessary to deflect vehicles utilizing the intersection. The realignment will bring each approach to almost a 90 degree angle with the intersection. This deflection is the most important element of the modern roundabout. This is the element which results in the traffic calming effect and decreases the speed of approaching vehicles, circulating vehicles and exiting vehicles. This reduction in speed is very desirable for an area where vehicles, pedestrians, and cyclists will be interacting. Slower speeds will result in more acute awareness of surroundings and adequate time to react to any unordinary situation. Slower speeds will also create gaps within the circulating traffic that will allow for easier merging from approaching vehicles.

After designing all the parameters of the roundabout, analysis was conducted to anticipate the operation of the roundabout. Unfortunately, due to the unique nature of the existing rotary, analysis was unable to be completed for the existing conditions. The analysis of the proposed roundabout was completed with software called Rodel (Appendix F). The program allows the input of the various geometric parameters of the roundabout and outputs an HCM equivalent delay and LOS. This analysis was conducted for both the AM and PM peak hour (Table 6.4-A). During both peaks the roundabout performs exceptionally. The only exception is the northbound movement on Old Colony Avenue during the AM peak. This is due to the extremely high traffic volume, but still operates at an acceptable level of service.

Table 6.4-A: Intersection of Preble Street and Old Colony Avenue Capacity Analysis Summary

Approach		2014 Build				
		LOS ${ }^{1}$	Rodel Delay ${ }^{2}$	Net Delay ${ }^{3}$	Queue ${ }^{4}$	Queue ${ }^{5}$
Old Colony Avenue	AM	C	0.52	33.2	17	425
Northbound	PM	A	0.05	5.0	1	25
Old Colony Avenue	AM	A	0.07	6.2	1	25
Southbound	PM	A	0.05	5.0	1	25
Preble Street	AM	B	0.15	11.0	2	50
	PM	A	0.06	5.6	0	0
Columbia Road	AM	A	0.04	4.4	0	0
	PM	A	0.05	5.0	0	0
1. Level-of-Service						
2. Average delay in minutes						
3. Average vehicle delay in seconds						
4. In vehicles						
5. In feet						

The final benefit of implementing a roundabout at the location of the rotary is the amount of pavement which can be "reclaimed" for green space. Although the additional green space is only approximately 9,000 square feet, due to the loss of the large center island, it
is now far more accessible. The green space in the center of the old rotary was completely inaccessible due to the high speed of circulating traffic. The proposed green space will be related to the perimeter of the roundabout, for the enjoyment of the users and community.

6.5 Old Colony Avenue

6.5.1 Overview of Selected Design

Beginning at the proposed roundabout, the cycle track continues south onto Old Colony Avenue. The selected design along Old Colony Avenue involves the continuation of the two-way cycle track on the west side of the roadway. This was achieved, again through a lane diet and also lane elimination. The placement of the cycle track on the west side provides connection benefits at the southern end of Old Colony Avenue. Included in the proposed design of the cycling facilities are roadway improvements to the northbound traffic movements in order to create a comprehensive design for the roadway.

6.5.2 Roadway Improvements

The selected design along Old Colony Avenue involves the continuation of the two-way cycle track on the west side of the roadway. The additional space for the cycle track was achieved through the elimination of a travel lane (Figure 6.5-A). As mentioned previously, a single travel can process about 1800 vehicles per hour. Critical link volumes of $1110 \& 1290$ vehicles per hour during the peak AM \& PM hour clearly show the underutilization of the lanes and justify the elimination of one (Figure 6.5-B) In addition to the elimination of a lane, the travel lanes have been narrowed from 14 feet each to 12 . This also acts as a traffic calming measure, ultimately decreasing vehicular speeds. A travel lane on the northbound movement will also be eliminated for the same reason. The extra space can be used at the discretion of the community and other decision makers. There is abundant opportunity to utilize the space in a way that will benefit all users.

Figure 6.5-A: Old Colony Avenue Selected Design Cross Section Looking South Wide Section

Figure 6.5-B: Critical Volume Analysis for Old Colony Avenue Proposed Modifications

The allotted space on the west side will be used for the two-way cycle track and buffer zone. The cycle track will be 12 feet wide and will be at grade with the roadway. Pavement markings and intersection applications are as outlined in Section 5.0. Pedestrians are to utilize the existing 11 foot sidewalk at the western most edge of the right of way. At the locations of the bus stops, the sidewalk will be extended to the edge of the roadway to allow for easy access on and off the bus.

The cycle track will be bounded by the sidewalk on the west side and a buffer zone on the east side. This buffer zone will be implemented in concurrence with Section 5.0. In this section of roadway the delineation between the cycle track and parking will be the use of planters in the buffer. These planters provide vertical separation and also beautify the area, which is important because of the residential nature on this side of the roadway. This buffer also provides ample space for drivers and passengers to enter and exit their vehicles without impeding the cycle track. All on street parking will be maintained on both sides of the roadway.

Continuing south, at the split of Old Colony Avenue and Columbia Road, the bicycle facility continues to the southwest and utilizes an existing road which bypasses the Kosciuszko Circle (Figure 6.5-C). This roadway approaches the MBTA JFK/UMASS subway station. The facility continues to be a 12 foot wide two-way cycle track at grade with the roadway with a large buffer. The location of MBTA station justifies the western location of the cycle track. Eliminating the crossing of the intersection achieves the goal of maintaining a safe bicycle facility, due to the elimination of conflict with vehicles.

Figure 6.5-C: Old Colony Avenue Selected Design Cross Section at Roadway Split

At the MBTA JFK/UMASS station the cycle track is transitioned to be at grade with the sidewalk. This is necessary due to the narrow right of way at this particular location. Despite the narrow cross-section a separate bicycle facility and pedestrian facility will be separately maintained.

6.6 Morrissey Boulevard

6.6.1 Overview of Selected Design

At the MBTA JFK/UMASS station the proposed design continues on an extended curb from along Mount Vernon Street and heads towards the south along the entrance to Morrissey Boulevard. The proposed cycle track will be located on the west side of Morrissey Boulevard down to the intersection with UMass Boston. This end point creates opportunity for future connection to the Neponset River Trail.

6.6.2 Roadway Improvements (Southbound Side)

The two-way cycle track continues south on the western edge of Morrissey Boulevard. This location allows for easy connection to the northern section of the corridor on Old Colony Avenue (Figure 6.6-A). It also creates a comfortable setting for pedestrian and cyclists, being located away from heavy, high speed traffic volumes. Although this western location is not ideal for the connection into UMASS Boston, a proposed intersection reconfiguration will safely integrate a crossing for cyclists.

Figure 6.6-A: Cross-Section at Two-Way Morrissey Boulevard
For the length of Morrissey Boulevard, the cycle track will be at grade with the sidewalk. Necessary ramps and crossings will be implemented in coordination with Section 4.0, to allow safe and easy crossing of driveways. Locating the cycle track at grade with the sidewalk creates a more comfortable and separated environment for cyclists. This grade separation is particularly desirable in the northern section of Morrissey Boulevard, where there is only room for the minimum buffer between bicycle and vehicular traffic. South of the existing two way portion of the western section of Morrissey Boulevard there is an acceptable amount of space to implement a tree belt between the cycle track and travel lanes. This separation creates a more park-like feel improving the aesthetics of the path.

To obtain this additional space for bicycle and vehicle separation a southbound travel lane was eliminated and the existing travel lanes were narrowed (Figure 6.6-B). In addition to the removal and reduction of the travel lanes, the existing median separating the two southbound movements will be removed. South of the two-way section of Morrissey Boulevard there will be four lanes and undivided southbound traffic. This will allow vehicles from the western two section and vehicles traveling southbound from the rotary at Kosciuszko Circle. This allows ample space for vehicles to align themselves into the appropriate lanes for the movements on the UMass Boston intersection. The maximum section of the proposed southbound side of Morrissey Boulevard, there are four lanes of southbound moving vehicles.

Figure 6.6-B: Critical Volume Analysis for Morrissey Boulevard Southbound

Since this section of roadway is governed by traffic signals, Syncrho analysis was conducted to determine the operations of the proposed roadways and intersection. Sections 6.6.3 and 6.6.5, describe the reconfiguration and analysis for the two signalized intersections on Morrissey Boulevard at Shaw's Supermarket and UMass Boston. There is a third signal located on this section of the roadway which is located at the middle driveway of the Boston Globe. The proposed design eliminates this signal. This signal is currently used to allow delivery trucks and vehicles to exit the Boston Globe Driveways. However, this signal is unnecessary due to the fact that only right turns are allowed onto Morrissey Boulevard and southbound traffic, in the AM, is not significant enough to hinder these exiting vehicles.

6.6.3 Shaw's Driveway Improvements

The selected design eliminates a southbound lane in the two-way section on the western side of Morrissey Boulevard (Figure 6.6-C). To justify the elimination of this lane, Synchro analysis was conducted to prove that roadway and intersection operations will continue to operate unhindered (Table 6.6-A \& Figure 6.6-D). As is evident by the comparison between the proposed design and the no build conditions of 2014, the operations will be completely unaffected, Levels of Service of A for every movement.

Figure 6.6-C: Proposed Shaw's/Morrissey Boulevard Intersection Improvements

Figure 6.6-D: Critical Volume Analysis for Western Entrance Ramp to Morrissey Boulevard near Shaw's Supermarkets

Table 6.6-A: Synchro Capacity Analysis Summary at Shaw's and Morrissey Boulevard Intersection

| Approach | 2014 No Build | | | | 2014 Build | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | LOS $^{\mathbf{1}}$ | Delay $^{\mathbf{2}}$ | V/C $^{\mathbf{3}}$ | LOS $^{\mathbf{1}}$ | Delay $^{\mathbf{2}}$ | V/C $^{\mathbf{3}}$ |
| Morrissey Boulevard SB | AM | A | 0.9 | 0.22 | A | 2.1 | 0.43 |
| | PM | A | 3.4 | 0.36 | A | 9.9 | 0.71 |
| | | | | | | | |
| Morrissey Boulevard NB | AM | A | 1.2 | 0.00 | A | 2.0 | 0.00 |
| | PM | A | 2.9 | 0.02 | A | 3.2 | 0.02 |
| | | | | | | | |
| Shaw's Driveway EB | AM | C | 27.1 | 0.39 | A | 9.2 | 0.28 |
| | PM | D | 35.6 | 0.71 | B | 13.2 | 0.58 |
| | | | | | | | |
| Overall Intersection | AM | A | 2.5 | 0.39 | A | 2.5 | 0.43 |
| | PM | A | 8.0 | 0.71 | B | 10.2 | 0.71 |

1. Level-of-Service
2. Average vehicle delay in seconds
3. Volume to Capacity Ratio
(max)

6.6.4 Roadway Improvements (Northbound Side)

Along the northbound side of Morrissey Boulevard, the selected design incorporates a single bike lane in the carriage road (Figure 6.6-E). This modification takes the two lane access road on the eastern side of Morrissey Boulevard and creates a single vehicular travel a lane and a generous bike lane. The intent of this bike lane is to allow for a more direct path for cyclists that intend to travel to points east of Moakley Park or to destinations in South Boston. The bike lane starts along the access road at UMASS Boston and continues north to the intersection of Morrissey Boulevard and Mount Vernon Street. At this point cyclists are expected to either join vehicular traffic or cross with pedestrians and utilize existing crosswalks/sidewalks for the remainder of their journey.

Figure 6.6-E: Morrissey Boulevard Cross- Section

6.6.5 UMASS Boston Intersection Improvements

The selected design incorporates significant changes at the Morrissey Boulevard and UMASS Boston intersection (Figure 6.6-F). The current configuration locates left turning vehicles to the right of through traffic movement, separated by a small median. The selected design eliminates the intermediate median along the south side of the roadway to create a more traditional intersection with the through traffic to the right of the left turning vehicles. This reconfiguration eliminates one through lane, which was used to incorporate the cycle track and green areas.

Figure 6.6-F: Proposed UMass Boston Intersection Improvements

The lane assignments for the southbound traffic include the preservation of three left turning lanes and three through lanes, all 11 feet wide. The selected design cuts into the existing median for one of the storage lanes for left turning vehicles. Additional lane assignment markings have also been included for southbound vehicles to better coordinate lane assignments as they properly align themselves north of the intersection.

The other approaches of this intersection remain fairly untouched. On the southern side of the intersection, the medians are the only items being altered. The crossings will be
maintained at grade through the medians for both pedestrians and bicyclists. The crossing has also been streamlined to entice all users to utilize the selected the design.

To ensure that this selected design will not negatively affect the operations of the intersection, a Synchro analysis was conducted and summarized (Table 6.6-B). The selected design shows the improved LOS for both the AM and PM peak hour for the year 2014. As congestion in this area becomes more of a problem it is important to maintain operations, especially at intersections such as this.

Table 6.6-B: Synchro Analysis Capacity Summary

| Approach | 2014 No Build | | | | 2014 Build | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | LOS $^{\mathbf{1}}$ | Delay $^{\mathbf{2}}$ | V/C $^{\mathbf{3}}$ | LOS $^{\mathbf{1}}$ | Delay $^{\mathbf{2}}$ | V/C $^{\mathbf{3}}$ |
| Morrissey Boulevard SB | AM | D | 47.5 | >1.0 | C | 32.6 | 0.98 |
| | PM | F | 150.6 | >1.0 | C | 25.6 | 0.79 |
| Morrissey Boulevard NB | AM | F | 83.1 | >1.0 | C | 33.1 | >1.0 |
| | PM | B | 18.3 | 0.33 | B | 16.3 | .62 |
| University of Massachusetts | AM | D | 44.5 | 0.13 | D | 43.7 | .80 |
| WB | PM | C | 21.2 | 0.28 | B | 15.6 | .71 |
| | | | | | | | |
| Overall Intersection | AM | E | 75.0 | >1.0 | C | 33.6 | >1.0 |
| | PM | F | 98.8 | >1.0 | C | 21.4 | 0.79 |

[^2]
7.0 Cost Estimate

The cost estimate detailed in Table 6.6-A is based off of plans generated by Livable Engineering And Design. A detailed breakdown of the cost estimate is included in Appendix H. Item numbers and descriptions were compiled from the 1988 Standard Specification for Highways and Bridges and unit prices were taken from the weighted bid averages located in the Massachusetts Highway Department website. 10% of the estimated cost is added to the calculated total to account for associated engineering costs.

Table 6.6-A: Selected Design Cost Estimate Break Down

Item \#	Description	Units	Quantity	Unit Price	Total Price
103	TREE REMOVED - DIAMETER UNDER 24 INCHES	EA	14	\$900.00	\$12,600.00
106.12	BRIDGE CURB REMOVED AND RESET	FT	250	\$18.00	\$4,500.00
120	EARTH EXCAVATION	CY	2470	\$28.00	\$69,170.37
125	TOPSOIL EXCAVATED AND STACKED	CY	471	\$20.00	\$9,420.00
127	CONCRETE EXCAVATION	CY	1019	\$275.00	\$280,352.31
129	ASPHALT PAVEMENT EXCAVATION BY COLD PLANER	SY	106926	\$5.00	\$534,627.78
129.6	BRIDGE PAVEMENT EXCAVATION	SY	1390	\$10.00	\$13,900.00
141	CLASS A TRENCH EXCAVATION	CY	150	\$35.00	\$5,250.00
151	GRAVEL BORROW	CY	2946	\$34.81	\$102,547.68
170	FINE GRADING AND COMPACTING	SY	3177	\$4.00	\$12,706.15
180.1	HEALTH AND SAFETY PLAN	LS	1	\$5,000.00	\$5,000.00
180.2	IMPLEMENTATION OF HEALTH AND SAFETY PLAN	HR	80	\$82.00	\$6,560.00
180.3	PERSONNEL PROTECTION LEVEL C UPGRADE	HR	40	\$25.00	\$1,000.00
202	MANHOLE	EA	15	\$3,000.00	\$45,000.00
220	MANHOLE ADJUSTED	EA	8	\$278.00	\$2,224.00
220.3	DRAINAGE STRUCTURE CHANGE IN TYPE	EA	15	\$750.00	\$11,250.00
221	FRAME AND COVER	EA	15	\$560.00	\$8,400.00
222	FRAME AND GRATE	EA	15	\$600.00	\$9,000.00
223	FRAME AND GRATE (OR COVER) REMOVED AND RESET	EA	15	\$300.00	\$4,500.00
376.2	HYDRANT - REMOVED AND RESET	EA	2	\$2,000.00	\$4,000.00
402	DENSE GRADED CRUSHED STONE FOR SUB-BASE	CY	1588	\$54.00	\$85,766.52
460	HOT MIX ASPHALT	TON	8982	\$96.00	\$862,247.68
460.1	HOT MIX ASPHALT DENSE BINDER	TON	3202	\$80.00	\$256,156.01
464	BITUMEN FOR TACK COAT	GAL	5346	\$5.00	\$26,731.39
482.3	SAWING ASPHALT PAVEMENT	FT	2265	\$2.50	\$5,662.50
485	GRANITE RUMBLE BLOCK PAVEMENT	SY	452	\$195.00	\$88,140.00
504	GRANITE CURB TYPE VA4	FT	4400	\$32.00	\$140,800.00
510	GRANITE EDGING TYPE SA	FT	245	\$35.00	\$8,575.00
580.1	CURB REMOVED, RELOCATED AND RESET	FT	5240	\$34.00	\$178,160.00
701	CEMENT CONCRETE SIDEWALK	SY	13257	\$55.00	\$729,116.67
701.2	CEMENT CONCRETE WHEELCHAIR RAMP	SY	1817	\$80.00	\$145,395.56
707.8	STEEL BOLLARD	EA	300	\$935.00	\$280,500.00
707.9	REMOVABLE PLANTERS	EA	200	\$1,000.00	\$200,000.00
740	ENGINEERS FIELD OFFICE AND EQUIPMENT (TYPE A)	MO	24	\$2,500.00	\$60,000.00
748	MOBILIZATION	LS	1	\$80,000.00	\$80,000.00
751	LOAM BORROW	CY	4200	\$40.00	\$167,994.44
765	SEEDING	SY	6720	\$2.00	\$13,439.56
831.1	ROADSIDE GUIDE SIGN (FR) 25 SF \& UNDER-ALUM.PANEL(TYPE A)	SF	254	\$25.00	\$6,350.00
864.04	PAVEMENT ARROWS AND LEGENDS REFL. WHITE (THERMOPLASTIC)	SF	700	\$4.00	\$2,800.00
866.04	4 INCH REFLECTORIZED WHITE LINE (THERMOPLASTIC)	FT	50447	\$0.75	\$37,835.59
866.12	12 INCH REFLECTORIZED WHITE LINE (THERMOPLASTIC)	FT	50447	\$1.50	\$75,671.18
867.04	4 INCH REFLECTORIZED YELLOW LINE (THERMOPLASTIC)	FT	28905	\$0.75	\$21,678.75
874	STREET NAME SIGN WITH POST	EA	92	\$150.00	\$13,800.00
901.3	4000 PSI, 1.5 IN., 565 CEMENT CONCRETE FOR POST FOUNDATION	CY	46	\$288.50	\$13,271.00
999.001	TRAFFIC POLICE AND FLAGMEN	AL	1.	\$600,000.00	\$600,000.00
				Total	\$5,242,100.13
				Total w/ 10\%	\$5,766,310.14

8.0 Acknowledgments

The compilation of this report would not have been possible without the continued support of professors Peter Furth \& Dan Dulaski. We would like to thank the City of Boston for providing the CAD files that were the basis of our design and the Massachusetts Highway Department for providing essential data for this project. A few others we would like to thank for their input throughout include: Nicole Freedman, Boston's Bicycle Planner, and the various other participants that contributed during our client presentations.

8.1 References

"Standard Specifications for Highways and Bridges - 1988 English Edition". Massachusetts Highway Department. 3/15/09
[http://www.mhd.state.ma.us/default.asp?pgid=content/88specs\&sid=about](http://www.mhd.state.ma.us/default.asp?pgid=content/88specs%5C&sid=about)
"Weighted Bid Prices". Massachusetts Highway Department. 3/15/09
http://www.mhd.state.ma.us/PE/WeightedAverageCriteria.aspx
"Top 200 High Crash Intersection locations 2004-2006". Massachusetts Highway Department. 3/15/09.<http://www.mhd.state.ma.us/default.asp?pgid=content/traffic/crashLocations\&s id=about>

Appendix A - Crash Data

INTERSECTION CRASH RATE WORKSHEET

CITY/TOWN : Boston, Massachusetts		COUNT DATE :
DISTRICT: 4	UNSIGNALIZED :	SIGNALIZED: \quad X
~ INTERSECTION DATA ~		
MAJOR STREET :	Massachusetts Aveune	
MINOR STREET(S) :	Melnea Cass Boulevard	
	Southampton Street	
	General Pulaski Skyway	

PEAK HOUR VOLUMES

	K HOUR VOLU					
APPROACH :	1	2	3	4	5	Total Peak Hourly Approach Volume
DIRECTION :	SB	WB	NB	EB		
PEAK HOURLY VOLUMES (AM/PM) :	780	1,953	1,675	1,280		5,688
" K " FACTOR:	0.100	INTERSECTION ADT (V) = TOTAL DAILY APPROACH VOLUME :				56,880
TOTAL \# OF CRASHES :	89	\# OF YEARS	3	AVEF CRASHE	OF YEAR	29.67
CRASH RATE CALCULATION :		1.43	$\text { RATE }=\frac{(A * 1,000,000)}{(\mathrm{V} * 365)}$			
Project Title \& Date:	Old Colony Bikeway					

INTERSECTION CRASH RATE WORKSHEET

CITY/TOWN : Boston, Massachusetts
COUNT DATE : Feb-09

DISTRICT : \qquad UNSIGNALIZED : \square
X
SIGNALIZED : \square
~ INTERSECTION DATA ~
MAJOR STREET : Southampton Street
MINOR STREET(S) : Theodore Glynn Way
\qquad
\qquad

INTERSECTION DIAGRAM

	PEAK HOUR VOLUMES					
APPROACH :	1	2	3	4	5	Total Peak Hourly
DIRECTION:	SB	WB	NB			Approach Volume
PEAK HOURLY VOLUMES (AM) :	77	778	1,334			2,189
" K " FACTOR:	0.100	INTE	「ION Al PPROA	$\begin{array}{r} \text { (V) }= \\ +\mathrm{VOLU} \end{array}$		21,890
TOTAL \# OF CRASHES :	11	$\begin{gathered} \text { \# OF } \\ \text { YEARS } \end{gathered}$	3			3.67

RATE $=\frac{(A * 1,000,000)}{(\mathrm{V} * 365)}$

Project Title \& Date: \qquad

INTERSECTION CRASH RATE WORKSHEET

CITY/TOWN : Boston, Massachusetts
DISTRICT : 4
\qquad UNSIGNALIZED : \square

COUNT DATE :
SIGNALIZED : \square X

MAJOR STREET : Southampton Street
MINOR STREET(S) : Allstate Rd
\qquad
\qquad

CRASH RATE CALCULATION :

0.16

RATE $=\frac{(\mathrm{A} * 1,000,000)}{(\mathrm{V} * 365)}$

Project Title \& Date: \qquad

INTERSECTION CRASH RATE WORKSHEET

INTERSECTION CRASH RATE WORKSHEET

CITY/TOWN : Boston, Massachusetts
COUNT DATE :
Feb-09
DISTRICT: \qquad UNSIGNALIZED : \square SIGNALIZED : \square
~ INTERSECTION DATA ~

MAJOR STREET :	Old Colony Avenue
MINOR STREET(S) :	Preble Street
	Columbia Road

	PEAK HOUR VOLUMES					
APPROACH :	1	2	3	4	5	Total Peak Hourly
DIRECTION :	SB	WB	NB	EB		Approach Volume
PEAK HOURLY VOLUMES (AM/PM) :	915	126	1,980	180		3,201
" K " FACTOR:	0.100	INTER	TION A PPROA	$(V)=T$ VOLUM		32,010
TOTAL \# OF CRASHES :	23	$\begin{gathered} \text { \# OF } \\ \text { YEARS : } \end{gathered}$	3	AVE CRASH	OF YEAR	7.67

[^3]RATE $=\frac{(A * 1,000,000)}{(\mathrm{V} * 365)}$

Project Title \& Date: \qquad

INTERSECTION CRASH RATE WORKSHEET

CITY/TOWN : Boston, Ma
DISTRICT : $\frac{4}{}$

COUNT DATE : Feb-09

DISTRICT : 4 UNSIGNALIZED : \square SIGNALIZED : X

MAJOR STREET : Morrissey Boulevard
MINOR STREET(S) : University of Massachusetts Boston
\qquad

	PEAK HOUR VOLUMES					
APPROACH :	1	2	3	4	5	Total Peak Hourly Approach Volume
DIRECTION :	SB	WB	NB			
PEAK HOURLY VOLUMES (AM) :	1,324	236	3,452			5,012
" K " FACTOR :	0.100	INTERSECTION ADT (V) = TOTAL DAILY APPROACH VOLUME:				50,120
TOTAL \# OF CRASHES :	22	\# OF YEARS	3	AVERAGE \# OF CRASHES PER YEAR (A) :		7.33

RATE $=\frac{(A * 1,000,000)}{(V * 365)}$
Project Title \& Date: \qquad

Appendix B - Turning Movement Counts

AM Peak Hour

Melnea Cass Boulevard and Massachusetts Avenue Traffic Volumes

March 17, 2008

Phases	7:00	7:15	7:30	7:45	8:00	8:15	8:30	8:45	Totals	PH Totals	App Totals
EBR	0	0	3	0	0	0	0	0	0	0	
EBT	91	97	83	115	97	92	97	95	381	401	
EBL	60	94	59	115	92	89	83	74	338	379	780
WBR	85	68	122	90	96	89	98	83	366	373	
WBT	157	198	188	196	194	214	207	198	813	811	
WBL	88	109	83	110	116	101	94	89	400	421	1605
SBR	101	163	150	130	143	136	121	123	523	530	
SBT	270	240	251	227	249	256	247	233	985	979	
SBL	91	95	103	115	108	98	123	102	431	444	1953
NBR	94	92	81	118	97	108	91	86	382	414	
NBT	207	228	237	218	226	215	207	211	859	866	
NBL	0	0	0	0	0	0	0	0	0	0	1280
				3211	3271	3266	3233	3180	3180		
				1434	1418	1398	1368	1294			

Old Calany Bikeway

Northeastern University
CIVU768: Transportation Capstone
File Name : SouthbayAM
Site Code : 00003241
Start Date : 3/24/2009

South Bay Center AM
Southampton @ Allstate Road
Boston, MA

Groups Printed- Unshifted - HV																	
	From North	Southampton St From East					Allstate Rd From South					Southampton St From West					
Start Time	App. Total	Right	Thru	Left	Right to Frontage Rd	App. Total	Right	Thru	Left	Leflo Foronage Rd	App. Toal	Right	Thu	Let	Righto Foionase Rd der	App. Total	Int. Total
07:15 AM	0	0	206	24	14	244	33	1	22	2	58	5	90	4	26	125	427
07:30 AM	0	0	210	20	8	238	41	0	30	1	72	7	98	0	28	133	443
07:45 AM	0	0	244	36	20	300	60	0	38	0	98	6	94	0	30	130	528
Total	0	0	660	80	42	782	134	1	90	3	228	18	282	4	84	388	1398
08:00 AM	0	0	207	26	9	242	44	0	26	2	72	5	98	1	53	157	471
08:15 AM	0	0	193	26	12	231	55	0	34	1	90	7	71	0	32	110	431
Grand Total	0	0	1060	132	63	1255	233	1	150	6	390	30	451	5	169	655	2300
Apprch \%		0	84.5	10.5	5		59.7	0.3	38.5	1.5		4.6	68.9	0.8	25.8		
Total \%	0	0	46.1	5.7	2.7	54.6	10.1	0	6.5	0.3	17	1.3	19.6	0.2	7.3	28.5	
Unshifted	0	0	1027	130	62	1219	216	1	134	5	356	29	399	5	151	584	2159
\% Unshifted	0	0	96.9	98.5	98.4	97.1	92.7	100	89.3	83.3	91.3	96.7	88.5	100	89.3	89.2	93.9
HV	0	0	33	2	1	36	17	0	16	1	34	1	52	0	18	71	141
\% HV	0	0	3.1	1.5	1.6	2.9	7.3	0	10.7	16.7	8.7	3.3	11.5	0	10.7	10.8	6.1

Old Calany Bikeway

Northeastern University CIVU768: Transportation Capstone

South Bay Center AM Southampton @ Allstate Road Boston, MA

File Name : SouthbayAM
Site Code : 00003241
Start Date : 3/24/2009
Page No : 2

Old Calany Bikeway

Northeastern University
CIVU768: Transportation Capstone
File Name : SouthbayAM
Site Code : 00003241
Start Date : 3/24/2009

South Bay Center AM
Southampton @ Allstate Road
Boston, MA

	From North	Southampton St From East					Allstate Rd From South					Southampton St From West					
Start Time	App. Total	Right	Thru	Left	Right to Frontage Rd	App. Total	Right	Thru	Left	Letlo foronage Rd	App. Toal	Right	Thu	Let	${ }_{\text {Righto Foionage }}^{\text {Rd }}$	App. Total	Int. Total
Peak Hour Analysis From 07:15 AM to 08:15 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:																	
	07:15 AM	07:15 AM					07:30 AM					07:15 AM					
+0 mins.	0	0	206	24	14	244	41	0	30	1	72	5	90	4	26	125	
+15 mins.	0	0	210	20	8	238	60	0	38	0	98	7	98	0	28	133	
+30 mins.	0	0	244	36	20	300	44	0	26	2							
+45 mins.	0	0	207	26	9	242	55	0	34	1	90	5	98	1	53	157	
Total Volume	0	0	867	106	51	1024	200	0	128	4	332	23	380	5	137	545	
\% App. Total		0	84.7	10.4	5		60.2	0	38.6	1.2		4.2	69.7	0.9	25.1		
PHF	. 000	. 000	. 888	. 736	.638	. 853	. 833	. 000	. 842	. 500	. 847	. 821	. 969	. 313	. 646	868	

Old Calany Bikeway

Northeastern University CIVU768: Transportation Capstone

South Bay Center AM Southampton @ Allstate Road Boston, MA

File Name : SouthbayAM
Site Code : 00003241
Start Date : 3/24/2009
Page No : 4

AM Preble Circle

Old Colony N		Columbia Rd		Old Colony S		Preble St	
IN	OUT	IN	OUT	IN	OUT	IN	OUT
915	1373	126	189	1980	1110	180	668

$\begin{array}{cc}\text { IN } & 3201 \\ \text { OUT } & 3339\end{array}$

File Name : STARMA~1
Site Code : 00001221
Start Date : 3/24/2009
Page No : 1

Groups Printed- Unshifted

	Morrissey Blvd From North					From East	Morrissey Blvd From South					Shaw's Driveway From West					
Start Time	Right	Thru	Left	Peds	App. Total	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:30 AM	0	146	0	0	146	0	0	3	0	0	3	3	0	5	0	8	157
07:45 AM	0	127	0	0	127	0	0	0	0	0	0	3	0	6	0	9	136
Total	0	273	0	0	273	0	0	3	0	0	3	6	0	11	0	17	293
08:00 AM	1	135	0	0	136	0	0	1	0	0	1	6	0	1	0	7	144
08:15 AM	0	150	0	0	150	0	0	0	0	0	0	5	0	6	0	11	161
Grand Total	1	558	0	0	559	0	0	4	0	0	4	17	0	18	0	35	598
Apprch \%	0.2	99.8	0	0			0	100	0	0		48.6	0	51.4	0		
Total \%	0.2	93.3	0	0	93.5	0	0	0.7	0	0	0.7	2.8	0	3	0	5.9	

File Name : STARMA~1
Site Code : 00001221
Start Date : 3/24/2009
Page No : 2

	Morrissey Blvd From North					From East	Morrissey Blvd From South					Shaw's Driveway From West					
Start Time	Right	Thru	Left	Peds	App. Total	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:30 AM to 08:15 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:																	
	07:30 AM					07:30 AM	07:30 AM					07:30 AM					
+0 mins.	0	146	0	0	146	0	0	3	0	0	3	3	0	5	0	8	
+15 mins.	0	127	0	0	127	0	0	0	0	0	0	3	0	6	0	9	
+30 mins.	1	135	0	0	136	0	0	1	0	0	1	6	0	1	0	7	
+45 mins.	0	150	0	0	150	0	0	0	0	0	0	5	0	6	0	11	
Total Volume	1	558	0	0	559	0	0	4	0	0	4	17	0	18	0	35	
\% App. Total	0.2	99.8	0	0			0	100	0	0		48.6	0	51.4	0		
PHF	. 250	. 930	. 000	. 000	. 932	. 000	. 000	. 333	. 000	. 000	. 333	. 708	. 000	. 750	. 000	. 795	

File Name : UMASS AM
Site Code : 00001111
Start Date : 2/25/2009
Page No : 1

Groups Printed- Unshifted - Bank 1														
	Morrissey Blvd From North					UMASS Boston From East					Morrisey Blvd From South			
Start Time	U-Turn	Inside Thru	Left	Outside Thru	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	App. Total	Int. Total
07:00 AM	32	44	37	60	173	3	0	9	0	12	48	786	834	1019
07:15 AM	58	57	65	107	287	13	0	35	0	48	66	703	769	1104
07:30 AM	80	68	88	116	352	18	0	32	0	50	92	776	868	1270
07:45 AM	76	72	107	101	356	19	0	38	0	57	111	792	903	1316
Total	246	241	297	384	1168	53	0	114	0	167	317	3057	3374	4709
08:00 AM	64	49	106	112	331	28	0	55	0	83	97	713	810	1224
08:15 AM	33	61	101	90	285	20	0	26	0	46	105	766	871	1202
08:30 AM	22	50	100	117	289	8	0	26	0	34	126	672	798	1121
08:45 AM	13	51	128	100	292	15	0	20	0	35	145	687	832	1159
Total	132	211	435	419	1197	71	0	127	0	198	473	2838	3311	4706
Grand Total	378	452	732	803	2365	124	0	241	0	365	790	5895	6685	9415
Apprch \%	16	19.1	31	34		34	0	66	0		11.8	88.2		
Total \%	4	4.8	7.8	8.5	25.1	1.3	0	2.6	0	3.9	8.4	62.6	71	
Unshifted	378	452	732	803	2365	124	0	241	0	365	790	5895	6685	9415
\% Unshifted	100	100	100	100	100	100	0	100	0	100	100	100	100	100
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

File Name : UMASS AM
Site Code : 00001111
Start Date : 2/25/2009
Page No : 2

File Name : UMASS AM
Site Code : 00001111
Start Date : 2/25/2009
Page No : 3

	Morrissey Blvd From North					UMASS Boston From East					Morrisey Blvd From South			
Start Time	U-Turn	Inside Thru	Left	Outside Thru	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1														
Peak Hour for Entire Inters	on Begins	07:30 AM												
07:30 AM	80	68	88	116	352	18	0	32	0	50	92	776	868	1270
07:45 AM	76	72	107	101	356	19	0	38	0	57	111	792	903	1316
08:00 AM	64	49	106	112	331	28	0	55	0	83	97	713	810	1224
08:15 AM	33	61	101	90	285	20	0	26	0	46	105	766	871	1202
Total Volume	253	250	402	419	1324	85	0	151	0	236	405	3047	3452	5012
\% App. Total	19.1	18.9	30.4	31.6		36	0	64	0		11.7	88.3		
PHF	. 791	. 868	. 939	. 903	. 930	. 759	. 000	. 686	. 000	. 711	. 912	. 962	. 956	. 952

PM Peak Hour

Melnea Cass Boulevard and Massachusetts Avenue PM Counts
April 9, 2008

	4:00	4:15	4:30	4:45	5:00	5:15	5:30	5:45	Totals	PH Totals	App Totals
EBR	1	7	8	2	2	4	1	5	30	19	
EBT	185	217	201	224	208	214	198	188	1635	850	
EBL	142	122	158	161	146	151	137	126	1143	587	1456
WBR	110	90	100	76	82	89	84	79	710	348	
WBT	111	144	144	165	152	146	130	136	1128	605	
WBL	77	77	83	67	72	78	64	62	580	299	1252
SBR	79	136	150	120	124	128	119	112	968	530	
SBT	201	221	217	228	220	218	209	198	1712	886	
SBL	115	130	96	117	105	112	100	97	872	448	1864
NBR	144	135	119	128	122	114	119	110	991	504	
NBT	237	185	193	183	188	182	176	178	1522	749	
NBL	0	0	0	0	0	0	0	0	0	0	1253
	1402	1464	1469	1471	1421	1436	1337	1291	11291		
				5806	5825	5797	5665	5485			

Old Calony Bikeway

Northeastern University

South Bay Center PM Boston, MA

File Name : SouthbayPM
Site Code : 00003242
Start Date : 3/24/2009
Page No : 1

Groups Printed- Unshifted - HV																	
	From North	Southampton St From East					Allstate Rd From South					Southampton St From West					
Start Time	App. Total	Right	Thru	Left	Letto Foronage Rd	App. Total	Right	Thru	Left	Righto Foronase	Ioal	Righ	Thu	Len	Righto foronage	App. Total	Int. Total
05:00 PM	0	0	97	45	7	149	38	0	22	3	63	31	109	0	160	300	512
05:15 PM	0	1	110	74	7	192	53	0	18	0	71	20	103	1	128	252	515
05:30 PM	0	0	114	72	10	196	43	0	15	4	62	18	92	0	146	256	514
05:45 PM	0	0	105	64	4	173	54	0	21	1	76	13	107	0	137	257	506
Total	0	1	426	255	28	710	188	0	76	8	272	82	411	1	571	1065	2047
Grand Total	0	1	426	255	28	710	188	0	76	8	272	82	411	1	571	1065	2047
Apprch \%		0.1	60	35.9	3.9		69.1	0	27.9	2.9		7.7	38.6	0.1	53.6		
Total \%	0	0	20.8	12.5	1.4	34.7	9.2	0	3.7	0.4	13.3	4	20.1	0	27.9	52	
Unshifted	0	1	409	248	27	685	175	0	71	8	254	77	401	1	568	1047	1986
\% Unshifted	0	100	96	97.3	96.4	96.5	93.1	0	93.4	100	93.4	93.9	97.6	100	99.5	98.3	97
HV	0	0	17	7	1	25	13	0	5	0	18	5	10	0	3	18	61
\% HV	0	0	4	2.7	3.6	3.5	6.9	0	6.6	0	6.6	6.1	2.4	0	0.5	1.7	3

Old Calany Bikeway

Northeastern University

South Bay Center PM Boston, MA

File Name : SouthbayPM
Site Code : 00003242
Start Date : 3/24/2009
Page No : 2

Old Calany Bikeway

Northeastern University
CIVU768: Transportation Capstone
File Name : SouthbayPM
Site Code : 00003242
Start Date : 3/24/2009
Page No : 3

	From North	Southampton St From East					Allstate Rd From South					Southampton St From West					
Start Time	App. Total	Right	Thru	Left	Letto foronese fd	App. Total	Right	Thru	Left	Righto fonalag	App. Toal	Rgot	${ }_{\text {thu }}$	Len		App. Total	Int. Total
Peak Hour Analysis From 05:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:																	
	05:00 PM	05:00 PM					05:00 PM					05:00 PM					
+0 mins.	0	0	97	45	7	149	38	0	22	3	63	31	109	0	160	300	
+15 mins.	0	1	110	74	7	192	53	0	18	0	71	20	103	1	128	252	
+30 mins.	0	0	114	72	10	196	43	0	15	4							
+45 mins.	0	0	105	64	4	173	54	0	21	1	76	13	107	0	137	257	
Total Volume	0	,	426	255	28	710	188	0	76	8	272	82	411	1	571	1065	
\% App. Total		0.1	60	35.9	3.9		69.1	0	27.9	2.9		7.7	38.6	0.1	53.6		
PHF	. 000	. 250	. 934	. 861	. 700	. 906	. 870	. 000	. 864	. 500	. 895	. 661	. 943	. 250	. 892	. 888	

Old Calany Bikeway

Northeastern University

South Bay Center PM Boston, MA

File Name : SouthbayPM
Site Code : 00003242
Start Date : 3/24/2009
Page No : 4

PM Preble Circle								
Old Colony N		Columbia Rd		Old Colony S		Preble St		
IN	OUT	IN	OUT	IN	OUT	IN	OUT	
820	416	384	171	645	1290	254	303	

$\begin{array}{cc}\text { IN } & 2103 \\ \text { OUT } & 2180\end{array}$

File Name : StarMarketPM
Site Code : 00005678
Start Date : 3/24/2009
Page No : 1

Groups Printed- Unshifted

	Morrissey Blvd From North					From East	Morrissey Blvd From South					Shaw's Driveway From West					
Start Time	Right	Thru	Left	Peds	App. Total	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:00 PM	1	181	0	0	182	0	0	8	0	0	8	16	0	15	0	31	221
05:15 PM	1	215	0	0	216	0	0	4	0	0	4	19	0	21	0	40	260
05:30 PM	0	200	0	0	200	0	0	8	0	0	8	14	0	19	0	33	241
05:45 PM	4	195	0	0	199	0	0	7	0	0	7	14	0	23	0	37	243
Total	6	791	0	0	797	0	0	27	0	0	27	63	0	78	0	141	965
Grand Total	6	791	0	0	797	0	0	27	0	0	27	63	0	78	0	141	965
Apprch \%	0.8	99.2	0	0			0	100	0	0		44.7	0	55.3	0		
Total \%	0.6	82	0	0	82.6	0	0	2.8	0	0	2.8	6.5	0	8.1	0	14.6	

Old Calany Bikeway
Northeastern University CIVU768: Transportation Capstone

File Name : StarMarketPM
Site Code : 00005678
Start Date : 3/24/2009
Page No : 2

	Morrissey Blvd From North					From East	Morrissey Blvd From South					Shaw's Driveway From West					
Start Time	Right	Thru	Left	Peds	App. Total	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 05:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:																	
	05:00 PM					05:00 PM	05:00 PM					05:00 PM					
+0 mins.	1	181	0	0	182	0	0	8	0	0	8	16	0	15	0	31	
+15 mins.	1	215	0	0	216	0	0	4	0	0	4	19	0	21	0	40	
+30 mins.	0	200	0	0	200	0	0	8	0	0	8	14	0	19	0	33	
+45 mins.	4	195	0	0	199	0	0	7	0	0	7	14	0	23	0	37	
Total Volume	6	791	0	0	797	0	0	27	0	0	27	63	0	78	0	141	
\% App. Total	0.8	99.2	0	0			0	100	0	0		44.7	0	55.3	0		
PHF	. 375	. 920	. 000	. 000	. 922	. 000	. 000	. 844	. 000	. 000	. 844	. 829	. 000	. 848	. 000	. 881	

	Morrissey Blvd From North				UMASS Boston From East				Morrissey Blvd From South			
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	App. Total	Int. Total
04:15 PM	0	430	48	478	61	0	101	162	27	221	248	888
04:30 PM	0	442	45	487	48	0	61	109	25	259	284	880
04:45 PM	0	453	71	524	40	0	82	122	25	286	311	957
Total	0	1325	164	1489	149	0	244	393	77	766	843	2725
05:00 PM	0	390	68	458	40	0	106	146	34	194	228	832
05:15 PM	0	480	121	601	42	0	98	140	47	280	327	1068
05:30 PM	0	452	107	559	83	0	95	178	64	233	297	1034
05:45 PM	0	528	120	648	43	0	118	161	37	194	231	1040
Total	0	1850	416	2266	208	0	417	625	182	901	1083	3974
06:00 PM	0	409	47	456	37	0	54	91	20	192	212	759
Grand Total	0	3584	627	4211	394	0	715	1109	279	1859	2138	7458
Apprch \%	0	85.1	14.9		35.5	0	64.5		13	87		
Total \%	0	48.1	8.4	56.5	5.3	0	9.6	14.9	3.7	24.9	28.7	
Unshifted	0	3584	627	4211	394	0	715	1109	279	1859	2138	7458
\% Unshifted	0	100	100	100	100	0	100	100	100	100	100	100
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
\% Bank 1	0	0	0	0	0	0	0	0	0	0	0	0

File Name : UMASS PM
Site Code : 00003333
Start Date : 2/25/2009
Page No : 2

UMASS Boston
Boston

File Name : UMASS PM
Site Code : 00003333
Start Date : 2/25/2009
Page No : 3

	Morrissey Blvd From North				UMASS Boston From East				Morrissey Blvd From South			
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	App. Total	Int. Total
Peak Hour Analysis From 04:15 PM to 06:00 PM - Peak 1 of 1												
Peak Hour for Entire Intersection Begins at 05:00 PM												
05:00 PM	0	390	68	458	40	0	106	146	34	194	228	832
05:15 PM	0	480	121	601	42	0	98	140	47	280	327	1068
05:30 PM	0	452	107	559	83	0	95	178	64	233	297	1034
05:45 PM	0	528	120	648	43	0	118	161	37	194	231	1040
Total Volume	0	1850	416	2266	208	0	417	625	182	901	1083	3974
\% App. Total	0	81.6	18.4		33.3	0	66.7		16.8	83.2		
PHF	. 000	. 876	. 860	. 874	. 627	. 000	. 883	. 878	. 711	. 804	. 828	. 930

Appendix C - Synchro Analysis for Existing Conditions

AM Peak Hour

Splits and Phases: 5: Massachusetts Avenue \& Melnea Cass Blvd

	\rightarrow	\cdots	\checkmark	家	7	\Perp	4	7	\cdots	+
Lane Group	EBT	EBR	EBR2	WBL2	WBL	WBT	NBL	NBR	NWL	NWR
Lane Configurations	瑯					¢4	${ }^{7}$	F		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Turning Speed (mph)		9	9	15	15		15	9	15	9
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00
Frt	0.956							0.850		
Flt Protected						0.992	0.950			
Satd. Flow (prot)	3383	0	0	0	0	3511	1770	1583	0	0
Flt Permitted						0.659	0.950			
Satd. Flow (perm)	3383	0	0	0	0	2332	1770	1583	0	0
Right Turn on Red			Yes							Yes
Satd. Flow (RTOR)	7									
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	30					30	30		30	
Link Distance (ft)	299					536	224		210	
Travel Time (s)	6.8					12.2	5.1		4.8	
Volume (vph)	380	137	23	51	106	867	128	200	0	0
Peak Hour Factor	0.87	0.87	0.87	0.85	0.85	0.85	0.85	0.85	0.92	0.92
Adj. Flow (vph)	437	157	26	60	125	1020	151	235	0	0
Lane Group Flow (vph)	620	0	0	0	0	1205	151	235	0	0
Turn Type				pm+pt	pm+pt			Perm		
Protected Phases	4			3	3	8	2			
Permitted Phases				8	8			2		
Minimum Split (s)	22.0			10.0	10.0	22.0	22.0	22.0		
Total Split (s)	41.0	0.0	0.0	13.0	13.0	54.0	26.0	26.0	0.0	0.0
Total Split (\%)	51\%	0\%	0\%	16\%	16\%	68\%	33\%	33\%	0\%	0\%
Maximum Green (s)	35.0			7.0	7.0	48.0	20.0	20.0		
Yellow Time (s)	3.0			3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	3.0			3.0	3.0	3.0	3.0	3.0		
Lead/Lag	Lag			Lead	Lead					
Lead-Lag Optimize?	Yes			Yes	Yes					
Walk Time (s)	5.0					5.0	5.0	5.0		
Flash Dont Walk (s)	11.0					11.0	11.0	11.0		
Pedestrian Calls (\#/hr)	0					0	0	0		
Act Effct Green (s)	37.0					50.0	22.0	22.0		
Actuated g/C Ratio	0.46					0.63	0.28	0.28		
v/c Ratio	0.40					0.76	0.31	0.54		
Uniform Delay, d1	14.0					9.1	23.0	24.7		
Delay	14.2					9.7	23.5	25.4		
LOS	B					A	C	C		
Approach Delay	14.2					9.7	24.7			
Approach LOS	B					A	C			
Queue Length 50th (ft)	101					161	60	100		
Queue Length 95th (ft)	135					192	102	158		
Internal Link Dist (ft)	219					456	144		130	
50th Up Block Time (\%)										
95th Up Block Time (\%)								13\%		
Turn Bay Length (ft)										
50th Bay Block Time \%										

Splits and Phases: 3: Southampton St \& Allstate Road

												\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＊个个	「	\％${ }^{1 / 4}$		「＂		率	「		个坐个	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	10	11	12	11	11	12	12	12	16	12	12	12
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Turning Speed（mph）	15		20	15		9	15		9	15		9
Lane Util．Factor	0.91	0.91	1.00	0.97	1.00	0.88	1.00	0.91	1.00	1.00	0.91	1.00
Frt			0.850			0.850			0.850			
Flt Protected		0.982		0.950								
Satd．Flow（prot）	0	4827	1583	3319	0	2787	0	5085	1794	0	5085	0
Flt Permitted		0.982		0.950								
Satd．Flow（perm）	0	4827	1583	3319	0	2787	0	5085	1794	0	5085	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			455			1			199			
Headway Factor	1.09	1.04	1.00	1.04	1.04	1.00	1.00	1.00	0.85	1.00	1.00	1.00
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		129			680			766			1053	
Travel Time（s）		2.9			15.5			17.4			23.9	
Volume（vph）	253	402	419	151	0	85	0	3047	405	0	250	0
Peak Hour Factor	0.94	0.90	0.92	0.69	0.92	0.76	0.92	0.96	0.91	0.92	0.87	0.92
Adj．Flow（vph）	269	447	455	219	0	112	0	3174	445	0	287	0
Lane Group Flow（vph）	0	716	455	219	0	112	0	3174	445	0	287	0
Turn Type	Split		ustom	ustom		custom			Perm			
Protected Phases	9	9		1		1		7			3	
Permitted Phases		9	37	1		91			7			
Minimum Split（s）	10.0	10.0		10.0		10.0		22.0	22.0		22.0	
Total Split（s）	36.0	36.0	252.0	36.0	0.0	36.0	0.0	126.0	126.0	0.0	126.0	0.0
Total Split（\％）	18\％	18\％	127\％	18\％	0\％	18\％	0\％	64\％	64\％	0\％	64\％	0\％
Yellow Time（s）	3.0	3.0		3.0		3.0		3.0	3.0		3.0	
All－Red Time（s）	3.0	3.0		3.0		3.0		3.0	3.0		3.0	
Lead／Lag												
Lead－Lag Optimize？												
Act Effct Green（s）		32.1	122.0	32.1		67.9		122.0	122.0		122.0	
Actuated g／C Ratio		0.16	0.62	0.16		0.34		0.62	0.62		0.62	
v／c Ratio		0．97dl	0.40	0.41		0.12		1.01	0.38		0.09	
Uniform Delay，d1		81.7	0.0	74.5		44.0		38.0	9.5		15.4	
Delay		88.6	1.2	74.8		44.3		53.2	9.7		15.5	
LOS		F	A	E		D		D	A		B	
Approach Delay		54.6						47.9			15.5	
Approach LOS		D						D			B	
Queue Length 50th（ft）		342	0	134		56		～1586	148		54	
Queue Length 95th（ft）		\＃418	45	137		72		\＃1624	220		67	
Internal Link Dist（ft）		49			600			686			973	
50th Up Block Time（\％）		71\％						21\％				
95th Up Block Time（\％）		73\％	2\％					22\％				
Turn Bay Length（ft）												
50th Bay Block Time \％												
95th Bay Block Time \％												
Queuing Penalty（veh）												

Intersection Summary
Area Type: Other
Cycle Length: 198
Actuated Cycle Length: 198
Offset: $0(0 \%)$, Referenced to phase 6:, Start of Green
Natural Cycle: 90
Control Type: Pretimed
Maximum v/c Ratio: 1.01
Intersection Signal Delay: $48.6 \quad$ Intersection LOS: D
Intersection Capacity Utilization 92.5\% ICU Level of Service E
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
dl Defacto Left Lane. Recode with 1 though lane as a left lane.
Splits and Phases: 1: UMass Boston \& Morrissey Boulevard

PM Peak Hour

	4						4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊＊	性		\％${ }^{1 / 1}$	个 \uparrow	F		个4	F	\％${ }^{1 / 1}$	个4	F
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	11	12	14	10	12	16	11	12	12	11	12	16
Storage Length（ft）	0		0	125		0	0		0	0		0
Storage Lanes	2		0	1		1	0		1	2		1
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Turning Speed（mph）	15		9	15		9	15		9	15		9
Lane Util．Factor	0.97	0.95	0.95	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt		0.997				0.850			0.850			0.850
Flt Protected	0.950			0.950						0.950		
Satd．Flow（prot）	3319	3529	0	3204	3539	1794	0	3539	1583	3319	3539	1794
Flt Permitted	0.950			0.950						0.950		
Satd．Flow（perm）	3319	3529	0	3204	3539	1794	0	3539	1583	3319	3539	1794
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		2				361			16			536
Headway Factor	1.04	1.00	0.92	1.09	1.00	0.85	1.04	1.00	1.00	1.04	1.00	0.85
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		480			357			470			453	
Travel Time（s）		10.9			8.1			10.7			10.3	
Volume（vph）	587	850	19	299	605	348	0	749	504	448	886	530
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	638	924	21	325	658	378	0	814	548	487	963	576
Lane Group Flow（vph）	638	945	0	325	658	378	0	814	548	487	963	576
Turn Type	Prot			Prot		Free			ustom	Prot		Perm
Protected Phases	1	6		5	2			4		3	8	
Permitted Phases						Free			41			8
Minimum Split（s）	10.0	22.0		10.0	22.0			22.0		10.0	22.0	22.0
Total Split（s）	30.0	32.0	0.0	30.0	32.0	0.0	0.0	32.0	62.0	26.0	58.0	58.0
Total Split（\％）	25\％	27\％	0\％	25\％	27\％	0\％	0\％	27\％	52\％	22\％	48\％	48\％
Yellow Time（s）	4.0	4.0		4.0	4.0			4.0		4.0	4.0	4.0
All－Red Time（s）	2.0	2.0		2.0	2.0			2.0		2.0	2.0	2.0
Lead／Lag	Lead	Lag		Lead	Lag			Lag		Lead		
Lead－Lag Optimize？	Yes	Yes		Yes	Yes			Yes		Yes		
Act Effct Green（s）	26.0	28.0		26.0	28.0	120.0		28.0	58.0	22.0	54.0	54.0
Actuated g／C Ratio	0.22	0.23		0.22	0.23	1.00		0.23	0.48	0.18	0.45	0.45
v／c Ratio	0.89	1.15		0.47	0.80	0.21		0.99	0.71	0.80	0.60	0.52
Uniform Delay，d1	45.6	45.9		41.0	43.3	0.0		45.8	23.5	46.9	24.9	1.3
Delay	52.1	112.1		41.3	44.2	0.0		65.9	24.4	49.4	25.2	2.6
LOS	D	F		D	D	A		E	C	D	C	A
Approach Delay		87.9			31.3			49.2			24.6	
Approach LOS		F			C			D			C	
Queue Length 50th（ft）	248	~ 452		113	254	0		332	315	188	290	16
Queue Length 95th（ft）	\＃348	\＃586		159	325	0		\＃467	455	\＃254	359	86
Internal Link Dist（ft）		400			277			390			373	
50th Up Block Time（\％）		13\％										
95th Up Block Time（\％）		36\％			12\％			17\％	12\％			
Turn Bay Length（ft）				125								
50th Bay Block Time \％												
95th Bay Block Time \％				19\％								

	\rangle	\rightarrow	7	\dagger	4	4	4	\dagger	$>$	*	\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queuing Penalty (veh)				15								

Intersection Summary

Area Type: Other
Cycle Length: 120
Actuated Cycle Length: 120
Offset: $0(0 \%)$, Referenced to phase 2:WBT and 6:EBT, Start of Green
Natural Cycle: 90
Control Type: Pretimed
Maximum v/c Ratio: 1.15
Intersection Signal Delay: 47.1
Intersection LOS: D
Intersection Capacity Utilization 86.1\%
ICU Level of Service D
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 5: Massachusetts Avenue \& Melnea Cass Blvd

	\rightarrow	\cdots	\checkmark	5	7	-	4	7	\cdots	+
Lane Group	EBT	EBR	EBR2	WBL2	WBL	WBT	NBL	NBR	NWL	NWR
Lane Configurations	中 ${ }^{\text {a }}$					¢4	${ }^{7}$	F		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Turning Speed (mph)		9	9	15	15		15	9	15	9
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00
Frt	0.908							0.850		
Flt Protected						0.980	0.950			
Satd. Flow (prot)	3214	0	0	0	0	3468	1770	1583	0	0
Flt Permitted						0.546	0.950			
Satd. Flow (perm)	3214	0	0	0	0	1932	1770	1583	0	0
Right Turn on Red			Yes							Yes
Satd. Flow (RTOR)	14									
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	30					30	30		30	
Link Distance (ft)	299					536	224		210	
Travel Time (s)	6.8					12.2	5.1		4.8	
Volume (vph)	438	621	84	30	271	447	78	191	0	0
Peak Hour Factor	0.88	0.88	0.88	0.90	0.90	0.90	0.91	0.91	0.92	0.92
Adj. Flow (vph)	498	706	95	33	301	497	86	210	0	0
Lane Group Flow (vph)	1299	0	0	0	0	831	86	210	0	0
Turn Type				pm+pt	pm+pt			Perm		
Protected Phases	4			3	3	8	2			
Permitted Phases				8	8			2		
Minimum Split (s)	22.0			10.0	10.0	22.0	22.0	22.0		
Total Split (s)	41.0	0.0	0.0	13.0	13.0	54.0	26.0	26.0	0.0	0.0
Total Split (\%)	51\%	0\%	0\%	16\%	16\%	68\%	33\%	33\%	0\%	0\%
Maximum Green (s)	35.0			7.0	7.0	48.0	20.0	20.0		
Yellow Time (s)	3.0			3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	3.0			3.0	3.0	3.0	3.0	3.0		
Lead/Lag	Lag			Lead	Lead					
Lead-Lag Optimize?	Yes			Yes	Yes					
Walk Time (s)	5.0					5.0	5.0	5.0		
Flash Dont Walk (s)	11.0					11.0	11.0	11.0		
Pedestrian Calls (\#/hr)	0					0	0	0		
Act Effct Green (s)	37.0					50.0	22.0	22.0		
Actuated g/C Ratio	0.46					0.63	0.28	0.28		
v/c Ratio	1.06 dr					1.14dl	0.18	0.48		
Uniform Delay, d1	19.1					7.4	22.1	24.2		
Delay	22.0					7.7	22.6	24.9		
LOS	C					A	C	C		
Approach Delay	22.0					7.7	24.2			
Approach LOS	C					A	C			
Queue Length 50th (ft)	291					96	33	87		
Queue Length 95th (ft)	373					129	68	152		
Internal Link Dist (ft)	219					456	144		130	
50th Up Block Time (\%)	17\%									
95th Up Block Time (\%)	25\%							11\%		
Turn Bay Length (ft)										
50th Bay Block Time \%										

Splits and Phases: 3: Southampton St \& Allstate Road

	4		4		$\frac{1}{7}$	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			\dagger	中 ${ }^{\text {P }}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	10	10
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50		50	50	50	
Trailing Detector (ft)	0		0	0	0	
Turning Speed (mph)	15	9	15			9
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95
Frt	0.940				0.999	
Flt Protected	0.973					
Satd. Flow (prot)	1704	0	0	2111	3300	0
Flt Permitted	0.973					
Satd. Flow (perm)	1704	0	0	2111	3300	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	31				2	
Headway Factor	1.00	1.00	1.00	0.85	1.09	1.09
Link Speed (mph)	15			30	30	
Link Distance (ft)	320			283	805	
Travel Time (s)	14.5			6.4	18.3	
Volume (vph)	78	63	0	27	791	6
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	85	68	0	29	860	7
Lane Group Flow (vph)	153	0	0	29	867	0
Turn Type			Perm			
Protected Phases	4			2	6	
Permitted Phases			2			
Detector Phases	4		2	2	6	
Minimum Initial (s)	3.5		4.0	4.0	4.0	
Minimum Split (s)	8.0		20.5	20.5	20.5	
Total Split (s)	28.5	0.0	88.5	88.5	88.5	0.0
Total Split (\%)	24\%	0\%	76\%	76\%	76\%	0\%
Yellow Time (s)	3.0		4.0	4.0	4.0	
All-Red Time (s)	0.5		0.5	0.5	0.5	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None		Max	Max	Max	
Act Effct Green (s)	13.0			92.2	92.2	
Actuated g/C Ratio	0.11			0.82	0.82	
v/c Ratio	0.69			0.02	0.32	
Uniform Delay, d1	38.1			2.0	2.6	
Delay	35.0			2.7	3.0	
LOS	D			A	A	
Approach Delay	35.0			2.7	3.0	
Approach LOS	D			A	A	
Queue Length 50th (ft)	84			3	53	
Queue Length 95th (ft)	146			11	99	
Internal Link Dist (ft)	240			203	725	
50th Up Block Time (\%)						
95th Up Block Time (\%)						

												\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＾个个	「	\％${ }^{1 / 4}$		「＂		坐个中	「		个坐个	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	10	11	12	11	11	12	12	12	16	12	12	12
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Turning Speed（mph）	15		20	15		9	15		9	15		9
Lane Util．Factor	0.91	0.91	1.00	0.97	1.00	0.88	1.00	0.91	1.00	1.00	0.91	1.00
Frt			0.850			0.850			0.850			
Flt Protected		0.984		0.950								
Satd．Flow（prot）	0	4837	1583	3319	0	2787	0	5085	1794	0	5085	0
Flt Permitted		0.984		0.950								
Satd．Flow（perm）	0	4837	1583	3319	0	2787	0	5085	1794	0	5085	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			47			199			200			
Headway Factor	1.09	1.04	1.00	1.04	1.04	1.00	1.00	1.00	0.85	1.00	1.00	1.00
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		129			680			324			604	
Travel Time（s）		2.9			15.5			7.4			13.7	
Volume（vph）	141	275	666	417	0	208	0	901	182	0	1184	0
Peak Hour Factor	0.94	0.90	0.92	0.69	0.92	0.76	0.92	0.96	0.91	0.92	0.87	0.92
Adj．Flow（vph）	150	306	724	604	0	274	0	939	200	0	1361	0
Lane Group Flow（vph）	0	456	724	604	0	274	0	939	200	0	1361	0
Turn Type	Split		Perm	ustom		custom			Perm			
Protected Phases	9	9		1		1		$7!$			$3!$	
Permitted Phases		37 ！	9	1		91			7			
Minimum Split（s）	10.0	10.0	10.0	10.0		10.0		22.0	22.0		22.0	
Total Split（s）	36.0	36.0	36.0	36.0	0.0	36.0	0.0	126.0	126.0	0.0	126.0	0.0
Total Split（\％）	18\％	18\％	18\％	18\％	0\％	18\％	0\％	64\％	64\％	0\％	64\％	0\％
Yellow Time（s）	3.0	3.0	3.0	3.0		3.0		3.0	3.0		3.0	
All－Red Time（s）	3.0	3.0	3.0	3.0		3.0		3.0	3.0		3.0	
Lead／Lag												
Lead－Lag Optimize？												
Act Effct Green（s）		158.0	32.1	32.1		67.9		122.0	122.0		122.0	
Actuated g／C Ratio		0.80	0.16	0.16		0.34		0.62	0.62		0.62	
v／c Ratio		0.12	2.45	1.13		0.25		0.30	0.17		0.43	
Uniform Delay，d1		4.5	69.7	83.0		12.0		17.9	0.0		19.9	
Delay		4.5	376.6	142.1		12.7		18.0	1.7		20.0	
LOS		A	F	F		B		B	A		C	
Approach Delay		232.8						15.1			20.0	
Approach LOS		F						B			C	
Queue Length 50th（ft）		43	～1511	~ 466		37		205	0		330	
Queue Length 95th（ft）		53	\＃1778	365		49		232	34		347	
Internal Link Dist（ft）		49			600			244			524	
50th Up Block Time（\％）			83\％									
95th Up Block Time（\％）		3\％	84\％									
Turn Bay Length（ft）												
50th Bay Block Time \％												
95th Bay Block Time \％												
Queuing Penalty（veh）												

Intersection Summary
Area Type: Other

Cycle Length: 198
Actuated Cycle Length: 198
Offset: 4 (2\%), Referenced to phase 6:, Start of Green
Natural Cycle: 65
Control Type: Pretimed
Maximum v/c Ratio: 2.45
Intersection Signal Delay: $89.6 \quad$ Intersection LOS: F
Intersection Capacity Utilization 98.4\% ICU Level of Service E
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
! Phase conflict between lane groups.
Splits and Phases: 1: UMass Boston \& Morrissey Boulevard

Appendix D - Synchro Analysis of No Build Situation

AM Peak Hour

	\rangle			\downarrow		4	4	4	p	*	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queuing Penalty (veh)				107								

Intersection Summary

Area Type: Other
Cycle Length: 120
Actuated Cycle Length: 120
Offset: $0(0 \%)$, Referenced to phase 2:WBT and 6:EBT, Start of Green
Natural Cycle: 100
Control Type: Pretimed
Maximum v/c Ratio: 1.25
Intersection Signal Delay: 59.6
Intersection LOS: E
Intersection Capacity Utilization 96.3\%
ICU Level of Service E
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 5: Massachusetts Avenue \& Melnea Cass Blvd

Area Type:
Other
Cycle Length: 80
Actuated Cycle Length: 80
Offset: 0 (0\%), Referenced to phase 2:NBL and 6:, Start of Green
Natural Cycle: 65
Control Type: Pretimed
Maximum v/c Ratio: 0.85

Intersection Signal Delay: 15.0	Intersection LOS: B
Intersection Capacity Utilization 80.5\%	ICU Level of Service D

Splits and Phases: 3: Southampton St \& Allstate Rd

Splits and Phases: 8: Star Market \& Morrissey Boulevard West

	4			7			4	4			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢个4	「	＊＊		「＂		坐个中	「		个坐个	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	10	11	12	11	11	12	12	12	16	12	12	12
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Turning Speed（mph）	15		20	15		9	15		9	15		9
Lane Util．Factor	0.91	0.91	1.00	0.97	1.00	0.88	1.00	0.91	1.00	1.00	0.91	1.00
Frt			0.850			0.850			0.850			
Flt Protected		0.982		0.950								
Satd．Flow（prot）	0	4827	1583	3319	0	2787	0	5085	1794	0	5085	0
Flt Permitted		0.982		0.950								
Satd．Flow（perm）	0	4827	1583	3319	0	2787	0	5085	1794	0	5085	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			478			1			200			
Headway Factor	1.09	1.04	1.00	1.04	1.04	1.00	1.00	1.00	0.85	1.00	1.00	1.00
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		129			680			766			1053	
Travel Time（s）		2.9			15.5			17.4			23.9	
Volume（vph）	277	440	440	165	0	93	0	3331	443	0	250	0
Peak Hour Factor	0.94	0.90	0.92	0.69	0.92	0.76	0.92	0.96	0.91	0.92	0.87	0.92
Adj．Flow（vph）	295	489	478	239	0	122	0	3470	487	0	287	0
Lane Group Flow（vph）	0	784	478	239	0	122	0	3470	487	0	287	0
Turn Type	Split		custom	ustom		custom			Perm			
Protected Phases	9	9		1		1		7			3	
Permitted Phases		9	37	1		91			7			
Minimum Split（s）	10.0	10.0		10.0		10.0		22.0	22.0		22.0	
Total Split（s）	36.0	36.0	252.0	36.0	0.0	36.0	0.0	126.0	126.0	0.0	126.0	0.0
Total Split（\％）	18\％	18\％	127\％	18\％	0\％	18\％	0\％	64\％	64\％	0\％	64\％	0\％
Yellow Time（s）	3.0	3.0		3.0		3.0		3.0	3.0		3.0	
All－Red Time（s）	3.0	3.0		3.0		3.0		3.0	3.0		3.0	
Lead／Lag												
Lead－Lag Optimize？												
Act Effct Green（s）		32.1	122.0	32.1		67.9		122.0	122.0		122.0	
Actuated g／C Ratio		0.16	0.62	0.16		0.34		0.62	0.62		0.62	
v / c Ratio		1．06dl	0.41	0.45		0.13		1.11	0.41		0.09	
Uniform Delay，d1		83.0	0.0	74.9		44.2		38.0	10.5		15.4	
Delay		106.0	1.1	75.3		44.5		93.2	10.7		15.5	
LOS		F	A	E		D		F	B		B	
Approach Delay		66.3						83.1			15.5	
Approach LOS		E						F			B	
Queue Length 50th（ft）		~ 383	0	147		61		～1879	180		54	
Queue Length 95th（ft）		\＃485	45	147		77		\＃1903	259		67	
Internal Link Dist（ft）		49			600			686			973	
50th Up Block Time（\％）		72\％						29\％				
95th Up Block Time（\％）		75\％	2\％					29\％				
Turn Bay Length（ft）												
50th Bay Block Time \％												
95th Bay Block Time \％												

Intersection Summary
Area Type: Other

Cycle Length: 198
Actuated Cycle Length: 198
Offset: $0(0 \%)$, Referenced to phase 6:, Start of Green
Natural Cycle: 150
Control Type: Pretimed
Maximum v/c Ratio: 1.11
Intersection Signal Delay: $75.0 \quad$ Intersection LOS: E
Intersection Capacity Utilization 100.2\% ICU Level of Service F
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
dl Defacto Left Lane. Recode with 1 though lane as a left lane.
Splits and Phases: 1: UMass Boston \& Morrissey Boulevard

PM Peak Hour

	4	\rightarrow	1	\checkmark		4	4	4	7	（	\dagger	\pm
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	性		711	44	7		种	「＇	\％	來	「
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	11	12	14	10	12	16	11	12	12	11	12	16
Storage Length（ft）	0		0	125		0	0		0	0		0
Storage Lanes	2		0	1		1	0		1	2		1
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Turning Speed（mph）	15		9	15		9	15		9	15		9
Lane Util．Factor	0.97	0.95	0.95	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt		0.997				0.850			0.850			0.850
Flt Protected	0.950			0.950						0.950		
Satd．Flow（prot）	3319	3529	0	3204	3539	1794	0	3539	1583	3319	3539	1794
Flt Permitted	0.950			0.950						0.950		
Satd．Flow（perm）	3319	3529	0	3204	3539	1794	0	3539	1583	3319	3539	1794
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		2				361			10			532
Headway Factor	1.04	1.00	0.92	1.09	1.00	0.85	1.04	1.00	1.00	1.04	1.00	0.85
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		480			357			470			453	
Travel Time（s）		10.9			8.1			10.7			10.3	
Volume（vph）	642	929	21	327	661	380	0	819	551	490	968	579
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	698	1010	23	355	718	413	0	890	599	533	1052	629
Lane Group Flow（vph）	698	1033	0	355	718	413	0	890	599	533	1052	629
Turn Type	Prot			Prot		Free			custom	Prot		Perm
Protected Phases	1	6		5	2			4		3	8	
Permitted Phases						Free			41			8
Minimum Split（s）	10.0	22.0		10.0	22.0			22.0		10.0	22.0	22.0
Total Split（s）	30.0	32.0	0.0	30.0	32.0	0.0	0.0	32.0	62.0	26.0	58.0	58.0
Total Split（\％）	25\％	27\％	0\％	25\％	27\％	0\％	0\％	27\％	52\％	22\％	48\％	48\％
Yellow Time（s）	4.0	4.0		4.0	4.0			4.0		4.0	4.0	4.0
All－Red Time（s）	2.0	2.0		2.0	2.0			2.0		2.0	2.0	2.0
Lead／Lag	Lead	Lag		Lead	Lag			Lag		Lead		
Lead－Lag Optimize？	Yes	Yes		Yes	Yes			Yes		Yes		
Act Effct Green（s）	26.0	28.0		26.0	28.0	120.0		28.0	58.0	22.0	54.0	54.0
Actuated g／C Ratio	0.22	0.23		0.22	0.23	1.00		0.23	0.48	0.18	0.45	0.45
v／c Ratio	0.97	1.25		0.51	0.87	0.23		1.08	0.78	0.88	0.66	0.57
Uniform Delay，d1	46.6	45.9		41.4	44.2	0.0		46.0	25.2	47.7	25.8	3.0
Delay	65.3	146.2		41.8	48.5	0.0		89.9	26.3	54.6	26.2	3.9
LOS	E	F		D	D	A		F	C	D	C	A
Approach Delay		113.6			33.4			64.3			26.7	
Approach LOS		F			C			E			C	
Queue Length 50th（ft）	278	～528		125	283	0		~ 404	368	209	328	41
Queue Length 95th（ft）	\＃401	\＃665		174	\＃382	0		\＃534	530	\＃301	403	135
Internal Link Dist（ft）		400			277			390			373	
50th Up Block Time（\％）		28\％			3\％			4\％	2\％			
95th Up Block Time（\％）	2\％	45\％			22\％			27\％	17\％		6\％	
Turn Bay Length（ft）				125								
50th Bay Block Time \％				3\％								
95th Bay Block Time \％				24\％								

Intersection Summary

Area Type: Other
Cycle Length: 120
Actuated Cycle Length: 120
Offset: $0(0 \%)$, Referenced to phase 2:WBT and 6:EBT, Start of Green
Natural Cycle: 100
Control Type: Pretimed
Maximum v/c Ratio: 1.25
Intersection Signal Delay: 58.0
Intersection LOS: E
Intersection Capacity Utilization 92.9\%

ICU Level of Service E

~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 5: Massachusetts Avenue \& Melnea Cass Blvd

Area Type:
Other
Cycle Length: 80
Actuated Cycle Length: 80
Offset: $0(0 \%)$, Referenced to phase 2:NBL and 6:, Start of Green
Natural Cycle: 65
Control Type: Pretimed
Maximum v/c Ratio: 0.88
Intersection Signal Delay: 17.8 Intersection LOS: B
Intersection Capacity Utilization 89.4\% ICU Level of Service D
dl Defacto Left Lane. Recode with 1 though lane as a left lane.
dr Defacto Right Lane. Recode with 1 though lane as a right lane.
Splits and Phases: 3: Southampton St \& Frontage Rd

	4		4		$\frac{1}{7}$	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			\dagger	中 ${ }^{\text {P }}$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	10	10
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50		50	50	50	
Trailing Detector (ft)	0		0	0	0	
Turning Speed (mph)	15	9	15			9
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95
Frt	0.939				0.999	
Flt Protected	0.973					
Satd. Flow (prot)	1702	0	0	2111	3300	0
Flt Permitted	0.973					
Satd. Flow (perm)	1702	0	0	2111	3300	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	32				2	
Headway Factor	1.00	1.00	1.00	0.85	1.09	1.09
Link Speed (mph)	15			30	30	
Link Distance (ft)	320			283	805	
Travel Time (s)	14.5			6.4	18.3	
Volume (vph)	85	69	0	30	865	7
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	92	75	0	33	940	8
Lane Group Flow (vph)	167	0	0	33	948	0
Turn Type			Perm			
Protected Phases	4			2	6	
Permitted Phases			2			
Detector Phases	4		2	2	6	
Minimum Initial (s)	3.5		4.0	4.0	4.0	
Minimum Split (s)	8.0		20.5	20.5	20.5	
Total Split (s)	28.5	0.0	88.5	88.5	88.5	0.0
Total Split (\%)	24\%	0\%	76\%	76\%	76\%	0\%
Yellow Time (s)	3.0		4.0	4.0	4.0	
All-Red Time (s)	0.5		0.5	0.5	0.5	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None		Max	Max	Max	
Act Effct Green (s)	13.8			91.2	91.2	
Actuated g/C Ratio	0.12			0.81	0.81	
v/c Ratio	0.71			0.02	0.36	
Uniform Delay, d1	38.3			2.1	2.9	
Delay	35.6			2.9	3.4	
LOS	D			A	A	
Approach Delay	35.6			2.9	3.4	
Approach LOS	D			A	A	
Queue Length 50th (ft)	93			4	63	
Queue Length 95th (ft)	158			12	119	
Internal Link Dist (ft)	240			203	725	
50th Up Block Time (\%)						
95th Up Block Time (\%)						

	4			7			4	4			\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＊个个	「	\％${ }^{1 / 4}$		「＂		怽	「		个坐个	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	10	11	12	11	11	12	12	12	16	12	12	12
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Turning Speed（mph）	15		20	15		9	15		9	15		9
Lane Util．Factor	0.91	0.91	1.00	0.97	1.00	0.88	1.00	0.91	1.00	1.00	0.91	1.00
Frt			0.850			0.850			0.850			
Flt Protected		0.984		0.950								
Satd．Flow（prot）	0	4837	1583	3319	0	2787	0	5085	1794	0	5085	0
Flt Permitted		0.984		0.950								
Satd．Flow（perm）	0	4837	1583	3319	0	2787	0	5085	1794	0	5085	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			35			160			219			
Headway Factor	1.09	1.04	1.00	1.04	1.04	1.00	1.00	1.00	0.85	1.00	1.00	1.00
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		129			680			324			604	
Travel Time（s）		2.9			15.5			7.4			13.7	
Volume（vph）	154	301	728	456	0	227	0	985	199	0	1295	0
Peak Hour Factor	0.94	0.90	0.92	0.69	0.92	0.76	0.92	0.96	0.91	0.92	0.87	0.92
Adj．Flow（vph）	164	334	791	661	0	299	0	1026	219	0	1489	0
Lane Group Flow（vph）	0	498	791	661	0	299	0	1026	219	0	1489	0
Turn Type	Split		Permc	custom		custom			Perm			
Protected Phases	9	9		1		1		$7!$			$3!$	
Permitted Phases		37 ！	9	1		91			7			
Minimum Split（s）	10.0	10.0	10.0	10.0		10.0		22.0	22.0		22.0	
Total Split（s）	36.0	36.0	36.0	36.0	0.0	36.0	0.0	126.0	126.0	0.0	126.0	0.0
Total Split（\％）	18\％	18\％	18\％	18\％	0\％	18\％	0\％	64\％	64\％	0\％	64\％	0\％
Yellow Time（s）	3.0	3.0	3.0	3.0		3.0		3.0	3.0		3.0	
All－Red Time（s）	3.0	3.0	3.0	3.0		3.0		3.0	3.0		3.0	
Lead／Lag												
Lead－Lag Optimize？												
Act Effct Green（s）		158.0	32.1	32.1		67.9		122.0	122.0		122.0	
Actuated g／C Ratio		0.80	0.16	0.16		0.34		0.62	0.62		0.62	
v / c Ratio		0.13	2.78	1.23		0.28		0.33	0.18		0.48	
Uniform Delay，d1		4.5	72.8	83.0		20.9		18.3	0.0		20.6	
Delay		4.5	401.8	175.4		21.2		18.3	1.6		20.7	
LOS		A	F	F		C		B	A		C	
Approach Delay		248.3						15.4			20.7	
Approach LOS		F						B			C	
Queue Length 50th（ft）		47	～1721	~ 545		72		228	0		375	
Queue Length 95th（ft）		58	\＃1988	\＃432		83		257	35		390	
Internal Link Dist（ft）		49			600			244			524	
50th Up Block Time（\％）		1\％	83\％									
95th Up Block Time（\％）		4\％	84\％					2\％				
Turn Bay Length（ft）												
50th Bay Block Time \％												
95th Bay Block Time \％												
Queuing Penalty（veh）												

Intersection Summary
Area Type: Other

Cycle Length: 198
Actuated Cycle Length: 198
Offset: 4 (2\%), Referenced to phase 6:, Start of Green
Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 2.78
Intersection Signal Delay: $98.8 \quad$ Intersection LOS: F
Intersection Capacity Utilization 106.6\% ICU Level of Service F
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
! Phase conflict between lane groups.
Splits and Phases: 1: UMass Boston \& Morrissey Boulevard

Appendix E - Synchro Analysis for Build

AM Peak Hour

	4	\rightarrow		7		4	4	9	p	(\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	性		\%	44	F'		44	「	71	44	F
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	14	10	12	16	11	12	12	11	12	16
Storage Length (ft)	0		0	160		50	0		0	0		0
Storage Lanes	2		0	1		1	0		1	2		1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Turning Speed (mph)	15		9	15		15	15		9	15		9
Lane Util. Factor	0.97	0.95	0.95	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt						0.850			0.850			0.850
Flt Protected	0.950			0.950						0.950		
Satd. Flow (prot)	3319	3539	0	3204	3539	1794	0	3539	1583	3319	3539	1794
Flt Permitted	0.950			0.950						0.950		
Satd. Flow (perm)	3319	3539	0	3204	3539	1794	0	3539	1583	3319	3539	1794
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						79			342			440
Headway Factor	1.04	1.00	0.92	1.09	1.00	0.85	1.04	1.00	1.00	1.04	1.00	0.85
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		480			505			470			453	
Travel Time (s)		10.9			11.5			10.7			10.3	
Volume (vph)	379	401	0	421	811	373	0	866	414	444	979	530
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	109\%	109\%	109\%	109\%	109\%	109\%	109\%	109\%	109\%	109\%	109\%	109\%
Adj. Flow (vph)	449	475	0	499	961	442	0	1026	490	526	1160	628
Lane Group Flow (vph)	449	475	0	499	961	442	0	1026	490	526	1160	628
Turn Type	Prot			Prot		Free			Perm	Prot		Perm
Protected Phases	1	6		5	2			4		3	7	
Permitted Phases						Free			4			7
Minimum Split (s)	10.0	22.0		10.0	22.0			22.0	22.0	10.0	22.0	22.0
Total Split (s)	24.0	33.0	0.0	26.0	35.0	0.0	0.0	35.0	35.0	26.0	61.0	61.0
Total Split (\%)	20\%	28\%	0\%	22\%	29\%	0\%	0\%	29\%	29\%	22\%	51\%	51\%
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0			2.0	2.0	2.0	2.0	2.0
Lead/Lag	Lead	Lag		Lead	Lag			Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes			Yes	Yes	Yes		
Act Effct Green (s)	20.0	29.0		22.0	31.0	120.0		31.0	31.0	22.0	57.0	57.0
Actuated g/C Ratio	0.17	0.24		0.18	0.26	1.00		0.26	0.26	0.18	0.48	0.48
v/c Ratio	0.81	0.56		0.85	1.05	0.25		1.12	0.74	0.87	0.69	0.58
Uniform Delay, d1	48.2	39.9		47.4	44.5	0.0		44.5	11.3	47.5	24.6	5.7
Delay	51.7	40.2		52.7	79.9	0.0		102.7	12.3	53.5	24.9	6.2
LOS	D	D		D	E	A		F	B	D	C	A
Approach Delay		45.8			54.2			73.5			26.4	
Approach LOS		D			D			E			C	
Queue Length 50th (ft)	174	170		194	~ 427	0		~482	103	205	360	86
Queue Length 95th (ft)	\#248	226		\#279	\#558	0		\#616	240	\#295	438	196
Internal Link Dist (ft)		400			425			390			373	
50th Up Block Time (\%)								19\%			1\%	
95th Up Block Time (\%)					24\%			37\%			10\%	
Turn Bay Length (ft)				160		50						
50th Bay Block Time \%				17\%	66\%							

	$\stackrel{ }{*}$		\%	7	4	4	4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
95th Bay Block Time \%				37\%	69\%							
Queuing Penalty (veh)				66	296							

Intersection Summary

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 120
Offset: $0(0 \%)$, Referenced to phase 2:WBT and 6:EBT, Start of Green
Natural Cycle: 100
Control Type: Pretimed
Maximum v/c Ratio: 1.12
Intersection Signal Delay: $47.7 \quad$ Intersection LOS: D
Intersection Capacity Utilization 96.1\% ICU Level of Service E
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 5: Massachusetts Avenue \& Melnea Cass Blvd

	\rightarrow	-	\checkmark	6	7	$4 \sim$	4	p	\cdots	${ }^{+}$	
Lane Group	EBT	EBR	EBR2	WBL2	WBL	WBT	NBL	NBR	NWL	NWR	$\varnothing 9$
Lane Configurations	瑯					¢4	${ }^{7}$	「			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50			50	50	50	50	50			
Trailing Detector (ft)	0			0	0	0	0	0			
Turning Speed (mph)		9	9	15	15		15	9	15	9	
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	
Frt	0.956							0.850			
Flt Protected						0.992	0.950				
Satd. Flow (prot)	3383	0	0	0	0	3511	1770	1583	0	0	
Flt Permitted						0.581	0.950				
Satd. Flow (perm)	3383	0	0	0	0	2056	1770	1583	0	0	
Right Turn on Red			Yes							Yes	
Satd. Flow (RTOR)	4										
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Link Speed (mph)	30					30	30		30		
Link Distance (ft)	299					536	224		210		
Travel Time (s)	6.8					12.2	5.1		4.8		
Volume (vph)	415	150	25	56	116	948	127	195	0	0	
Peak Hour Factor	0.87	0.87	0.87	0.85	0.85	0.85	0.85	0.85	0.92	0.92	
Adj. Flow (vph)	477	172	29	66	136	1115	149	229	0	0	
Lane Group Flow (vph)	678	0	0	0	0	1317	149	229	0	0	
Turn Type				pm+pt	pm+pt			Perm			
Protected Phases	4			3	3	8	2				9
Permitted Phases				8	8			2			
Detector Phases	4			3	3	8	2	2			
Minimum Initial (s)	4.0			4.0	4.0	4.0	4.0	4.0			4.0
Minimum Split (s)	35.0			35.0	35.0	35.0	35.0	35.0			22.0
Total Split (s)	45.0	0.0	0.0	15.0	15.0	60.0	30.0	30.0	0.0	0.0	30.0
Total Split (\%)	38\%	0\%	0\%	13\%	13\%	50\%	25\%	25\%	0\%	0\%	25\%
Yellow Time (s)	3.0			3.0	3.0	3.0	3.0	3.0			3.5
All-Red Time (s)	1.5			2.0	2.0	1.5	2.0	2.0			0.5
Lead/Lag	Lag			Lead	Lead						
Lead-Lag Optimize?	Yes			Yes	Yes						
Recall Mode	Max			Max	Max	None	None	None			Min
Act Effct Green (s)	41.1					75.1	21.4	21.4			
Actuated g/C Ratio	0.36					0.66	0.19	0.19			
v/c Ratio	0.56					0.76	0.45	0.77			
Uniform Delay, d1	28.9					10.6	41.1	43.9			
Delay	29.9					11.5	41.0	44.1			
LOS	C					B	D	D			
Approach Delay	29.9					11.5	42.9				
Approach LOS	C					B	D				
Queue Length 50th (ft)	210					264	98	161			
Queue Length 95th (ft)	270					319	152	233			
Internal Link Dist (ft)	219					456	144		130		
50th Up Block Time (\%)								13\%			
95th Up Block Time (\%)	14\%						9\%	33\%			
Turn Bay Length (ft)											

Splits and Phases: 3: Southampton St \& Frontage Rd

Splits and Phases: 8: Shaws \& Morrissey Boulevard West

Splits and Phases: 1: UMass Boston \& Morrissey Boulevard

PM Peak Hour

	4	\rightarrow	\%	\checkmark		4	4	4	7	1	\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7\%			711	44	F'		44	「'	71	㻢	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	14	10	12	16	11	12	12	11	12	16
Storage Length (ft)	0		0	125		0	0		0	0		0
Storage Lanes	2		0	1		1	0		1	2		0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	0.97	0.95	0.95	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	0.95
Frt		0.997				0.850			0.850		0.941	
Flt Protected	0.950			0.950						0.950		
Satd. Flow (prot)	3319	3529	0	3204	3539	1794	0	3539	1583	3319	3330	0
Flt Permitted	0.950			0.950						0.950		
Satd. Flow (perm)	3319	3529	0	3204	3539	1794	0	3539	1583	3319	3330	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2				369			16		158	
Headway Factor	1.04	1.00	0.92	1.09	1.00	0.85	1.04	1.00	1.00	1.04	1.00	0.85
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		990			707			935			794	
Travel Time (s)		22.5			16.1			21.3			18.0	
Volume (vph)	642	929	21	327	645	380	0	819	551	490	900	579
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	698	1010	23	355	701	413	0	890	599	533	978	629
Lane Group Flow (vph)	698	1033	0	355	701	413	0	890	599	533	1607	0
Turn Type	Prot			Prot		Free			ustom	Prot		
Protected Phases	1	6		5	2			4		3	8	
Permitted Phases						Free			41			
Minimum Split (s)	10.0	22.0		10.0	22.0			22.0		10.0	22.0	
Total Split (s)	32.0	41.0	0.0	21.0	30.0	0.0	0.0	32.0	64.0	26.0	58.0	0.0
Total Split (\%)	27\%	34\%	0\%	18\%	25\%	0\%	0\%	27\%	53\%	22\%	48\%	0\%
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0			2.0		2.0	2.0	
Lead/Lag	Lead	Lag		Lead	Lag			Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes			Yes		Yes		
Act Effct Green (s)	28.0	37.0		17.0	26.0	120.0		28.0	60.0	22.0	54.0	
Actuated g/C Ratio	0.23	0.31		0.14	0.22	1.00		0.23	0.50	0.18	0.45	
v/c Ratio	0.90	0.95		0.78	0.91	0.23		1.08	0.75	0.88	1.01	
Uniform Delay, d1	44.7	40.5		49.7	45.9	0.0		46.0	23.2	47.7	29.7	
Delay	51.9	50.7		52.9	54.6	0.0		89.9	24.2	54.6	50.7	
LOS	D	D		D	D	A		F	C	D	D	
Approach Delay		51.2			38.8			63.5			51.6	
Approach LOS		D			D			E			D	
Queue Length 50th (ft)	272	410		138	281	0		~ 404	351	209	~626	
Queue Length 95th (ft)	\#377	\#548		\#204	\#392	0		\#534	506	\#301	\#513	
Internal Link Dist (ft)		910			627			855			714	
50th Up Block Time (\%)												
95th Up Block Time (\%)												
Turn Bay Length (ft)				125								
50th Bay Block Time \%				11\%								
95th Bay Block Time \%				34\%								

Intersection Summary

Area Type: Other
Cycle Length: 120
Actuated Cycle Length: 120
Offset: $0(0 \%)$, Referenced to phase 2:WBT and 6:EBT, Start of Green
Natural Cycle: 100
Control Type: Pretimed
Maximum v/c Ratio: 1.08
Intersection Signal Delay: 51.4
Intersection LOS: D
Intersection Capacity Utilization 96.5\% ICU Level of Service E
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 5: Massachusetts Avenue \& Melnea Cass Blvd

	\rightarrow	T	\checkmark	5	7		4		Patar	\cdots	+	
Lane Group	EBT	EBR	EBR2	WBL2	WBL	WBT	NBL	NBR	NBR2	NWL	NWR	$\varnothing 9$
Lane Configurations	中 ${ }^{\text {a }}$					¢4	${ }^{7}$	「				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50			50	50	50	50	50				
Trailing Detector (ft)	0			0	0	0	0	0				
Turning Speed (mph)		9	9	15	15		15	9	9	15	9	
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	
Frt	0.907							0.850				
Flt Protected						0.980	0.950					
Satd. Flow (prot)	3210	0	0	0	0	3468	1770	1583	0	0	0	
Flt Permitted						0.539	0.950					
Satd. Flow (perm)	3210	0	0	0	0	1908	1770	1583	0	0	0	
Right Turn on Red			Yes						Yes		Yes	
Satd. Flow (RTOR)	9							2				
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Link Speed (mph)	30					30	30			30		
Link Distance (ft)	299					536	224			210		
Travel Time (s)	6.8					12.2	5.1			4.8		
Volume (vph)	438	621	84	30	271	447	78	191	9	0	0	
Peak Hour Factor	0.87	0.87	0.87	0.85	0.85	0.85	0.85	0.85	0.85	0.92	0.92	
Adj. Flow (vph)	503	714	97	35	319	526	92	225	11	0	0	
Lane Group Flow (vph)	1314	0	0	0	0	880	92	236	0	0	0	
Turn Type				custom	pm+pt			Perm				
Protected Phases	4				3	8	2					9
Permitted Phases				3	8			2				
Detector Phases	4			3	3	8	2	2				
Minimum Initial (s)	4.0			4.0	4.0	4.0	4.0	4.0				4.0
Minimum Split (s)	35.0			10.0	10.0	80.0	10.0	10.0				29.0
Total Split (s)	56.0	0.0	0.0	11.0	11.0	67.0	24.0	24.0	0.0	0.0	0.0	29.0
Total Split (\%)	47\%	0\%	0\%	9\%	9\%	56\%	20\%	20\%	0\%	0\%	0\%	24\%
Yellow Time (s)	3.0			3.0	3.0	3.0	3.0	3.0				3.5
All-Red Time (s)	2.0			0.5	0.5	2.0	2.0	2.0				0.5
Lead/Lag	Lag			Lead	Lead							
Lead-Lag Optimize?	Yes			Yes	Yes							
Recall Mode	Max			Max	Max	Max	None	None				None
Act Effct Green (s)	52.0					80.5	19.3	19.3				
Actuated g/C Ratio	0.48					0.75	0.18	0.18				
v/c Ratio	1.04 dr					0.49	0.29	0.83				
Uniform Delay, d1	24.2					4.6	38.3	42.2				
Delay	25.4					4.8	38.7	50.3				
LOS	C					A	D	D				
Approach Delay	25.4					4.8	47.1					
Approach LOS	C					A	D					
Queue Length 50th (ft)	407					95	56	153				
Queue Length 95th (ft)	479					111	98	\#259				
Internal Link Dist (ft)	219					456	144			130		
50th Up Block Time (\%)	25\%							10\%				
95th Up Block Time (\%)	29\%							39\%				
Turn Bay Length (ft)												

	\rightarrow	*	7	π	\checkmark	\leftarrow	4	P	p^{*}	4	$\stackrel{+}{ }$	
Lane Group	EBT	EBR	EBR2	WBL2	WBL	WBT	NBL	NBR	NBR2	NWL	NWR	$\emptyset 9$

50th Bay Block Time \%
95th Bay Block Time \%
Queuing Penalty (veh)
Intersection Summary
Area Type: Other
Cycle Length: 120
Actuated Cycle Length: 107.8
Natural Cycle: 130
Control Type: Semi Act-Uncoord
Maximum v/c Ratio: 0.85
Intersection Signal Delay: $21.0 \quad$ Intersection LOS: C
Intersection Capacity Utilization 89.4\% ICU Level of Service D
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
dr Defacto Right Lane. Recode with 1 though lane as a right lane.
Splits and Phases: 3: Southampton St \& Frontage Rd

	4		4		$\frac{1}{7}$	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			\pm	\uparrow	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	10	10
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50		50	50	50	
Trailing Detector (ft)	0		0	0	0	
Turning Speed (mph)	15	9	15			9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.939				0.999	
Flt Protected	0.973					
Satd. Flow (prot)	1702	0	0	2111	1737	0
Flt Permitted	0.973					
Satd. Flow (perm)	1702	0	0	2111	1737	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	64				1	
Headway Factor	1.00	1.00	1.00	0.85	1.09	1.09
Link Speed (mph)	15			30	30	
Link Distance (ft)	320			283	805	
Travel Time (s)	14.5			6.4	18.3	
Volume (vph)	85	69	0	30	865	7
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	92	75	0	33	940	8
Lane Group Flow (vph)	167	0	0	33	948	0
Turn Type			Perm			
Protected Phases	4			2	6	
Permitted Phases			2			
Detector Phases	4		2	2	6	
Minimum Initial (s)	3.5		4.0	4.0	4.0	
Minimum Split (s)	8.0		20.5	20.5	20.5	
Total Split (s)	18.0	0.0	42.0	42.0	42.0	0.0
Total Split (\%)	30\%	0\%	70\%	70\%	70\%	0\%
Yellow Time (s)	3.0		3.0	3.0	3.0	
All-Red Time (s)	0.5		0.5	0.5	0.5	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None		Max	Max	Max	
Act Effct Green (s)	9.5			51.2	51.2	
Actuated g/C Ratio	0.14			0.76	0.76	
v/c Ratio	0.58			0.02	0.71	
Uniform Delay, d1	16.8			2.1	4.5	
Delay	13.2			3.2	9.9	
LOS	B			A	A	
Approach Delay	13.2			3.2	9.9	
Approach LOS	B			A	A	
Queue Length 50th (ft)	33			2	115	
Queue Length 95th (ft)	76			10	\#498	
Internal Link Dist (ft)	240			203	725	
50th Up Block Time (\%)						
95th Up Block Time (\%)						

Splits and Phases: 8: Shaw's \& Morrissey Boulevard West

	\dagger		\dagger	p			\downarrow		
Lane Group	WBL	WBR	NBT	NBR	SBU	SBL	SBT	$\varnothing 4$	
Lane Configurations	${ }^{7 *}$	「7＇	率	F			种4		
Ideal Flow（vphpl）	1900	1900	2100	1900	1900	1900	2100		
Lane Width（ft）	11	12	12	16	10	10	12		
Storage Length（ft）	0	0		0		200			
Storage Lanes	2	2		1		2			
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
Leading Detector（ft）	50	50	50	50	50	50	50		
Trailing Detector（ft）	0	0	0	0	0	0	0		
Turning Speed（mph）	15	9		9	9	15			
Lane Util．Factor	0.97	0.88	0.91	1.00	0.91	0.94	0.91		
Frt		0.850		0.850					
Flt Protected	0.950					0.950			
Satd．Flow（prot）	3319	2787	5621	1794	0	4658	5621		
Flt Permitted	0.950					0.950			
Satd．Flow（perm）	3319	2787	5621	1794	0	4658	5621		
Right Turn on Red		Yes		Yes					
Satd．Flow（RTOR）		299		219					
Headway Factor	1.04	1.00	1.00	0.85	1.09	1.09	1.00		
Link Speed（mph）	30		30				30		
Link Distance（ft）	680		766				1053		
Travel Time（s）	15.5		17.4				23.9		
Volume（vph）	456	227	985	199	154	301	2023		
Peak Hour Factor	0.69	0.76	0.96	0.91	0.92	0.92	0.87		
Adj．Flow（vph）	661	299	1026	219	167	327	2325		
Lane Group Flow（vph）	661	299	1026	219	0	494	2325		
Turn Type		ustom		Perm	Prot	Prot			
Protected Phases	1	1	7		8	8	3	4	4
Permitted Phases	1	1		7					
Detector Phases	1	1	7	7	8	8	3		
Minimum Initial（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split（s）	10.5	10.5	22.0	22.0	22.5	22.5	22.0	20.0	
Total Split（s）	22.0	22.0	24.0	24.0	34.0	34.0	24.0	34.0	
Total Split（\％）	28\％	28\％	30\％	30\％	43\％	43\％	30\％	43\％	
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.5	
All－Red Time（s）	3.0	3.0	2.0	2.0	3.0	3.0	2.0	0.5	
Lead／Lag			Lead	Lead	Lag	Lag	Lead	Lag	
Lead－Lag Optimize？			Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	Min	Min	None	None	Min	None	
Act Effct Green（s）	17.2	17.2	18.1	18.1		13.8	32.0		
Actuated g／C Ratio	0.28	0.28	0.30	0.30		0.23	0.52		
v／c Ratio	0.71	0.30	0.62	0.32		0.47	0.79		
Uniform Delay，d1	21.6	0.0	20.4	0.0		19.4	14.0		
Delay	21.3	3.0	19.1	3.3		21.1	26.5		
LOS	C	A	B	A		C	C		
Approach Delay	15.6		16.3				25.6		
Approach LOS	B		B				C		
Queue Length 50th（ft）	118	0	121	0		59	201		
Queue Length 95th（ft）	131	0	175	41		86	\＃554		
Internal Link Dist（ft）	600		686				973		

Splits and Phases: 1: UMass Boston \& Morrissey Boulevard

Appendix F - Rodel Analysis for Proposed Roundabout

AM Peak Hour

Preble Roundabout

Weekday Morning Peak Hour

	RODEL Delay (minutes)	Net Delay (seconds)	Level of Service (HCM Signalzed)	Queue (Vehicles)	Queue (Feet)
Old Colony SB	0.07	6.2	LOS A	1	25
Columbia WB	0.04	4.4	LOS A	0	0
Old Colony NB	0.52	33.2	LOS C	17	425
Preble EB	0.15	11.0	LOS B	2	50

PM Peak Hour

Preble Roundabout

Weekday Afternoon Peak Hour

	RODEL Delay (minutes)	Net Delay (seconds)	Level of Service (HCM Signalzed)	Queue (Vehicles)	Queue (Feet)
Old Colony SB	0.05	5.0	LOS A	1	25
Columbia WB	0.05	5.0	LOS A	0	0
Old Colony $N B$	0.05	5.0	LOS A	1	25
Preble EB	0.06	5.6	LOS A	0	0

Appendix G - Destination Signage Travel Times

Destination Signage Travel Times

Melnea Cass	Miles	Biking Time	Walking Time	Directions
South Bay Center	0.5	3	10	East
Dot Ave/Andrew Square T Station	0.8	4	16	East
Preble Circle/Moakley Park	1.1	6	21	East
JFK/Umass T Station	1.7	9	33	East
Bayside Expo Center	1.9	10	38	East
Umass Boston	2.2	12	44	East
South Bay Center				
Melnea Cass	0.5	3	10	West
Dot Ave/Andrew Square T Station	0.3	2	7	East
Preble Circle/Moakley Park	0.6	3	12	East
JFK/Umass T Station	1.2	6	24	East
Bayside Expo Center	1.4	8	28	East
Umass Boston	1.7	9	34	East
Dot Ave/Andrew Square				
Melnea Cass	0.8	4	16	West
South Bay Center	0.3	2	7	West
Preble Circle/Moakley Park	0.3	1	5	East
JFK/Umass T Station	0.9	5	17	East
Bayside Expo Center	1.1	6	21	East
Umass Boston	1.4	8	28	East
Preble Circle/Moakley Park				
Melnea Cass	1.1	6	21	West
South Bay Center	0.6	3	12	West
Dot Ave/Andrew Square Station	0.3	1	5	West
JFK/Umass T Station	0.6	3	12	South
Bayside Expo Center	0.8	4	16	South
Umass Boston	1.1	6	23	South
JFK/Umass T Station				
Melnea Cass	1.7	9	33	North
South Bay Center	1.2	6	24	North
Dot Ave/Andrew Square Station	0.9	5	17	North
Preble Circle/Moakley Park	0.6	3	12	North
Bayside Expo Center	0.2	1	4	East
Umass Boston	0.5	3	11	South
UMASS Boston				
Melnea Cass	2.2	12	44	West Side/Northbound
South Bay Center	1.7	9	34	West Side/Northbound
Dot Ave/Andrew Square Station	1.4	8	28	West Side/Northbound
Preble Circle/Moakley Park	1.1	6	23	West Side/Northbound
JFK/Umass T Station	0.5	3	11	West Side/Northbound
Bayside Expo Center	0.7	4	13	East Side/Northbound

Appendix H - Detailed Breakdown of Cost Estimate

103 - Tree Removed (Diameter under 24 inches)

Description	Station Begin	Station End	Quantity
Preble Rotary Island	$56+25$	$58+10$	14

106.12 - Bridge Curb Removed and Reset

Description	Station Begin	Station End	Quantity
Southampton Over I-93	$31+10$	$32+80$	170
Southampton over Train Tracks	$37+10$	$37+90$	80

120 - Earth Excavation

Description	Quantity (CF)	Quantity (CY)
Roundabout	66700	2470
	Total	$\mathbf{2 4 7 0}$

125 - Loam Stripped and Stockpiled

Description	Station Begin	Station End	Quantity
Preble Rotary	$56+25$	$58+10$	471
		Total	$\mathbf{4 7 1}$

127 - Concrete Excavation

Description	Station Begin	Station End	Area	Depth	Quantity
Mass Ave Island	$00+75$	$02+00$	1060	0.5	20
Mass Ave Slip Lane	$00+00$	$00+75$	850	0.5	16
Southampton up on side walk to Bridge	$19+75$	$29+25$	7600	0.5	141
Southampton @ frontage Road W	$30+80$	$31+25$	406	0.5	8
Southampton (Frontage Rd to Bridge)	$32+75$	$35+75$	2100	0.5	39
Southampton (Bridge to Ellery St)	$35+90$	$38+25$	2300	0.5	43
Southampton (Ellery to Dot Ave)	$38+50$	$42+00$	7100	0.5	131
Preble (Dot Ave to off curb)	$42+50$	$45+00$	4300	0.5	80
Round about (Preble and Old colony N)	$53+00$	$53+75$	2000	0.5	37
Roundabout (Old Colony and Columbia Rd)	$54+75$	$56+75$	3150	0.5	58
Preble St @ Roundabout S	$53+50$	$53+75$	500	0.5	9
Old Colony @ Logan Way	$08+40$	$09+20$	1000	0.5	19
Old colony (O'Callighan)	$17+80$	$18+10$	300	0.5	6
Mount Vernon (T Station)	$30+10$	$32+50$	2645	0.5	49
Morrissey (T Station)	$32+70$	$34+60$	2000	0.5	37
Morrissey (T to Shaws)	$34+90$	$36+70$	2000	0.5	37
Morrissey (Shaws)	$37+00$	$39+50$	2300	0.5	43
Morrissey (Shaws to Driveway 1)	$39+90$	$42+40$	2500	0.5	46
Morrissey Driveway 1 to 2	$42+75$	$46+00$	3400	0.5	63
Morrissey Driveway 2 to Umass	$46+25$	$62+00$	8600	0.5	159

129.6 - Bridge Pavement Excavation

Description	Station Begin	Station End	Quantity
Southampton Over I-93	$31+10$	$32+80$	945
Southampton over Train Tracks	$37+10$	$37+90$	445
		Total	$\mathbf{1 3 9 0}$

220 - Manhole Adjusted

Description	Station	Quantity
Southampton (New Market Square in Cycle Track) 1	$20+60$	1
Southampton (New Market Square in Cycle Track) 2	$22+60$	1
Southampton (Dorchester Ave)	$43+75$	1
Morrissey Blvd (Merge from Columbia Circle)	$44+00$	1
Morrissey Blvd (Boston Globe) 1	$52+75$	1
Morrissey Blvd (Boston Globe) 2	$55+10$	1
	Total	$\mathbf{6}$

220.3 - Drainage Structure Change in Type

Description	Station	Quantity
Southampton (Southbay) 1	$23+75$	1
Southampton (Southbay) 2	$26+91$	1
Southampton (Frontage Rd and Railroad)	$34+10$	1
Southampton (Ellery St)	$37+90$	1
Old Colony (Roundabout South)	$01+40$	1
Old Colony (O'Callaghan Bus Stop)	$17+75$	1
Mount Vernon (JFK Bus Exit)	$30+50$	1
Morrissey (JFK entrance)	$35+10$	1
Morrissey (Merge from Columbia Rd Rotary)	$43+40$	1
Morrissey (Umass)	$61+00$	1
	Total	$\mathbf{1 0}$

376.2 - Hydrant Remove and Relocate

Description	Station	Quantity
Southampton (Frontage Rd)	$35+25$	1
Mount Vernon (Bus Exit)	$31+13$	1
	Total	$\mathbf{2}$

129 - Asphalt Pavement Excavation by Cold Planer
460 - Hot Mix Asphalt
464 - Bitumen for Tack Coat

Description	Station Begin	Station End	Width	Length	Depth	Quantity Hot-Mix	Quantity Removed	Bitumen Tack Coat
Mass Ave to Theo Glynn	$00+00$	$11+00$	50	1100	1.50	513	6111	306
Theo Glynn to New Market Square	$11+00$	$19+50$	50	850	1.50	397	4722	236
New Market to Frontage	$19+50$	$33+00$	55	1350	1.50	693	8250	413
Frontage W to Frontage E	$33+00$	$35+50$	100	250	1.50	233	2778	139
Frontage E to Dorchester Ave W	$35+50$	$43+50$	55	800	1.50	411	4889	244
Dorchester Ave E to Preble W	$43+50$	$44+75$	200	125	1.50	233	2778	139
Preble W to Preble Rotary	$44+75$	$56+00$	60	1125	1.50	630	7500	375
Old Colony N Approach to Rotary	$56+25$	$57+00$	50	200	1.50	93	1111	56
Columbia Rd Approach to Rotary	$57+50$	$59+00$	50	175	1.50	82	972	49
Roundabout	$56+00$	$57+25$	26	330	1.50	80	953	48
Old Colony S Approach to Roundabout	$00+75$	$02+50$	50	140	1.50	65	778	39
Old Colony Ave	$02+50$	$19+00$	75	1650	1.50	1155	13750	688
Old Colony and Columbia Rd	$19+00$	$22+50$	100	350	1.50	327	3889	194
Old Colony Ave	$22+50$	$29+50$	55	700	1.50	359	4278	214
Old Colony to Mount Vernon	$29+50$	$31+50$	40	200	1.50	75	889	44
Mount Vernon under bridge	$31+50$	$33+00$	50	500	1.50	233	2778	139
Morrissey (JFK T Station)	$31+50$	$43+00$	45	1150	1.50	483	5750	288
Morrissey to Uturn (Southbound)	$43+00$	$57+50$	65	1450	1.50	880	10472	524
U-turn to Umass (Southbound)	$57+50$	$62+00$	80	450	1.50	336	4000	200
Umass to U-Turn (Northbound)	$62+00$	$55+50$	80	650	1.50	485	5778	289
U-turn to Split (Northbound)	$55+50$	$44+00$	70	1150	1.50	751	8944	447
Split to Mount Vernon (Northbound)	$44+00$	$34+00$	50	1000	1.50	467	5556	278

460.1 - Hot Mix Asphalt Dense Binder

Description	Width	Length	Depth	Quantity Mix	Area	Sub Base
Morrissey Blvd (Removed median)	10	1600	18.00	1792	1778	889
Roundabout	112	112	18.00	1410	1399	699

482.3 - Sawcut Asphalt Pavement

Description	Station Begin	Station End	Quantity
Mass Ave	00+00	00+00	50
Southampton (Slip Lane)	00+75	01+00	20
Southampton (Bradston Street)	01+50	01+75	25
Southampton (U-turn)	01+90	02+25	25
Southampton (Atkinson Street)	08+10	08+50	35
Southampton (Topeka Street)	$11+25$	$11+50$	30
Southampton (Theo Glynn)	$11+00$	$11+75$	70
Southampton (Cummings Street)	$14+00$	$14+40$	35
Southampton (Moore Street)	$16+80$	17+30	45
Southampton (New Market Square	19+70	20+60	85
Southampton (South Bay Center)	24+60	25+60	100
Southampton (Frontage Rd N)	$33+25$	$34+25$	80
Southampton (Frontage Rd S)	$34+75$	35+50	50
Southampton (Ellery St N)	$40+25$	40+60	30
Southampton (Ellery St S)	$40+50$	40+75	25
Southampton (Dorchester Ave N)	$43+75$	$44+50$	70
Southampton (Boston St)	$43+60$	$44+00$	45
Southampton (Dorchester Ave S)	44+10	44+50	50
Preble (Carpenter St)	$46+00$	$46+20$	20
Preble (Mohawk St)	47+50	47+90	35
Preble (Rogers St N)	48+60	$48+80$	15
Preble (Rogers St S)	$49+00$	$49+25$	25
Preble (Wendeller St)	50+25	50+50	20
Preble (Ward St N)	$51+40$	51+60	25
Preble (Ward St S)	51+50	51+70	20
Preble (Vinton St)	$49+80$	55+00	25
Roundabout (Old Colony N approach)	55+50	56+75	70
Roundabout (Columbia Rd approach)	59+00	59+00	65
Old Colony Ave (Devine Way)	02+50	02+75	25
Old Colony Ave (McDonough Way)	03+75	04+00	20
Old Colony Ave (Logan Way N)	08+20	08+40	25
Old Colony Ave (Logan Way S)	09+10	09+40	25
Old Colony Ave (MSGR O'Callaghan Way)($18+00$	$18+40$	25
Old Colony Ave (Columbian Rd)	$21+00$	$22+00$	60
Old Colony Ave (Columbia Rd U-turn)	23+50	23+80	30
Mounth Vernon St (Bus Exit)	29+75	$30+00$	30
Morrissey Blvd (Mount Vernon (under Bridge)	$32+25$	32+50	55
Morrissey Blvd N (Mount Vernon)	34+50	35+00	60
Morrisey Blvd (Taxi Exit)	$32+40$	$32+70$	25
Morrissey Blvd (Bus/Taxi Entrance)	$34+50$	$34+90$	30
Morrissey Blvd (Shaws Entrance)	36+60	37+00	35
Morrissey Blvd (Shaws Exit)	39+50	$40+00$	30
Morrissey Blvd (Driveway 1)	$42+40$	42+75	35
Morrissey Blvd (Driveway 2)	45+90	$46+20$	25
Morrissey Blvd (Driveway 3)	47+50	48+10	50
Morrissey Blvd (Driveway 4)	$53+00$	53+50	45
Morrissey Blvd (Driveway 5)	$55+40$	55+90	50
Morrissey Blvd (End of Southbound)	$62+00$	62+00	40
Morrissey Blvd (Begin Northbound)	$62+00$	$62+00$	60

Morrissey Blvd (Umass Entrance)	$61+70$	$61+30$	35
Morrissey Blvd (Umass Exit)	$61+20$	$60+90$	50
Morrissey Blvd (Driveway 6)	$58+25$	$58+00$	25
Morrissey Blvd (Driveway 7)	$54+50$	$54+80$	30
Morrissey Blvd (Driveway 8)	$45+80$	$46+10$	30
Morrissey Blvd (Driveway 9)	$43+50$	$43+75$	25
Morrissey Blvd (Driveway 10)	$36+75$	$37+75$	100

485 - Rumble Block Granite Pavement

Description	Station Begin	Station End	Quantity
Preble Rotary Mountable Area	$56+25$	$58+10$	452
		Total	$\mathbf{4 5 2}$

504 - Granite Curb

Description	Station Begin	Station End	Quantity
Southampton Bus Stop (Atkinson St)	$06+50$	$08+10$	200
Southampton Bus Stop (New Market Square)	$19+50$	$21+00$	200
Preble Rotary (All sections)	$55+25$	$58+50$	4000
		Total	$\mathbf{4 4 0 0}$

Description	Station Begin	Station End	Quantity
Preble Rotary edge of mountable	$56+25$	$58+10$	245
		Total	$\mathbf{2 4 5}$

580.1 - Granite Curb Remove and Replace

Description	Station Begin	Station End	Quantity
Mass Ave Left turn island	$00+75$	$02+00$	140
Southampton (Driveway 13 and 14)	$21+25$	$21+60$	40
Southampton (Driveway 14 to I-93 Bridge)	$22+25$	$31+25$	900
Southampton (I-93 Bridge to Frontage Rd)	$32+75$	$33+50$	75
Southampton (Frontage Rd to Train Bridge)	$35+00$	$37+25$	225
Southampton (Train Bridge to Ellery St)	$38+00$	$40+30$	230
Preble (Dorchester Ave to Driveway 1)	$44+50$	$45+10$	60
Preble St (Bus Stop)	$53+75$	$54+90$	115
Old Colony (Devine way to MCDonough Way)	$02+75$	$03+75$	100
Old Colony (Logan Way Island	$08+40$	$09+20$	150
Old Colony Bus Stop	$16+60$	$18+10$	160
Old Colony T station Exit	$29+10$	$29+75$	90
Mount Vernon (T Station)	$30+10$	$32+30$	210
Morrissey (Taxi exit to Entrance)	$32+75$	$34+60$	185
Morrissey (Entrance to Shaws Entrance)	$34+90$	$36+50$	160
Morrissey (Shaws Entrance to Exit)	$36+90$	$39+50$	260
Morrissey (Shaws Exit to Driveway 1)	$40+00$	$42+40$	240
Morrissey (Driveway1 to Umass)	$42+75$	$61+75$	1900

701 - Concrete Sidewalk

151 - Gravel Borrow

Description	Station Begin	Station End	Quantity (SF)	Quantity (SY)	Gravel Quantity
Southampton Up on Curb 1	$19+60$	$21+00$	2500	278	62
Southampton Up on Curb 2	$21+25$	$21+60$	500	56	12
Southampton Up on Curb 3	$22+20$	$29+10$	11250	1250	278
Southampton Up on Curb 4	$30+75$	$31+50$	1030	114	25
Southampton Up on Curb 5	$32+75$	$35+30$	5000	556	123
Southampton Up on Curb 6	$35+75$	$38+25$	4100	456	101
Southampton Up on Curb 7	$38+60$	$39+60$	1800	200	44
Southampton Up on Curb 8	$39+90$	$40+40$	700	78	17
Southampton Up on Curb 9	$40+60$	$41+20$	900	100	22
Southampton Up on Curb 10	$41+40$	$42+00$	2000	222	49
Preble 1	$42+50$	$43+00$	1200	133	30
Preble 2	$43+25$	$44+90$	2900	322	72
Roundabout 1	$53+25$	$54+00$	4300	478	106
Roundabout 2	$54+75$	$56+50$	3300	367	81
Roundabout 3	$00+00$	$02+00$	4300	478	106
Roundabout 4	$00+75$	$01+10$	2200	244	54
Old colony Logan Way	$08+40$	$09+20$	2110	234	52
Old colony O'Callaghan	$16+65$	$18+10$	4100	456	101
Mount Vernon (T Station)	$30+10$	$32+50$	4300	478	106
Morrissey 1	$32+70$	$34+50$	2750	306	68
Morrissey 2	$34+90$	$36+60$	3440	382	85
Morrissey 3	$37+00$	$39+60$	5400	600	133
Morrissey 4	$40+00$	$42+40$	4700	522	116
Morrissey 5	$42+75$	$06+00$	7300	811	180
Morrissey 6	$46+25$	$47+60$	4700	522	116
Morrissey 7	$48+25$	$53+00$	12000	1333	296
Morrissey 8	$53+50$	$55+40$	4300	478	106
Morrissey 9	$56+00$	$62+00$	14900	1656	368
Morrissey 10	$61+50$	$62+00$	1330	148	33
			Total	$\mathbf{1 3 2 5 7}$	$\mathbf{2 9 4 6}$

701.2 - Concrete Wheelchair Ramps

Description	Station Begin	Station End	$\begin{array}{\|l} \hline \text { Quantity } \\ \text { (SF) } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Quantity } \\ \text { (SY) } \\ \hline \end{array}$
Southampton Slip lane	00+50	00+75	310	34
Southampton up onto curb	19+60	19+75	305	34
Southampton South Bay	25+95	26+15	112	12
southampton Frontage Rd NW	$31+00$	$31+50$	570	63
Southampton Frontage Rd NE	32+75	$33+25$	310	34
Southampton Ellery St NW	37+90	38+30	525	58
Southampton Ellery St NE	$38+60$	$38+80$	475	53
Southampton Dot Ave	$41+50$	$42+00$	750	83
Preble Dot Ave	42+50	42+90	1250	139
Preble down off curb	$44+60$	$44+80$	250	28
Preble Approach to roundbaout N	$53+45$	53+60	500	56
Old Colony N approach to roundbaout	53+75	$54+00$	120	13
Columbia Rd approach to roundabout	56+40	56+50	150	17
Old Colony S approach to roundabout	01+60	01+70	60	7
Preble Approach to roundbaout s	53+50	$53+75$	475	53
Old colony Logan Way N	08+40	08+50	135	15
Old colony lgan way across	08+80	09+00	125	14
Old Colony Logan Way S	09+00	09+15	140	16
Old Colony Bus Stop	16+60	16+70	90	10
Old Colony across	17+30	$17+45$	125	14
Old Colony O'Callaghan	$17+90$	18+10	500	56
Mount Vernon Bus Exit	30+30	30+40	60	7
Mount Vernon T Station	$32+00$	$32+40$	1200	133
Mount Vernon Taxi Exit S	32+70	$32+80$	60	7
Morrissey T Entrance N	34+25	$34+50$	170	19
Morrissey T Entrance S	34+90	35+10	250	28
Morrissey Shaws Entrance N	36+25	36+60	450	50
Morrissey Shaws Entrance S	36+90	$37+20$	300	33
Morrissey Shaws Exit N	39+35	39+60	400	44
Morrissey Shaws Exit S	39+90	$40+25$	300	33
Morrissey Driveway 1 N	$42+25$	$42+40$	300	33
Morrissey Driveway 1 S	42+75	$43+20$	750	83
Morrissey Driveway 2 N	$45+80$	$46+00$	450	50
Morrissey Driveway 2 S	$46+25$	46+35	350	39
Morrissey Driveway 3 N	47+50	47+60	450	50
Morrissey Driveway 3 S	48+15	$48+25$	370	41
Morrissey Driveway 4 N	$53+00$	$53+20$	370	41
Morrissey Driveway 4 S	53+60	53+70	350	39
Morrissey Driveway 5 N	$55+40$	55+60	350	39
Morrissey Driveway 5 S	56+00	$56+20$	350	39
Morrissey @ Umass W	$61+50$	$62+00$	1100	122
Morrissey @ Umass E	61+75	$62+25$	700	78
		Total	16357	1817

751 - Loam Borrow

765 - Seeding

Description	Area	Depth	Quantity Loam	Quantity Seed
Roundabout 1	6060	0.50	337	673
Roundabout 2	2400	0.50	133	267
Roundabout 3	10208	0.50	567	1134
Roundabout 4	533	0.50	30	59
Roundabout 5	8040	0.50	447	893
Roundabout 6	1333	0.50	74	148
Roundabout 7	1278	0.50	71	142
Roundabout 8	1000	0.50	56	111
Roundabout 9	1000	0.50	56	111
Roundabout 10	1217	0.50	68	135
Roundabout 11	400	0.50	22	44
Roundabout 12	400	0.50	22	44
Roundabout 13	400	0.50	22	44
Roundabout 14	400	0.50	22	44
Roundabout 15	900	0.50	50	100
Roundabout 16	2950	0.50	164	328
Roundabout 17	1259	0.50	70	140
Roundabout 18	3150	0.50	175	350
Roundabout 19	2250	0.50	125	250
Roundabout 20	15300	0.50	850	1700

823.70 - Light Pole Remove and Relocate

Description	Station	Quantity
Southampton (Newmarket Square)	$21+40$	1
Southampton (South Bay) 1	$24+15$	1
Southampton (South Bay) 2	$24+95$	1
Southamton (Frontage Rd)	$33+55$	1
Southampton (Railroad Tracks)	$34+98$	1
Roundabout	$53+70$	3
Old Colony (Logan Way)	$09+02$	1
Old Colony (O'Callaghan Bus Stop)	$17+46$	1
Mount Vernon (JFK)	$31+03$	1
Morrissey (Shaws Entrance)	$37+54$	1
Morrissey (Pedestrian Bridge)	$40+51$	1
	Total	$\mathbf{1 3}$

866.04-4" White Thermoplastic

Broken Lane Line					
Description	Station Begin	Station End	Length	\# of Lines	Quantity
Southampton St (U-turn to Fire Station)	$03+50$	$06+75$	325	2	163
Southampton St (Fire Station to Theo Glynn)	$07+90$	$11+00$	210	2	105
Southampton St (Theo Glynn to Merge)	$11+50$	$22+00$	1050	1	263
Southampton St (Merge to Dorchester Ave)	$22+00$	$40+00$	1800	2	900
Preble Roundabout	$53+25$	$56+50$	330	1	83
Old Colony Ave (North Approach)	$53+50$	$54+60$	300	1	75
Columbia Rd approach	$55+50$	$57+00$	120	1	30
Old Colony Ave	$01+00$	$20+00$	2000	2	1000
Columbia Rd Intersection to Rotary	$20+00$	$27+00$	700	1	175
Morrissey Blvd Exit NB	$36+60$	$37+90$	130		1
Morrissey Blvd	$40+50$	$42+75$	225	33	
Morrissey Blvd	$42+75$	$44+00$	125	1	56
Morrissey Blvd	$44+00$	$58+50$	1450	2	3
Morrissey continued lane lines left turn	$60+50$	$61+50$	200	1088	
Morrissey continued lane lines through	$60+50$	$62+00$	150	4	200
Umass @ intersection	$60+50$	$61+50$	220	3	113
Umass @ intersection	$60+50$	$61+50$	150	2	110

Solid Lane Line					
Description	Station Begin	Station End	Length	\# of Lines	Quantity
Southampton St Mass Ave Intersection	$00+25$	$01+90$	160	5	800
Southampton St U-turn Light	$02+50$	$03+50$	100	4	400
Southampton St (U-turn to Fire Station)	$03+50$	$06+75$	325	2	650
Southampton St (Fire Station)	$06+75$	$07+90$	115	4	460
Southampton St (Fire Station to Theo Glynn)	$07+90$	$11+00$	210	2	420
Southampton St (Theo Glynn to Dorchester Ave)	$11+00$	$40+00$	2900	2	5800
Southhamton St (Dorchester Ave)	$40+00$	$41+50$	150	3	450
Preble St	$42+75$	$54+00$	1125	4	4500
Preble Roundabout	$55+25$	$58+50$	410		1
Old Colony Ave (North Approach)	$56+00$	$57+00$	240	410	
Columbia Rd approach	$57+25$	$59+00$	320	1	240
Old Colony Ave (Roundabout to Columbia Rd)	$01+00$	$21+00$	2000	1	320
Old Colony Ave (Columbia Rd to Morrissey	$21+00$	$32+00$	1100	5	10000
Morrissey Blvd	$32+00$	$58+50$	2650	4	4400
Morrissey Blvd @ Umass	$58+50$	$60+50$	200	3	7950
Morrissey Blvd past Umass	$60+50$	$63+00$	250	7	1400

866.12-12" White Thermoplastic

Crosswalk Striping			
Description	Station Begin	Station End	Quantity
Slip lane at Melnea Cass	$00+70$	$01+00$	100
Across Branston St (Southampton)	$01+50$	$01+70$	100
Southampton U-turn	$01+95$	$02+25$	150
Southampton befor U-turn	$02+30$	$02+40$	230
Southampton fire station	$06+30$	$06+40$	220
Atkinson St (Southampton)	$08+15$	$08+55$	170
Topeka St (Southampton)	$11+10$	$11+50$	150
Cummings St (Southampton)	$14+05$	$14+50$	160
Moore St (Southampton)	$16+90$	$17+40$	200
Southampton new market	$19+40$	$19+50$	250
Frontage Rd (Southampton) 3 sections	$33+30$	$34+80$	490
Ellery St (Southampton)	$40+20$	$40+60$	170
Dorchester Ave (Southampton \& Preble)	$43+80$	$44+50$	280
Preble St (Mohawk St)	$47+40$	$47+50$	240
Rogers St (Preble St)	$48+60$	$49+00$	110
Preble St (Ward St)	$51+30$	$51+40$	240
Ward St (Preble St)	$51+30$	$51+80$	150
Vinton St (Preble St)	$54+90$	$55+30$	130
Preble St (Preble Rotary)	$55+50$	$55+60$	200
Old Colony Ave North Entrance (Preble Rotary)	$56+20$	$57+00$	240
Columbia Road East Entrance (Preble Rotary)	$57+60$	$57+70$	200
Old Colony Ave South Entrance (Preble Rotary)	$56+40$	$57+00$	250
Devine Way (Old Colony Ave)	$02+50$	$02+90$	130
McDonough Way (Old Colony Ave)	$03+75$	$04+10$	100
Logan Way North (Old Colony Ave)	$08+10$	$08+40$	120
Old Colony Ave (Logan Way) 2 Sections	$08+85$	$08+95$	320
Logan Way South (Old Colony Ave)	$09+10$	$09+40$	120
Old Colony Ave (South of Ped overpass) 2 Sections	$12+10$	$12+20$	400
Old Colony Ave (Second south of ped overpass) 2 Sections	$14+80$	$14+90$	390
Old Colony Ave (MSGR O'Callghan Way) 2 Sections	$17+30$	$17+40$	310
MSGR O'Callghan Way (Old Colony Ave)	$18+10$	$18+40$	120
Columbia Road (Old Colony Ave) 2 sections	$21+00$	$22+20$	410
JFK/Umass T Station Bus Exit (Mount Vernon St)	$29+75$	$30+10$	135
Mount Vernon St (Morrissey Blvd)	$32+10$	$32+20$	70
JFK/Umass T Station Taxi Exit (Morrissey Blvd)	$32+40$	$32+70$	120
JFK/Umass T Station Bus/Taxi Entrance (Morrissey Blvd)	$34+55$	$34+90$	140
Shaws Entrance (Morrissey Blvd)	$36+50$	$37+10$	170
Shaws Exit (Morrissey Blvd)	$39+60$	$40+00$	135
Driveway 1 (Morrissey Blvd)	$42+40$	$42+75$	160
Driveway 2 (Morrissey Blvd)	$45+90$	$46+20$	110
Driveway 3 (Morrissey Blvd)	$47+60$	$48+10$	220
Driveway 4 (Morrissey Blvd)	$53+10$	$53+60$	200
Driveway 5 (Morrissey Blvd)	$55+30$	$55+90$	200
Umass Left Turn Exit (Morrissey Blvd)	$60+15$	$60+45$	160
Morrissey Blvd (Umass Exit) 2 sections	$61+80$	$61+90$	380
		Sub-total	$\mathbf{9 0 5 0}$

Bike Crossing Edge			
Description	Station Begin	Station End	Quantity
Slip lane at Melnea Cass	00+70	01+50	25
Across Branston St (Southampton)	01+50	01+70	16
Driveway 1 (Southampton)	02+50	02+80	16
Driveway 2 (Southampton)	02+85	03+25	22
Driveway 3 (Southampton)	03+80	04+60	40
Driveway 4 (Southampton)	04+70	04+90	12
Driveway 5 (Southampton)	05+00	05+30	14
Driveway 6 (Southampton)	06+10	06+30	12
Atkinson St (Southampton)	08+15	08+55	26
Topeka St (Southampton)	$11+00$	$11+60$	30
Driveway 7 (Southampton)	$11+70$	$12+05$	18
Driveway 8 (Southampton)	$12+40$	$12+70$	18
Cummings St (Southampton)	$14+05$	$14+50$	24
Driveway 9 (Southampton)	$15+10$	$15+60$	26
Moore St (Southampton)	16+90	$17+40$	30
Driveway 10 (Southampton)	$17+30$	$18+20$	26
Driveway 11 (Southampton)	$18+30$	$19+00$	34
Driveway 12 (Southampton)	19+10	19+40	18
Driveway 13 (Southampton)	$21+00$	21+25	14
Driveway 14 (Southampton)	$21+60$	$22+25$	34
Frontage Rd (Southampton) 3 sections	$33+30$	$34+80$	61
Ellery St (Southampton)	$40+20$	40+60	28
Driveway 15 (Southampton)	$41+60$	$41+90$	20
Driveway 16 (Southampton)	$42+30$	$42+60$	14
Driveway 17 (Southampton)	$43+15$	$43+40$	15
Dorchester Ave (Southampton \& Preble)	$43+80$	$44+50$	37
Driveway 1 (Preble)	$45+10$	$45+30$	12
Driveway 2 (Preble)	$45+40$	$45+70$	12
Driveway 3 (Preble)	$46+85$	$47+20$	16
Rogers St (Preble St)	48+60	$49+00$	22
Ward St (Preble St)	$51+30$	$51+80$	20
Vinton St (Preble St)	$54+90$	$55+30$	21
Preble St (Preble Rotary)	55+50	55+60	22
Old Colony Ave North Entrance (Preble Rotary)	56+20	$57+00$	28
Columbia Road East Entrance (Preble Rotary)	57+60	$57+70$	22
Old Colony Ave South Entrance (Preble Rotary)	$56+40$	57+00	28
Devine Way (Old Colony Ave)	02+50	02+90	16
McDonough Way (Old Colony Ave)	03+75	04+10	18
Logan Way North (Old Colony Ave)	08+10	08+40	19
Logan Way South (Old Colony Ave)	09+10	09+40	19
MSGR O'Callghan Way (Old Colony Ave)	18+10	18+50	21
JFK/Umass T Station Bus Exit (Mount Vernon St)	29+75	30+10	25
JFK/Umass T Station Taxi Exit (Morrissey Blvd)	$32+40$	32+70	20
JFK/Umass T Station Bus/Taxi Entrance (Morrissey Blvd)	$34+55$	$34+90$	24
Shaws Entrance (Morrissey Blvd)	36+50	$37+10$	25
Shaws Exit (Morrissey Blvd)	39+60	$40+00$	23
Driveway 1 (Morrissey Blvd)	$42+40$	$42+75$	20
Driveway 2 (Morrissey Blvd)	45+90	$46+20$	14
Driveway 3 (Morrissey Blvd)	47+60	$48+10$	27

Driveway 4 (Morrissey Blvd)	$53+10$	$53+60$	25
Driveway 5 (Morrissey Blvd)	$55+30$	$55+90$	24
Morrissey Blvd (Umass Exit) 2 sections	$61+80$	$61+90$	46

Stop Lines			
Description	Station Begin	Station End	Quantity
Southampton befor U-turn	02+48	02+49	50
Southampton fire station	06+74	06+75	35
Atkinson St (Southampton)	08+15	08+45	18
Topeka St (Southampton)	$11+10$	$11+50$	14
Cummings St (Southampton)	$14+05$	$14+50$	18
Moore St (Southampton)	16+90	17+40	22
Southampton E (South Bay)	24+24	$24+25$	22
Southampton W (South Bay)	26+18	26+19	22
Southampton E (Frontage Rd)	$33+30$	33+31	22
Frontage Rd (Southampton)	$33+30$	33+60	20
Southampton W (Frontage Rd)	35+52	35+53	25
Ellery St (Southampton)	$40+20$	40+60	14
Mohawk St (Preble St)	47+60	47+90	17
Rogers St (Preble St)	48+60	$49+00$	10
Ward St (Preble St)	$51+30$	51+80	12
Vinton St (Preble St)	54+90	55+30	12
Devine Way (Old Colony Ave)	02+50	02+90	12
McDonough Way (Old Colony Ave)	03+75	04+10	11
Old Colony Ave (Logan Way) 2 Sections	08+85	08+95	50
Logan Way South (Old Colony Ave)	09+10	09+40	30
Old Colony Ave (MSGR O'Callghan Way) 2 Sections	17+30	17+40	50
MSGR O'Callghan Way (Old Colony Ave)	18+10	$18+40$	25
Columbia Road S (Old Colony Ave)	20+50	20+60	25
Columbia Road N (Old Colony Ave)	$21+00$	$22+20$	25
Old Colony Ave (Columbia Rd)	$21+80$	21+90	25
JFK/Umass T Station Bus Exit (Mount Vernon St)	29+75	30+10	30
Mount Vernon St (Morrissey Blvd)	$32+00$	$32+05$	20
JFK/Umass T Station Taxi Exit (Morrissey Blvd)	$32+40$	32+70	25
Morrissey Blvd S (Shaws Exit)	$39+30$	39+31	15
Shaws Exit (Morrissey Blvd)	39+60	40+00	15
Morrissey Blvd N (Shaws Exit)	$40+20$	$40+21$	15
Morrissey Blvd S (TV Station)	$42+15$	42+16	15
Umass Left Turn Exit (Morrissey Blvd)	60+15	60+45	30
Morrissey Blvd S (Umass Exit)	60+40	60+50	70
Morrissey Blvd N (Umass Exit)	$62+05$	$62+10$	40
		Sub-total	861
		Total	9911

867.04-4" Yellow Thermoplastic

Bike Lane Center Line					
Description	Station Begin	Station End	Length	\# of Lines	Quantity
Southampton St	00+00	$44+00$	4400	1	1100
Preble St	$44+00$	55+50	1150	1	287.5
Preble Rotary (All sections)	55+25	58+50	600	1	150
Old Colony Ave	01+00	30+00	2900	1	725
Mount Vernon St	30+00	$32+00$	200	1	50
Morrissey Blvd	$32+00$	62+00	3000	1	750
Across Morrissety @ Umass	$61+75$	$62+00$	150	1	37.5
				Sub-total	3100

Vehicle Center Line					
Description	Station Begin	Station End	Length	\# of Lines	Quantity
Southampton St (Mass Ave to Theo Glynn)	00+00	$11+00$	1100	1	1100
Southampton St (Theo Glynn to Dorchest Ave)	$11+00$	$43+50$	3250	2	6500
Preble St	44+50	55+50	1100	2	2200
Preble Roundabout	55+25	58+50	245	1	245
Old Colony Ave (North Approach)	56+00	57+00	240	1	240
Columbia Rd approach	$57+25$	59+00	320	1	320
Old Colony Ave (Roundabout to Columbia Rd)	01+00	$21+00$	2000	2	4000
Old Colony Ave (Columbia Rd to Morrissey	$21+00$	$32+00$	1100	2	2200
Morrissey Blvd	$32+00$	$62+00$	3000	3	9000
				Sub-total	25805
				Total	28905

Appendix I - 2004-2006 Statewide Top 200 Intersection Crash List

2006 TOP CRASH LOCATIONS REPORT

JULY 2008
ECT
$\sqrt{\text { MASS }} \sqrt{\text { HIGHWAY }}$

The Commonwealth of Massachusetts
 Executive Office of Transportation
 Massachusetts Highway Department

Bernard Cohen

Governor

Dear Reader:

Enclosed is MassHighway's edition of the 2006 Top Crash Locations Report, which may be used to evaluate top crash intersection locations and top crash pedestrian and bicycle locations in order to improve the safety of our roadway system. This report, like last year's report, is a change from previous editions of the top crash locations report in that the focus is on intersection locations and is based on crashes entered into the new Crash Data System (CDS). New for this year, reflecting MassHighway's commitment to a safe multi-modal transportation system, is the identification of top bicycle-motor vehicle and pedestrian-motor vehicle crash locations. This information is also available by contacting your Regional Planning Agencies. In the near future, a report will be published identifying the top interchange locations.

In an effort to reduce injury and fatal crashes, the Massachusetts Highway Department, in cooperation with a wide variety of public and private safety stakeholders, has prepared the Massachusetts Strategic Highway Safety Plan (SHSP). To view the SHSP, download a copy of the Plan or to learn more about it, go to the MassHighway website:
http://www.mhd.state.ma.us/default.asp?pgid=content/traffic/shsp\&sid=level2. The SHSP identified the State's key safety needs and the Plan can be used to guide investment decisions to achieve significant reductions in highway fatalities and serious injuries on all public roads based upon a data-driven process.

I am pleased to present this dataset which may be used as a screening tool to evaluate locations and make changes to improve the safety of our roadway system. The 2006 Top Crash Locations Report is one of the tools for the statewide Highway Safety Improvement Program (HSIP) to identify safety projects using a data-driven process.

Please note that this report is based only on crash records that have been entered into the statewide crash system and have been geocoded to a specific location. Although Massachusetts General Laws Chapter $90 \$ 26$ and 29 require drivers and police departments to file crash reports that exceed specific thresholds, this is not always the case. Improving the crash reporting system and the quality of the data will help to focus resources where they are most needed.

I am convinced that we can make great strides in improving safety on Massachusetts roadways for all users. If you have questions, please contact Neil Boudreau, State Traffic Engineer at

TOP HIGH CRASH LOCATIONS REPORT
 Top 200 Intersection Locations 2004-2006
 Top Pedestrian Locations 2002-2006
 Top Bicycle Locations 2002-2006

Introduction

MassHighway obtains crash data from the Massachusetts Registry of Motor Vehicles (RMV) and uses it for a number of purposes. The primary function, however, is that it provides the foundation for developing safety improvement projects. The Top High Crash Locations Report is one of the tools used in this process. Previously, MassHighway, with the assistance from Central Transportation Planning Staff (CTPS), produced a Top 1000 Highway Crash Locations Report which included all types of locations (interchanges, intersections and rotaries). Last year, MassHighway developed a new report type where the locations identified were crash clusters at intersections (no grade separated locations and no locations with weaving sections). In the report it was noted that in the near future the top bicycle and pedestrian clusters would be identified and reported as well. This year, MassHighway is again preparing a Top High Crash Locations Report which includes the top 200 high crash intersection locations using crash data from 2004-2006 and also includes the highest frequency bicycle-motor vehicle and pedestrianmotor vehicle crash locations for 2002-2006.

The Registry of Motor Vehicles (RMV) obtains crash data from State and local police reports and from motor vehicle operators (motorists) who are involved in crashes. The RMV Crash Records Section collects, enters and maintains crash data records, which are the source of the MassHighway crash data.

To produce this high crash locations listing, MassHighway, with the assistance of Geonetics, has developed an automated procedure for processing, standardizing, matching and aggregating the crash data by geographical location using Geographic Information System (GIS) tools and procedures. This automated process replaced the previous largely-manual process used by CTPS in developing the integrated Top 1000 High Crash Locations Report.

This report, like last year's report, is based on the new Registry of Motor Vehicles crash system which has been operational since 2002 and collects crash information in a different format. The new Crash Data System (CDS) was designed, built and tested over a period of several years involving assistance and input from a number of State, Federal and local agencies, including MassHighway and the Federal Highway Administration. Due to the difficulty of obtaining complete and accurate information on crash locations, one of the key parts of the CDS project was working with the police and the RMV to attempt to obtain more accurate crash location data. New crash data forms for both police and operator reports were designed to correspond to the new data entry system at the RMV. The CDS includes new data entry tools to assist analysts attempting to validate the crash location data. Improved accuracy of the crash data along with the standardization of street names is allowing MassHighway to do a better job of evaluating crash locations. Generally, the geocoding rate (the rate at which crashes can be located to a specific geographical point) has jumped from 62% to nearly 80% of crashes in the statewide system. However, the geocoding rate is not uniform for all crashes nor for all types of crash locations. Some crashes may be more difficult to geocode because of multiple intersections between the same roadway names within a community, inconsistencies in roadway names between E911 files and the Road Inventory File or a host of other reasons.

Furthermore, the reporting levels of some communities have changed dramatically between the old reporting format (pre-2002) and the new format. As an example, one community has dropped reporting levels by nearly a factor of 10 , while another community has dramatically increased their reporting levels
so that they are now reporting nearly 10 times the number of crashes. Obviously, these reporting changes significantly impact the results of the Top High Crash Locations Report.

Due to the many difficulties in obtaining precise, useable crash location data and many issues involved in variations in crash reporting rates by some jurisdictions, this report should be used as a general purpose screening tool rather than as a precise listing of crash frequencies by individual locations.

Methodology - Intersection Locations

The intersection crash cluster analysis method, developed by Geonetics, is a comprehensive method designed to locate crash clusters. At the heart of the method is a 25 meter fixed search distance around each crash. In basic terms, this radius controls how far the application will search for adjacent crashes. Using a 25 meter radius, the analysis method found nearby crashes and merged their areas together, thus creating clusters. If two distinct clusters are found to share a common crash, the two clusters are merged into a single cluster. This method of search-and-merge results in a set of many distinct clusters of different sizes. The application then stores these clusters to the GIS output file, along with the count of crashes within the cluster. The clusters were then ranked by the number of Equivalent Property Damage Only (EPDO) crashes contained within their boundaries. As in previous Top Crash Lists, fatal crashes are weighted by 10, injury crashes are weighted by 5 and property damage only or non-reported is weighted by 1. These are the same weights that were used to generate the previous Top 1000 High Crash Locations Report.

The crashes were then named based on the highest functional classification roadway within the cluster, followed by the roadway with the second highest functional classification. In instances where there were two roadways with the identical classification, the first street name selected was the street with the longest segment contained within the cluster. Some cluster naming was modified to insert the name of a private way or site drive, rather than leaving it as unnamed (such as at an intersection of a roadway with a site drive). Note that the area encompassing the crash cluster may be more broad than just the intersection.

The module to automatically determine whether the location was an intersection, rotary, interchange or other, has not yet been developed. Therefore, a review of each location was required to make that determination. Generally, a location was determined to be an "intersection" if the cluster did not contain roadways with grade separation (interchange) nor weaving sections (rotaries or ramps). The clusters were reviewed in descending EPDO order until 200 locations were obtained. A sample of the top 2 ranked intersection locations is included in this report to illustrate the concept of the intersection clustering. The actual crash clusters can be viewed on the interactive maps at mass.gov/mhd/topcrashclusters. Furthermore, a shape file of the top crash intersection locations is available upon request.

The above method was used to develop the top 200 intersection crash locations for crashes occurring during the three year period from 2004 to 2006. As with previous editions, the crash location analysis has been scored over a three-year period. By using crash experience over the three-year period, anomalies in the individual years of data tend to be reduced.

Methodology - Pedestrian and Bicycle Locations

New for this year, the top locations where reported collisions occurred between pedestrians and motor vehicles and bicycles and motor vehicles have been identified. The crash cluster analysis methodology for both the top pedestrian and the top bicycle crashes is similar to the top intersection location methodology in that it uses a fixed meter search distance (for both pedestrian and bicycle crashes it is 100 meters compared to 25 meters for intersection locations) to merge crash clusters together. Crashes involving collisions between motor vehicles and pedestrians or bicycles were identified by using the nonmotorist type code within the CDS database (which may yield different results from using most harmful event, first harmful event, or sequence of events data fields). Furthermore, the methodology uses the

Equivalent Property Damage Only (EPDO) weighting to rank the clusters. However, because of the relatively small number of reported pedestrian and bicycle crashes in the crash data file, the clustering analysis used crashes from the five year period from 2002-2006, instead of the three year analysis for intersection locations. Additionally, due to the larger geographic area encompassed by both the pedestrian and the bicycle crash clusters, it was difficult to name them so they were left unnamed but can be viewed spatially. The top 10 ranked pedestrian crash locations and the top 10 bicycle crash locations are included in this report. The actual crash clusters can be viewed on the interactive maps mass.gov/mhd/topcrashclusters.

For further information, please contact Neil Boudreau, State Traffic Engineer, Traffic Engineering Section, Massachusetts Highway Department, 10 Park Plaza, Room 7210, Boston, MA 02116, phone (617) 973-8211.

NOTICE
It should be noted that the Top 200 High Crash Intersection Locations Report was compiled under the authority of United States Code Title 23, Section 148, Highway Safety Improvement Program, sponsored by the Federal Highway Administration. The compilation of such information is, therefore, subject to the limitations of Section 148 (g) (4) which states:
"Discovery and admission into evidence of certain reports, surveys, and information - Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose directly relating to paragraph (1) or subsection (c)(1)(D), or published by the Secretary in accordance with paragraph (3), shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in such reports, surveys, schedules, lists, or other data."

$\begin{aligned} & \text { ど듣 } \\ & \text { 区 } \end{aligned}$	$\underset{\sim}{\check{O}}$			$\begin{aligned} & \overline{\stackrel{\rightharpoonup}{\omega}} \\ & \stackrel{\oplus}{\omega} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{c} \end{aligned}$	$\stackrel{\text { ® }}{0}$ $\stackrel{\omega}{\omega}$ ©	$\begin{aligned} & \text { N } \\ & \text { む̈ } \\ & \text { 亏ِ } \end{aligned}$	$\begin{aligned} & \mathscr{0} \\ & \stackrel{0}{0} \\ & \stackrel{W}{0} \\ & \stackrel{0}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & 00 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$			
1	LOWELL	NMCOG	4	BRIDGE STREET	38	VETERANS OF FOREIGN WARS HIGHWAY		154	384	2	53	99
2	FALL RIVER	SRPEDD	5	PLYMOUTH AVENUE	81	RODMAN STREET		158	310	0	38	120
3	LOWELL	NMCOG	4	MIDDLESEX STREET		WOOD STREET		139	267	0	32	107
4	SHREWSBURY	CMRPC	3	BOSTON TURNPIKE	9	SOUTH QUINSIGAMOND AVENUE		148	260	0	28	120
5	WEYMOUTH	MAPC	4	MAIN STREET	18	MIDDLE STREET		152	256	0	26	126
6	FRAMINGHAM	MAPC	3	HOLLIS STREET	126	WAVERLEY STREET	135	138	243	1	24	113
7	BROCKTON	OCPC	5	WEST ELM STREET		NEWBURY STREET		63	223	0	40	23
8	FRAMINGHAM	MAPC	3	WORCESTER ROAD	9	TEMPLE STREET		105	222	1	27	77
9	STOUGHTON	MAPC \＆OCPC	5	WASHINGTON STREET	138	CENTRAL STREET		127	219	0	23	104
10	CHICOPEE	PVPC	2	BROADWAY		CHURCH STREET		86	218	0	33	53
11	WOBURN	MAPC	4	MONTVALE AVENUE		WASHINGTON STREET		115	215	0	25	90
12	WORCESTER	CMRPC	3	PARK AVENUE	9	MAY STREET		98	214	0	29	69
12	BROCKTON	OCPC	5	ASH STREET		WEST ELM STREET		70	214	0	36	34
14	CHELSEA	MAPC	4	BROADWAY		CONGRESS AVENUE		78	210	0	33	45
15	BROCKTON	OCPC	5	PLEASANT STREET	27	WEST STREET		91	208	1	27	63
15	FALL RIVER	SRPEDD	5	PRESIDENT AVENUE	6	NORTH MAIN STREET		104	208	0	26	78
17	LOWELL	NMCOG	4	PLAIN STREET		CHELMSFORD STREET	110	97	205	0	27	70
18	FRAMINGHAM	MAPC	3	WORCESTER ROAD	9	CALIFORNIA AVENUE		87	204	1	27	59
19	LOWELL	NMCOG	4	CHURCH STREET	110	APPLETON STREET		95	203	0	27	68
19	BOSTON	MAPC	4	MASSACHUSETTS AVENUE		MELNEA CASS BOULEVARD		90	203	1	26	63
21	LEOMINSTER	MRPC	3	NORTH MAIN STREET	12	NELSON STREET		97	201	0	26	71
22	FRAMINGHAM	MAPC	3	WAVERLEY STREET	135	BEAVER STREET		114	198	0	21	93
23	QUINCY	MAPC	4	HONORABLE THOMAS S BURGIN PARKWAY		GRANITE STREET		104	196	0	23	81
24	WORCESTER	CMRPC	3	BELMONT STREET	9	OAK AVENUE		102	194	0	23	79
25	BRAINTREE	MAPC	4	GRANITE STREET	37	COMMON STREET		77	193	0	29	48
26	LYNN	MAPC	4	WESTERN AVENUE	107	CENTRE STREET		84	192	0	27	57
27	LYNN	MAPC	4	WESTERN AVENUE	107	FRANKLIN STREET		91	191	0	25	66
27	LYNN	MAPC	4	WESTERN AVENUE	107	WASHINGTON STREET	129	87	191	0	26	61
29	PLAINVILLE	SRPEDD	5	WASHINGTON STREET	1	TAUNTON STREET	152	70	190	0	30	40
30	WILMINGTON	MAPC	4	LOWELL STREET	129	WOBURN STREET		63	187	0	31	32
31	BROCKTON	OCPC	5	NORTH MAIN STREET		HOWARD STREET		66	186	0	30	36
32	ABINGTON	OCPC	5	BEDFORD STREET	18	RANDOLPH STREET	139	89	185	0	24	65
33	PEMBROKE	MAPC \＆OCPC	5	SCHOOSETT STREET	139	COLUMBIA ROAD	53	63	183	0	30	33
34	MALDEN	MAPC	4	EASTERN AVENUE	60	BROADWAY	99	86	182	0	24	62
35	LEOMINSTER	MRPC	3	MAIN STREET	13	PROSPECT STREET		113	181	0	17	96
35	WORCESTER	CMRPC	3	BELMONT STREET	9	PLANTATION STREET		77	181	0	26	51
37	LYNN	MAPC	4	LYNNFIELD STREET	129	BROADWAY		94	178	0	21	73
37	CONCORD	MAPC	4	CONCORD TURNPIKE	2	MAIN STREET	62	66	178	0	28	38
39	WALTHAM	MAPC	4	MAIN STREET	20	LEXINGTON STREET		101	177	0	19	82
40	BROCKTON	OCPC	5	BELMONT STREET	123	MANLEY STREET		64	176	0	28	36
41	WORCESTER	CMRPC	3	BELMONT STREET	9	GOLDSBERRY STREET		82	174	0	23	59
42	CHELSEA	MAPC	4	REVERE BEACH PARKWAY	16	WASHINGTON AVENUE		70	170	0	25	45
43	WALTHAM	MAPC	4	LEXINGTON STREET		TRAPELO ROAD		81	169	0	22	59
44	TAUNTON	SRPEDD	5	COUNTY STREET	140	HART STREET		67	168	1	23	43
45	NEW BEDFORD	SRPEDD	5	ALFRED BESSETTE MEMORIAL HIGHWAY	140	KEMPTON STREET	6	65	167	2	21	42
46	WORCESTER	CMRPC	3	PARK AVENUE	9	PLEASANT STREET		70	166	0	24	46
47	SWANSEA	SRPEDD	5	MARKET STREET	136	GRAND ARMY OF THE REPUBLIC HIGHWAY	6	79	163	0	21	58
48	LOWELL	NMCOG	4	VETERANS OF FOREIGN WARS HIGHWAY	113	VARNUM AVENUE		94	162	0	17	77
48	BROCKTON	OCPC	5	BELMONT AVENUE		WEST ELM STREET		44	162	2	25	17
50	HAVERHILL	MVPC	4	MAIN STREET	97	BAILEY BOULEVARD		73	161	0	22	51
51	MARLBOROUGH	MAPC	3	EAST MAIN STREET	20	CURTIS AVENUE		92	160	0	17	75
51	WESTFIELD	PVPC	2	FRANKLIN STREET	20	WASHINGTON STREET		68	160	0	23	45
53	NATICK	MAPC	3	WEST CENTRAL STREET	135	SPEEN STREET		95	159	0	16	79
53	BROCKTON	OCPC	5	PLEASANT STREET	27	WARREN AVENUE		67	159	0	23	44
55	ATTLEBORO	SRPEDD	5	WASHINGTON STREET	1	MAY ST		74	158	0	21	53
55	HAVERHILL	MVPC	4	SOUTH MAIN STREET	125	SOUTH PLEASANT STREET		74	158	0	21	53
57	WORCESTER	CMRPC	3	CAMBRIDGE STREET		SOUTHBRIDGE STREET		61	157	0	24	37
57	BROCKTON	OCPC	5	CRESCENT STREET	27	LYMAN STREET		52	157	1	24	27
59	FALL RIVER	SRPEDD	5	SOUTH MAIN STREET	138	GLOBE STREET		79	155	0	19	60
60	LOWELL	NMCOG	4	SCHOOL STREET		BRANCH STREET		66	154	0	22	44
60	WORCESTER	CMRPC	3	LINCOLN STREET	70	MARSH AVENUE		62	154	0	23	39
62	MALDEN	MAPC	4	BROADWAY	99	SALEM STREET		57	153	0	24	33

$\begin{aligned} & \underset{\widetilde{\sim}}{\check{c}} \\ & \text { K. } \end{aligned}$	$\stackrel{\substack{0 \\ \vdash}}{\substack{\text { n }}}$			$\begin{aligned} & \overline{\mathrm{\Phi}} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \bar{\otimes} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\cong}{\stackrel{\otimes}{0}} \\ & \stackrel{\omega}{\omega} \end{aligned}$		$\begin{aligned} & \mathscr{0} \\ & \stackrel{0}{0} \\ & \stackrel{\pi}{0} \\ & \stackrel{0}{5} \\ & \stackrel{\circ}{\circ} \end{aligned}$				
62	FALL RIVER	SRPEDD	5	BROADWAY	138	BRADFORD AVENUE		73	153	0	20	53
64	LOWELL	NMCOG	4	NESMITH STREET	38	ANDOVER STREET	110	76	152	0	19	57
64	WORCESTER	CMRPC	3	HIGHLAND STREET	9	LANCASTER STREET		64	152	0	22	42
64	LOWELL	NMCOG	4	THORNDIKE STREET	3A	HIGHLAND STREET		59	152	1	21	37
64	NORTH ANDOVER	MVPC	4	CHICKERING ROAD	125	MASSACHUSETTS AVENUE		64	152	0	22	42
64	WEYMOUTH	MAPC	4	MAIN STREET	18	COLUMBIAN STREET		76	152	0	19	57
64	WORCESTER	CMRPC	3	CHANDLER STREET	122	MURRAY AVENUE		72	152	0	20	52
70	WEYMOUTH	MAPC	4	PLEASANT STREET		WASHINGTON STREET	53	79	151	0	18	61
71	LOWELL	NMCOG	4	VETERANS OF FOREIGN WARS HIGHWAY		AIKEN STREET		66	150	0	21	45
71	HAVERHILL	MVPC	4	WINTER STREET	97	WHITE STREET	110	82	150	0	17	65
73	WORCESTER	CMRPC	3	BELMONT STREET	9	LAKE AVENUE NORTH		61	149	0	22	39
74	WESTFORD	NMCOG	3	LITTLETON ROAD	110	BOSTON ROAD		96	148	0	13	83
74	CAMBRIDGE	MAPC	4	MASSACHUSETTS AVENUE	2A	BROOKLINE STREET		72	148	0	19	53
76	WEST BRIDGEWATER	OCPC	5	WEST CENTER STREET	106	NORTH MAIN STREET	28	75	147	0	18	57
76	BROCKTON	OCPC	5	MAIN STREET		LEGION PARKWAY	123	55	147	0	23	32
76	TAUNTON	SRPEDD	5	BROADWAY	138	WASHINGTON STREET		63	147	0	21	42
79	HAVERHILL	MVPC	4	BRIDGE STREET	125	WATER STREET	113	74	146	0	18	56
79	HOLYOKE	PVPC	2	MAPLE STREET		RESNIC BOULEVARD		70	146	0	19	51
81	WELLESLEY	MAPC	4	WORCESTER STREET	9	WELLESLEY FIRE STATION HEADQUARTERS (BY PROXIMITY)		93	145	0	13	80
81	ABINGTON	OCPC	5	BROCKTON AVENUE	123	BEDFORD STREET	18	65	145	0	20	45
81	OXFORD	CMRPC	3	SOUTHBRIDGE ROAD	20	LEICESTER ROAD	56	64	145	1	18	45
84	BROCKTON	OCPC	5	BELMONT STREET	123	LINWOOD STREET		56	144	0	22	34
84	BROOKLINE	MAPC	4	BOYLSTON STREET	9	CHESTNUT HILL AVENUE		52	144	0	23	29
84	WORCESTER	CMRPC	3	LINCOLN STREET	70	COUNTRY CLUB BOULEVARD		56	144	0	22	34
84	BROCKTON	OCPC	5	NORTH MAIN STREET		EAST ASHLAND STREET		56	144	0	22	34
88	CAMBRIDGE	MAPC	4	MEMORIAL DRIVE	3	RIVER STREET		63	143	0	20	43
88	MALDEN	MAPC	4	CENTRE STREET	60	COMMERCIAL STREET		51	143	0	23	28
88	NORWOOD	MAPC	5	BLUE STAR MEMORIAL HIGHWAY	1	DEAN STREET		67	143	0	19	48
88	LOWELL	NMCOG	4	CHELMSFORD STREET	110	INDUSTRIAL AVENUE		71	143	0	18	53
88	WORCESTER	CMRPC	3	MAIN STREET		MILL STREET	12	62	143	1	18	43
88	QUINCY	MAPC	4	SCHOOL STREET		HANCOCK STREET		71	143	0	18	53
94	LOWELL	NMCOG	4	WESTFORD STREET	3A	WILDER STREET		62	142	0	20	42
94	BROCKTON	OCPC	5	NORTH MONTELLO STREET	28	HOWARD STREET	37	62	142	0	20	42
96	PITTSFIELD	BRPC	1	LINDEN STREET		SEYMOUR STREET		45	141	0	24	21
96	SOMERSET	SRPEDD	5	GRAND ARMY OF THE REPUBLIC HIGHWAY	6	LEES RIVER AVENUE		45	141	0	24	21
96	RAYNHAM	SRPEDD	5	ROUTE 44	44	ORCHARD STREET		53	141	0	22	31
99	WALPOLE	MAPC	5	PROVIDENCE TURNPIKE	1	HIGH PLAIN STREET	27	72	140	0	17	55
99	NEW BEDFORD	SRPEDD	5	ASHLEY BOULEVARD	18	COGGESHALL STREET		64	140	0	19	45
101	NATICK	MAPC	3	SPEEN STREET		FLUTIE PASS		87	139	0	13	74
101	CAMBRIDGE	MAPC	4	MASSACHUSETTS AVENUE	2 A	ALEWIFE BROOK PARKWAY	3	59	139	0	20	39
103	WEYMOUTH	MAPC	4	MAIN STREET	18	POND STREET		82	138	0	14	68
103	HOLBROOK	MAPC	5	SOUTH FRANKLIN STREET	37	UNION STREET	139	62	138	0	19	43
103	QUINCY	MAPC	4	WASHINGTON STREET	3A	SOUTHERN ARTERY	53	78	138	0	15	63
103	FITCHBURG	MRPC	3	LUNENBURG STREET	2A	JOHN FITCH HIGHWAY		66	138	0	18	48
103	LYNN	MAPC	4	ESSEX STREET		JOYCE STREET		62	138	0	19	43
108	WATERTOWN	MAPC	4	GALEN STREET	16	WATERTOWN STREET		52	137	1	19	32
108	WOBURN	MAPC	4	MAIN STREET	38	PLEASANT STREET		77	137	0	15	62
110	LYNN	MAPC	4	BROADWAY		EUCLID AVENUE		56	136	0	20	36
111	CHICOPEE	PVPC	2	MEMORIAL DRIVE	33	PENDLETON AVENUE		51	135	0	21	30
111	WALTHAM	MAPC	4	MOODY STREET		CRESCENT STREET		74	135	1	13	60
111	BOSTON	MAPC	4	WASHINGTON STREET		WEST ROXBURY PARKWAY		43	135	0	23	20
111	BROCKTON	OCPC	5	COURT STREET	27	MONTELLO STREET	28	55	135	0	20	35
111	CHELSEA	MAPC	4	REVERE BEACH PARKWAY	16	GARFIELD AVENUE		55	135	0	20	35
116	WEYMOUTH	MAPC	4	WASHINGTON STREET	53	MAIN STREET	18	82	134	0	13	69
117	SHREWSBURY	CMRPC	3	BOSTON TURNPIKE	9	SOUTH STREET		85	133	0	12	73
117	BURLINGTON	MAPC	4	CAMBRIDGE STREET	3A	WINN STREET		77	133	0	14	63
119	BRIDGEWATER	OCPC	5	BROAD STREET	18	MAIN STREET	28	75	131	0	14	61
120	AUBURN	CMRPC	3	SOUTHBRIDGE STREET	20	HILL STREET		46	130	0	21	25
120	MIDDLEBOROUGH	SRPEDD	5	ROUTE 44	44	PLYMPTON STREET	105	54	130	0	19	35
120	LOWELL	NMCOG	4	RIVERSIDE STREET	113	UNIVERSITY AVENUE		54	130	0	19	35
120	EASTON	OCPC	5	DEPOT STREET	123	FOUNDRY STREET	106	54	130	0	19	35
124	FALL RIVER	SRPEDD	5	PLEASANT STREET		QUEQUECHAN STREET		73	129	0	14	59

	$\begin{gathered} \underset{0}{\circ} \\ \vdash \end{gathered}$	退	$\begin{aligned} & \text { 흔 } \\ & \text { N } \\ & \text { D } \\ & \text { 모 } \end{aligned}$	$\begin{aligned} & \overline{\stackrel{\rightharpoonup}{\omega}} \\ & \stackrel{\oplus}{\omega} \end{aligned}$		$\begin{aligned} & \stackrel{\cong}{\stackrel{\otimes}{0}} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$						
124	WEYMOUTH	MAPC	4	WASHINGTON STREET	53	MIDDLE STREET		77	129	0	13	64
124	SWANSEA	SRPEDD	5	GRAND ARMY OF THE REPUBLIC HIGHWAY	6	SWANSEA MALL DRIVE		53	129	0	19	34
124	FRAMINGHAM	MAPC	3	WORCESTER ROAD	9	DINSMORE AVENUE		57	129	0	18	39
128	QUINCY	MAPC	4	SOUTHERN ARTERY	3A	CODDINGTON STREET		72	128	0	14	58
128	WORCESTER	CMRPC	3	PARK AVENUE	9	HIGHLAND STREET		68	128	0	15	53
128	HAVERHILL	MVPC	4	LAFAYETTE SQUARE	97	BROADWAY		72	128	0	14	58
128	BOSTON	MAPC	4	COLUMBIA ROAD		DORCHESTER AVENUE		47	128	1	18	28
128	WHITMAN	OCPC	5	BEDFORD STREET	18	AUBURN STREET	14	63	128	1	14	48
128	HAVERHILL	MVPC	4	MAIN STREET	125	WINTER STREET	97	76	128	0	13	63
134	EASTON	OCPC	5	FOUNDRY STREET	106	TURNPIKE STREET	138	47	127	0	20	27
134	BROCKTON	OCPC	5	PLEASANT STREET	27	MAIN STREET		43	127	0	21	22
134	CHELSEA	MAPC	4	BROADWAY		FIFTH STREET		59	127	0	17	42
134	WORCESTER	CMRPC	3	HIGHLAND STREET	9	HARVARD STREET		59	127	0	17	42
134	HOLYOKE	PVPC	2	MAIN STREET		JACKSON STREET		51	127	0	19	32
139	WORCESTER	CMRPC	3	PARK AVENUE	9	MILL STREET	12	62	126	0	16	46
139	BOSTON	MAPC	4	COLUMBIA ROAD		MASSACHUSETTS AVENUE		54	126	0	18	36
139	WORCESTER	CMRPC	3	PARK AVENUE	9	CHANDLER STREET	122	66	126	0	15	51
142	PLAINVILLE	SRPEDD	5	MESSENGER STREET	106	TAUNTON STREET	152	61	125	0	16	45
142	FALL RIVER	SRPEDD	5	BEDFORD STREET		TROY STREET		45	125	0	20	25
142	BOSTON	MAPC	4	MORTON STREET	203	HARVARD STREET		49	125	0	19	30
142	ATTLEBORO	SRPEDD	5	HIGHLAND AVENUE	123	WASHINGTON STREET	1	69	125	0	14	55
146	LYNN	MAPC	4	ESSEX STREET		FAYETTE STREET		56	124	0	17	39
146	NORTH ATTLEBOROUGH	SRPEDD	5	EAST WASHINGTON STREET	1	CHESTNUT STREET		55	124	1	15	39
146	MIDDLEBOROUGH	SRPEDD	5	SOUTH MAIN STREET	105	EAST GROVE STREET	28	64	124	0	15	49
146	WESTBOROUGH	CMRPC	3	BOSTON WORCESTER TURNPIKE	9	LYMAN STREET		68	124	0	14	54
146	LYNN	MAPC	4	ESSEX STREET		CHATHAM STREET		60	124	0	16	44
151	NATICK	MAPC	3	WORCESTER STREET	9	OAK STREET		74	123	1	10	63
151	BROCKTON	OCPC	5	CENTRE STREET	123	PLYMOUTH STREET		39	123	0	21	18
153	FITCHBURG	MRPC	3	JOHN FITCH HIGHWAY		SUMMER STREET		50	122	0	18	32
153	LYNN	MAPC	4	UNION STREET		WEST GREEN STREET		58	122	0	16	42
153	EVERETT	MAPC	4	REVERE BEACH PARKWAY	16	VINE STREET		34	122	0	22	12
153	WESTFIELD	PVPC	2	EAST MAIN STREET	20	LITTLE RIVER ROAD	187	42	122	0	20	22
153	WORCESTER	CMRPC	3	HIGHLAND STREET	9	MAIN STREET		66	122	0	14	52
158	RANDOLPH	MAPC	4	NORTH MAIN STREET	28	UNION STREET	139	64	120	0	14	50
158	FALL RIVER	SRPEDD	5	PRESIDENT AVENUE	6	DAVOL STREET		60	120	0	15	45
158	BROOKLINE	MAPC	4	BEACON STREET		SAINT PAUL STREET		56	120	0	16	40
158	SOMERVILLE	MAPC	4	BROADWAY		ALEWIFE BROOK PARKWAY	16	60	120	0	15	45
162	SWAMPSCOTT	MAPC	4	PARADISE ROAD	1 A	SWAMPSCOTT MALL		46	119	1	16	29
162	WORCESTER	CMRPC	3	MAIN STREET		MAPLE STREET		51	119	0	17	34
162	LYNN	MAPC	4	CHESTNUT STREET		UNION STREET		59	119	0	15	44
162	WALPOLE	MAPC	5	PROVIDENCE TURNPIKE	1	CONEY STREET		55	119	0	16	39
162	HADLEY	PVPC	2	RUSSELL STREET	9	MIDDLE STREET	47	47	119	0	18	29
167	NORTH ANDOVER	MVPC	4	TURNPIKE STREET	114	PETERS STREET	133	50	118	0	17	33
167	BROCKTON	OCPC	5	CENTRE STREET	123	QUINCY STREET		54	118	0	16	38
167	BROOKLINE	MAPC	4	BOYLSTON STREET	9	RESERVOIR ROAD		54	118	0	16	38
167	FRAMINGHAM	MAPC	3	CONCORD STREET	126	LINCOLN STREET		46	118	0	18	28
167	DARTMOUTH	SRPEDD	5	STATE ROAD	6	HATHAWAY ROAD		50	118	0	17	33
167	BROCKTON	OCPC	5	REYNOLDS HIGHWAY	27	WESTGATE DRIVE		38	118	0	20	18
167	TEWKSBURY	NMCOG	4	MAIN STREET	38	SHAWSHEEN STREET		50	118	0	17	33
174	HOLYOKE	PVPC	2	HOLYOKE STREET		MALL DRIVE		73	117	0	11	62
174	NORTH ANDOVER	MVPC	4	TURNPIKE STREET	114	ANDOVER STREET	125	49	117	0	17	32
174	WEYMOUTH	MAPC	-	UNION STREET		PLEASANT STREET		69	117	0	12	57
174	LINCOLN	MAPC	4	CAMBRIDGE TURNPIKE	2	BEDFORD ROAD		41	117	0	19	22
178	BOSTON	MAPC	4	MORTON STREET	203	GALLIVAN BOULEVARD		36	116	0	20	16
178	MALDEN	MAPC	4	CENTRE STREET	60	MAIN STREET		48	116	0	17	31
178	WEYMOUTH	MAPC		MAIN STREET	18	PARK AVENUE		64	116	0	13	51
181	WELLESLEY	MAPC	4	WORCESTER STREET	9	OAKLAND STREET		55	115	0	15	40
181	LYNN	MAPC	4	WESTERN AVENUE	107	BURNS STREET		47	115	0	17	30
181	PEABODY	MAPC	4	MAIN STREET		CALLER STREET		43	115	0	18	25
181	WORCESTER	CMRPC		MADISON STREET	122	SOUTHBRIDGE STREET		46	115	1	15	30
181	EVERETT	MAPC	4	REVERE BEACH PARKWAY	16	SECOND STREET		38	115	1	17	20
181	LOWELL	NMCOG	4	WESTFORD STREET	3A	SCHOOL STREET		43	115	0	18	25

Top Crash Intersections 2004-2006

RANK

BRIDGE STREET ROUTE 38
VETERANS OF FOREIGN WARS HIGHWAY

MHD District 4
RPA NMCOG
EPDO 384
Number of Fatal Crashes 2
Number of Injury Crashes 53
Number of Non-Injury Crashes 99
Total Crashes 154

Legend

- Crash Locations 2004-2006

Local Roads
All Functional Classification Except Local Roads
Top Crash Intersections

Top Crash Intersections 2004-2006

0

RANK

FALL RIVER

PLYMOUTH AVENUE
ROUTE 81 RODMAN STREET

MHD District 5
RPA SRPEDD
EPDO 310
Number of Fatal Crashes 0
Number of Injury Crashes 38
Number of Non-Injury Crashes 120
Total Crashes 158

Legend

- Crash Locations 2004-2006

Local Roads
All Functional Classification Except Local Roads
Top Crash Intersections

Top Bicycle Crash Cluster 2002-2006

RANK

CAMBRIDGE

RPA MAPC
EPDO 137
Number of Fatal Bicycle Crashes 1
Number of Injury Bicycle Crashes 23
Number of Non-Injury Bicycle Crashes 12 Total Bicycle Crashes 36

Legend

- Bicycle Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads Top Bicycle Crash Cluster Municipal Boundary

Top Bicycle Crash Cluster 2002-2006

CAMBRIDGE

RPA MAPC
EPDO 92
Number of Fatal Bicycle Crashes 0
Number of Injury Bicycle Crashes 17
Number of Non-Injury Bicycle Crashes 7
Total Bicycle Crashes 24

Legend

- Bicycle Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads
Top Bicycle Crash Cluster
Municipal Boundary

Top Bicycle Crash Cluster 2002-2006

	175	350	525	700	Feet

RANK

3

CAMBRIDGE

RPA MAPC
EPDO 52
Number of Fatal Bicycle Crashes 0
Number of Injury Bicycle Crashes 10
Number of Non-Injury Bicycle Crashes 2
Total Bicycle Crashes 12

Legend

- Bicycle Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads
Top Bicycle Crash Cluster
Municipal Boundary

Top Bicycle Crash Cluster 2002-2006

RANK

CAMBRIDGE

RPA MAPC
EPDO 48
Number of Fatal Bicycle Crashes 0
Number of Injury Bicycle Crashes 9
Number of Non-Injury Bicycle Crashes 3
Total Bicycle Crashes 12

Legend

- Bicycle Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads
Top Bicycle Crash Cluster
Municipal Boundary

Top Bicycle Crash Cluster 2002-2006

RANK

5

CAMBRIDGE

RPA MAPC
EPDO 43
Number of Fatal Bicycle Crashes 0
Number of Injury Bicycle Crashes 8
Number of Non-Injury Bicycle Crashes 3
Total Bicycle Crashes 11

Legend

- Bicycle Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads
Top Bicycle Crash Cluster
Municipal Boundary

HIGHWAY

Top Bicycle Crash Cluster 2002-2006

RANK

6

SOMERVILLE

RPA MAPC
EPDO 41
Number of Fatal Bicycle Crashes 0
Number of Injury Bicycle Crashes 8
Number of Non-Injury Bicycle Crashes 1
Total Bicycle Crashes 9

Legend

- Bicycle Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads
Top Bicycle Crash Cluster
Municipal Boundary

Top Bicycle Crash Cluster 2002-2006

RANK

6

NORTHAMPTON

RPA PVPC
EPDO 41
Number of Fatal Bicycle Crashes 0
Number of Injury Bicycle Crashes 8
Number of Non-Injury Bicycle Crashes 1
Total Bicycle Crashes 9

Legend

- Bicycle Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads
Top Bicycle Crash Cluster
Municipal Boundary

Top Bicycle Crash Cluster 2002-2006

RANK

8

CAMBRIDGE

RPA MAPC
EPDO 40
Number of Fatal Bicycle Crashes 0
Number of Injury Bicycle Crashes 6
Number of Non-Injury Bicycle Crashes 10
Total Bicycle Crashes 16

Legend

- Bicycle Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads
Top Bicycle Crash Cluster
Municipal Boundary

Top Bicycle Crash Cluster 2002-2006

RANK

8

CAMBRIDGE

RPA MAPC
EPDO 40
Number of Fatal Bicycle Crashes 0
Number of Injury Bicycle Crashes 7
Number of Non-Injury Bicycle Crashes 5
Total Bicycle Crashes 12

Legend

- Bicycle Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads
Top Bicycle Crash Cluster
Municipal Boundary

Top Bicycle Crash Cluster 2002-2006

RANK
 10

CAMBRIDGE

RPA MAPC
EPDO 37
Number of Fatal Bicycle Crashes 0
Number of Injury Bicycle Crashes 7
Number of Non-Injury Bicycle Crashes 2
Total Bicycle Crashes 9

Legend

- Bicycle Crash Locations 2002-2006

Local Roads All Functional Classification Except Local Roads

Top Pedestrian Crash Cluster 2002-2006

RANK

CHELSEA

RPA MAPC
EPDO 235
Number of Fatal Pedestrian Crashes 1
Number of Injury Pedestrian Crashes 42
Number of Non-Injury Pedestrian Crashes 15
Total Pedestrian Crashes 58

Legend

- Pedestrian Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads
Top Pedestrian Crash Cluster
(...)Municipal Boundary

Top Pedestrian Crash Cluster 2002-2006

RANK

2

CAMBRIDGE

RPA MAPC
EPDO 113
Number of Fatal Pedestrian Crashes 0
Number of Injury Pedestrian Crashes 19
Number of Non-Injury Pedestrian Crashes 18
Total Pedestrian Crashes 37

Legend

- Pedestrian Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads
Top Pedestrian Crash Cluster
Municipal Boundary

Top Pedestrian Crash Cluster 2002-2006

RANK

3

NORTHAMPTON

RPA PVPC
EPDO 105
Number of Fatal Pedestrian Crashes 1
Number of Injury Pedestrian Crashes 19
Number of Non-Injury Pedestrian Crashes 0
Total Pedestrian Crashes 20

Legend

- Pedestrian Crash Locations 2002-2006

Local Roads

All Functional Classification Except Local Roads
Top Pedestrian Crash Cluster
(...)Municipal Boundary

Top Pedestrian Crash Cluster 2002-2006

RANK

4

LOWELL

RPA NMCOG
EPDO 104
Number of Fatal Pedestrian Crashes 0
Number of Injury Pedestrian Crashes 19
Number of Non-Injury Pedestrian Crashes 9
Total Pedestrian Crashes 28

Legend

- Pedestrian Crash Locations 2002-2006

Local Roads

All Functional Classification Except Local Roads
Top Pedestrian Crash Cluster
Municipal Boundary

Top Pedestrian Crash Cluster 2002-2006

RANK

5

LOWELL

RPA NMCOG
EPDO 93
Number of Fatal Pedestrian Crashes 2
Number of Injury Pedestrian Crashes 14
Number of Non-Injury Pedestrian Crashes 3
Total Pedestrian Crashes 19

Legend

- Pedestrian Crash Locations 2002-2006

Local Roads
All Functional Classification Except Local Roads
Top Pedestrian Crash Cluster
Municipal Boundary

Top Pedestrian Crash Cluster 2002-2006

RANK

BROOKLINE

RPA MAPC
EPDO 75
Number of Fatal Pedestrian Crashes 0
Number of Injury Pedestrian Crashes 13
Number of Non-Injury Pedestrian Crashes 10
Total Pedestrian Crashes 23

Legend

- Pedestrian Crash Locations 2002-2006

Local Roads

All Functional Classification Except Local Roads
Top Pedestrian Crash Cluster
Municipal Boundary

Top Pedestrian Crash Cluster 2002-2006

RANK
 7

FALL RIVER

RPA SRPEDD
EPDO 71
Number of Fatal Pedestrian Crashes 0
Number of Injury Pedestrian Crashes 13
Number of Non-Injury Pedestrian Crashes 6
Total Pedestrian Crashes 19

Legend

- Pedestrian Crash Locations 2002-2006

Local Roads

All Functional Classification Except Local Roads
Top Pedestrian Crash Cluster
(.-.) Municipal Boundary

Top Pedestrian Crash Cluster 2002-2006

RANK

8

FALL RIVER

RPA SRPEDD
EPDO 70
Number of Fatal Pedestrian Crashes 0
Number of Injury Pedestrian Crashes 14
Number of Non-Injury Pedestrian Crashes 0
Total Pedestrian Crashes 14

Legend

- Pedestrian Crash Locations 2002-2006

Local Roads

All Functional Classification Except Local Roads
Top Pedestrian Crash Cluster
Municipal Boundary

Top Pedestrian Crash Cluster 2002-2006

RANK
 9

WORCESTER

RPA CMRPC
EPDO 68
Number of Fatal Pedestrian Crashes 0
Number of Injury Pedestrian Crashes 13
Number of Non-Injury Pedestrian Crashes 3
Total Pedestrian Crashes 16

Legend

- Pedestrian Crash Locations 2002-2006

Local Roads

All Functional Classification Except Local Roads
Top Pedestrian Crash Cluster
(.)Municipal Boundary

HIGHWAY

Top Pedestrian Crash Cluster 2002-2006

\pm

RANK
 10

WORCESTER

RPA CMRPC
EPDO 62
Number of Fatal Pedestrian Crashes 0
Number of Injury Pedestrian Crashes 12
Number of Non-Injury Pedestrian Crashes 2
Total Pedestrian Crashes 14

Legend

- Pedestrian Crash Locations 2002-2006

Local Roads

All Functional Classification Except Local Roads
Top Pedestrian Crash Cluster
Municipal Boundary

2002-2006 STATEWIDE TOP 10 PEDESTRIAN CRASH LIST

$\begin{aligned} & \underset{\sim}{\mathbb{N}} \\ & \text { ণ } \end{aligned}$		$\begin{aligned} & \mathbb{K} \\ & \underset{\sim}{\square} \end{aligned}$	읗 0 0 0 1	0 0	səuseגך ue!גıəəpəd OOdヨ		Injury Pedestrian Crashes	
1	CHELSEA	MAPC	4	58	235	1	42	15
2	CAMBRIDGE	MAPC	4	37	113	0	19	18
3	NORTHAMPTON	PVPC	2	20	105	1	19	0
4	LOWELL	NMCOG	4	28	104	0	19	9
5	LOWELL	NMCOG	4	19	93	2	14	3
6	BROOKLINE	MAPC	2	23	75	0	13	10
7	FALL RIVER	SRPEDD	5	19	71	0	13	6
8	FALL RIVER	SRPEDD	5	14	70	0	14	0
9	WORCESTER	CMRPC	3	16	68	0	13	3
10	WORCESTER	CMRPC	3	14	62	0	12	2

2002-2006 STATEWIDE TOP 10 BICYCLE CRASH LIST

$\begin{aligned} & \underset{\sim}{\underset{\sim}{c}} \\ & \text { 亿 } \end{aligned}$	$\sum_{\substack{\circ}}^{\substack{n}}$	$\begin{aligned} & \mathbb{K} \\ & \underset{\sim}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{y} \\ & \stackrel{N}{0} \\ & \hdashline 0 \\ & 0 ㅁ \\ & \Sigma \end{aligned}$	0 0	EPDO Bicycle Crashes	0 1	$\mathscr{0}$ 0 0 0 0 0 0 0 0 0 0 0 0	0 0
1	CAMBRIDGE	MAPC	4	36	137	1	23	12
2	CAMBRIDGE	MAPC	4	24	92	0	17	7
3	CAMBRIDGE	MAPC	4	12	52	0	10	2
4	CAMBRIDGE	MAPC	4	12	48	0	9	3
5	CAMBRIDGE	MAPC	4	11	43	0	8	3
6	SOMERVILLE	MAPC	4	9	41	0	8	1
6	NORTHAMPTON	PVPC	2	9	41	0	8	1
8	CAMBRIDGE	MAPC	4	16	40	0	6	10
8	CAMBRIDGE	MAPC	4	12	40	0	7	5
10	CAMBRIDGE	MAPC	4	9	37	0	7	2

Appendix J - Signal Phase Diagrams

AM Peak Hour

Southampton Street @ Melnea Cass Boulevard
Proposed AM Signal Timing

Southampton Street @ Allstate Road Proposed AM Signal Timing

Morrissey Boulevard @ Shaw's Driveway Proposed AM Signal Timing

Morrissey Boulevard @ UMass Boston
 Proposed AM Signal Timing

PM Peak Hour

Southampton Street @ Melnea Cass Boulevard
Proposed PM Signal Timing

Southampton Street @ Allstate Road
Proposed PM Signal Timing

Morrissey Boulevard @ Shaw's Driveway Proposed PM Signal Timing

Morrissey Boulevard @ UMass Boston Proposed PM Signal Timing

[^0]: * South Boston
 * UMASS Boston
 * MBTA Andrew Station

[^1]: 1. Level-of-Service
 2. Average vehicle delay in seconds
 3. Volume to Capacity Ratio
 n/a Not Applicable
[^2]: 1. Level-of-Service
 2. Average vehicle delay in seconds 3. Volume to Capacity Ratio (max)
[^3]: 0.66

