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ABSTRACT

To assemble flexibility matrices from vibration signals
the input most be measured and that there must be, at
least, one co-located sensor actuator pair. Techniques
to localize damage that use changes in flexibility have
not, therefore, found application in the important case
of ambient excitation. The central topic of this paper is
the discussion of an approach that allows extension of
flexibility based damage localization to cases where
only output measurements are available. The
fundamental idea is that lack of deterministic
information on the input can be partially compensated
by knowledge of the structure of the mass matrix. In
particular, when the inverse of the mass matrix in the
coordinates defined by the sensors can be assumed
diagonal then matrices that differ from the flexibility by
a scalar multiplier can be assembled and these
matrices can replace the flexibility with no loss of
useful information.

NOMENCLATURE

FU, undamaged flexibility matrix
FD, damaged flexibility matrix
DF change in flexibility matrix
DLV damage locating vector
nsi normalized stress index
WSI weighted stress index
M mass matrix
K stiffness matrix
C damping matrix
Ψ displacement partition of the complex modes
Ψm complex modes at sensor locations

1−
gd normalization constants

m number of output sensors
n number of modes

INTRODUCTION

When experimental data is used to improve a
mathematical model the parameters that are
candidates for updating are typically selected with
guidance from a priori knowledge on what aspects of
the model are most uncertain. In the damage
identification problem, however, uncertainty or
sensitivity can not be used as criteria to arrive at a set
of free parameters. Since the use of a large parameter
space leads to ill-conditioning and non-uniqueness
methods that can provide objective information about
damage without the need to refer to a detailed model
of the structure are of considerable practical
importance. Among the techniques that attempt to
localize damage without reference to a model, those
that operate with changes in mode shapes have
received significant attention [1,2,3]. A difficulty often
faced when using mode shape changes to locate
damage, however, is the fact that the appropriate
pairing of modes from the reference to the potentially
damaged-state is not always apparent. One way to get
around this difficulty is to use all the available modes
to assemble flexibility matrices and then focus on the
change of these matrices [4,5]. The fact that the
flexibility is dominated by the lower modes (which are
typically the ones that can be identified experimentally)
and that it can be assembled at whatever sensor
coordinates are available are convenient features of
the approach.

An important limitation on the use of flexibility is the
fact that these matrices can only be assembled from
the data when the input is measured [6,7]. Since in
civil engineering structures a full characterization of
the input is often impractical, the flexibility-based
damage localization has not been considered as a
viable option in buildings or bridges. This paper shows,
however, that while it is true that flexibility matrices can



not be assembled from vibration data for output only
systems, matrices that differ from the flexibility by a
single scalar multiplier can be obtained when some
conditions prevail. Specifically, the paper shows that
matrices that are proportional to the flexibility can be
computed exclusively from the measured data if the
inverse of the mass matrix can be assumed diagonal
over the coordinates defined by the available sensors.
The objective of this paper is to discuss the issues
associated with the computation of the flexibility
proportional matrices and to illustrate how these
matrices can be used in damage localization
applications.

The paper is organized as follows. The first section
presents a summary of a recently developed technique
for interrogating changes in flexibility about damage
localization. The technique, designated as the
Damage Locating Vector Approach, (DLV) locates the
damage by inspecting stress fields created by vectors
that are contained in the null space of the change in
flexibility [8]. The next section illustrates how modal
orthogonality can be combined with knowledge of the
structure of the inverse of the mass matrix to arrive at
matrices that differ from the flexibility by a single scalar
multiplier. This development is made for a viscously
damped system but no limitation on the nature of the
damping (classical or not classical) is introduced. The
theoretical part of the paper concludes with a
discussion on how to ensure that the missing scalar in
the flexibility matrix, computed for the reference and
the damaged states, are essentially the same. A
numerical example on a 4 DOF system illustrates the
techniques discussed.

THE DLV TECHNIQUE

The Damage Locating Vector (DLV) approach
provides a systematic way for interrogating changes in
flexibility matrices with respect to the localization of the
damage. In this section the basic features of the
technique are reviewed. A more detailed discussion of
the theoretical background, as well as discussion on
robustness and other issues may be found in [8]. As
shall be evident from the results in this section, a
missing scalar multiplier in the flexibility matrices is
immaterial in the DLV localization, provided the scalar
can be made the same in the reference and the
damaged states.

The basic idea in the DLV approach is that the vectors
that span the null-space of the change in flexibility
(from the undamaged to the damaged states) when
treated as static loads on the system, lead to stress
fields that are zero over the damaged elements.
Depending on the number and location of the sensors

the intersection of the null stress regions identified by
the DLVs may or may not exclusively contain
damaged elements. Elements that are undamaged but
which cannot be theoretically discriminated from the
damaged ones by changes in flexibility (for a given set
of sensors) are designated as inseparable. The steps
of the DLV localization can be summarized as follows:

1. Compute the change in flexibility as;

DU FFDF −=  (1)

2. Obtain a singular value decomposition of DF,
namely;
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where s2 are ‘small’ singular values. For ideal
conditions s2 contains zeros and the DLV vectors are
simply the columns of V associated with the null
space. For the noisy conditions that prevail in practice,
however, the values in s2 are never equal to zero and
a cutoff has to be established to select the dimension
of the null space. The vectors in V that can be treated
as DLVs for noisy conditions can be selected as
follows (see ref. [8] for the mathematical support)

a) Compute the stresses in an undamaged model of
the structure using the columns in V as loads.

b) Reduce the internal stresses in every element (for a
given load vector) to a single characterizing stress, σ
(strain energy per unit characterizing dimension should
be proportional to σ2).

c) Designate the reciprocal of the maximum value of
the characterizing stress as cj. Compute the svn index
for every vector in V as;
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where;

sq cq
2 =max (sj cj

2)   for j=1: m (4)

The vectors for which svn  ≤ 0.20 can be treated as
DLVs. Once the set of DLV vectors has been identified
the localization proper is carried out as follows:

3. Compute, for each DLV vector, the normalized
stress index vector as;
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4. Compute the vector of weighted stress indices,
WSI, as;

ndlv

svn

nsi

WSI

ndlv

i i

i∑
== 1

 (6)

where ).,svn(maxsvn ii 0150=  and ndlv is the

number of DLV vectors. The potentially damaged
elements are those having WSI <1.

FLEXIBILITY MATRICES TO WITHIN A SCALAR
MULTIPLIER

This section develops expressions for the inverse of
the mass and the stiffness (the flexibility) in terms of
the eigenvalues of the system and the corresponding
eigenvectors at the sensor coordinates. It is assumed,
for generality, that the damping is not classical so the
modes are irreducibly complex. The expressions
obtained for M-1 and K-1 are valid for a particular
scaling of the modes which, as shall be shown, can
only be enforced to within a missing scalar when the
input is not measured.

We begin by considering the homogeneous equation
for a time invariant finite-dimensional linear system
with viscous dissipation, namely;

0=++ KxxCxM &&&  (7)

where M, C and K ∈ ℜn x n are the mass, damping and
stiffness matrices. For a state vector defined using
displacements and velocities the first order form of
eq.7 that preserves symmetry is;

yGyE =&  (8)
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Assuming a solution tey λφ=  eq.8 leads to the

eigenvalue problem;

φ=λφ GE  (10)

which, since the matrices are real, yields real or
complex conjugate eigenvalues λ. Assuming that the

system has a full set of eigenvectors (repeated
eigenvalues are permitted) the solutions to eq.10 can
be organized as;
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and the superscript * stands for complex conjugate.

The symmetry of E and G can be exploited to show
that;
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From where it follows that;
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Equating the inverse of the matrices E and G in eq.9a
and b with the results in eqs.15 and 16 one gets a
number of equalities of which we list the ones that are
relevant for our purposes:

)(21 TT
gdM ΨΛΨΛℜ=−  (17)

  )(21 TT
edM ΨΛΨℜ=−  (18)

)(21 T
gdK ΨΨℜ−=− (19)

0)( =ΨΛΨℜ T
gd  (20)

0)( =ΨΨℜ T
ed   (21)

From eqs. 17 and 18 one concludes that;

eg dd =Λ  (22)

and thus the previous expressions are reduce to;

)(2 21 T
gdM ΨΨΛℜ=−  (24)



)(21 T
gdK ΨΨℜ−=−   (25)

0)( =ΨΛΨℜ T
gd  (26)

The diagonal matrix gd can be computed from the

data without knowledge of the system matrices in the
deterministic input case. In the stochastic case,
however, this is not possible and one must introduce
some apriori knowledge to proceed. Consider as an
introduction the case where there is enough
information about the mass matrix to allow the
computation of the partition of the inverse over the
sensor coordinates. If there are m output sensors then
one can use eqs.24 and 26 to set up m(m+1)
equations to solve for the complex constants dg.
Assuming all the modes are identified one can easily
show that the number of sensors required to identify
the normalizing constants has to satisfy

)n(.m 11850 −+≥  where n is the number of modes

(order is 2n). For example, if there are 10 modes in the
system the normalizing constants can be obtained
from knowledge of the inverse of the mass if m ≥ 4.
Note that if only a truncated modal space is available
then the approach would lead to some approximation
in the constants because one would be equating a
‘converged physical quantity’ (the left side of eq.24)
with a modally truncated approximation.

In this paper we purse a less restrictive assumption
than that of presuming complete knowledge of M-1. In
particular, we proceed by assuming simply that M-1 is
diagonal. It is evident, of course, that what we’re doing
is saying that ‘we know’ the off-diagonal part of M-1 to
be zero. In this case we lose m equations and,
because the equations are now all equal to zero we
can compute the normalizing factors only up to r
undetermined constants, where r is the nullity of the
resulting coefficient matrix. It is possible to show that a
necessary condition for the nullity to be one (the
smallest it can be) is that the number of sensors

satisfy nm 2≥ . So, for n =10, for example, one
needs at least 5 sensors. The comment made
previously with respect to equating a physical quantity
(in this case the zeros in the off diagonals of M-1) to a
truncated approximation holds without modification in
this case also. The specifics used to arrive at the
normalization constants in the case where M-1 is
assumed diagonal are described next.

Define;
2
j

T
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Eq.24, therefore, can be written in the domain of real
numbers as

∑
=

− −=
n

j
jgIjIjgRjR dHdHM

1
,,,,

1 )( (28)

where gRd  and gId  are the real and the imaginary

components of gd . Taking the upper (lower)

triangular portion of M-1 (without the main diagonal)
and placing it in vector form one can write
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where the order of the entries in the vectors jĤ  is

arbitrary as long as one is consistent in defining j,RĤ

and j,IĤ . We now define the vector β as all the real

components of gd  followed by all the imaginary

components, namely

T
gI,gI,gR,gR, dddd ][ 2121 LL=β  (30)

With the preceding notation eq.29 can be written as;

0=βH   (31)

where;

][ 2121 ....Ĥ,Ĥ,...Ĥ,ĤH ,I,I,R,R −−=  (32)

It follows then that β (which contains the required
normalizing constants ordered as per eq.30) is in the

null space of the matrix H . One can further restrict the
subspace that contains β by taking advantage of the
relationship in eq.26. Indeed, following the same
approach used to pass from eq.29 to eq.31 one finds
that eq.26 gives;

0=βS  (33)

where the only difference is that the assembly

of S includes the diagonal of the matrix in eq.26.
Combining eqs.31 and 33 one gets;

0=β=β
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So β is in the null space of Y. If all the modes are
available, the nullity of Y is one and β can be
computed to within a single scalar. The complex

constants gd  (to within a scalar) are then given by

eq.30. and the flexibility proportional matrix is
evaluated with eq.25. In practice, of course, one



seldom obtains ‘all the modes’ and, as a result, the
matrix Y in eq.34 proves to be full rank. An
approximate solution can be obtained by taking β as
the singular vector associated with the smallest
singular value of Y.

COMPATIBILITY OF THE SCALAR MULTIPLIER

The scalar that is missing in the flexibility matrices of
the previous section is arbitrary and is not necessarily
the same for the undamaged and the damaged states.
In order to preserve the null space when taking the
difference of the flexibility proportional matrices it is
necessary to ensure that the missing constant is
consistent. Two procedures have been examined thus
far for ensuring compatibility. The first one is based on
the idea that the mass matrix has not changed as a
result of the damage. If this is true and the modal
space is ‘complete’ then the scaling factor can be
adjusted so that the inverse of the mass in the two
states (as given by eq.28) are the same. Of course, in
practice approximations are inevitable and one can not
pretend that it will be possible to make the two M-1

expressions identical. One can, however, define a
norm and adjust the scaling to make this norm the
same in the two states.

When all the modes are not available the contribution
of the available modes to M-1 may differ in the two
states and one can not argue that the error in making
the missing scalar compatible derives exclusively from
round off and imprecision. Thus far we have looked at
two procedures for attaining approximate compatibility
between the flexibility proportional matrices of the
reference and the damaged states. The first approach
uses the trace of the M-1 as the metric that should be
equal in the two states and the second, which does not
use information in M-1, is outlined next.

Assume that the undamaged and damaged flexibility

proportional matrices are UF  and DF  while the true

modally truncated but, undetermined matrices, are FU

and FD. One can then write;

UU FF α=  (35)

and

DD FF η=  (36)

where α and η are undetermined constants. Assume L
is a vector in the ‘effective null space’ of the modally
truncated true change in flexibility. Recognizing that

dLFLF Du ≅≅  one can write (replacing the ≅ with =

for simplicity);

dLFU α=  (37)

and

dLFD η=  (38)

Solving for L in eq.37 and substituting the result in
eq.38 one gets;

ddFF DU α
η=−1  (39)

which shows that the desired η/α ratio is a real
eigenvalue of the matrix on the left side.

Since there are several real eigenvalues, however, the
solution does not immediately point out which is the
correct result. An approach that helps in reducing

ambiguity is to first normalize the matrices UF

and DF in such a way that the η/α ratio is necessarily

less than 1. This is the case, for example, if the
flexibility proportional matrices are normalized to equal
trace because the true value of the trace in the
damaged flexibility is larger (assuming that the effect
of damage is more than the inevitable error in the
computations). If this scaling is first introduced then
one can discard not only the η/α ratios that are
complex but also those that are greater than 1.
Unfortunately, there appear to be cases where the
solution is still not unique after this is done.

While research on the compatibility of the scalar
continues, the limited numerical experience gained
thus far suggests that the simple approach based on
the trace of M-1 may be sufficiently accurate.

NUMERICAL EXAMPLE

The basic steps of damage localization using the DLV
approach for unmeasured input are illustrated using
the simple system shown in fig.1. Modal truncation and
error in the identification are not contemplated in this
example.

m1 m2 m3 m4

k1=2000

c1=40

k3=3000k2=1000 k4=4000

c1=30 c1=20 c1=10

1 2 3

k1=1500
(after damage)

(m1=20, m2=24, m3=28, m4=32)

Figure 1  System considered



Output sensors exist at coordinates 1, 2 and 3 and
damage is simulated as 25% reduction in the stiffness
of spring k1.

The first step is to extract arbitrarily scaled complex
mode shapes Ψm at the sensor coordinates. This can
be done using any suitable stochastic identification
algorithm [9]. For the system in fig.1 the noise free
results in the undamaged state are;

-0.024+0.058i -0.059-0.030i -0.047+0.033i -0.001-0.006i

-0.067+0.167i -0.035-0.036i  0.020-0.033i  0.018+0.016i

-0.084+0.204i  0.029+0.027i -0.012+0.019i  0.018+0.009i

The second step is to obtain the normalization
constants from eq.34. This requires that one assemble

H  and S . The computations for the first mode are
illustrated in the following. Assembling H1 from eq.27
one gets;

0.017+0.020i 0.051+0.057i 0.062+0.071i

H 1= 0.051+0.057i 0.149+0.161i 0.180+0.199i

0.062+0.071i 0.180+0.199i 0.219+0.247i

The upper triangular part of the matrix (without the
main diagonal) contains, in this case, 3 numbers. The
real and the imaginary components of these numbers

are used to form the vectors 1,
ˆ

RH and 1,
ˆ

IH , namely;

0.051 0.057

0.062 0.071

0.180 0.199

=1,IĤ=1,RĤ

where the order selected is arbitrary. Repeating these
steps for all the modes one obtains the vectors needed

to form H (see eq.32). The result is;

0.051  -0.072   0.073  -0.034  -0.057   0.381   0.399  -0.041

0.062   0.071  -0.047  -0.018  -0.071  -0.299  -0.229  -0.040

0.180  -0.021  -0.031  -0.044  -0.199  -0.234   0.154   0.174

where the columns of H corresponding to the first
mode are highlighted. The same approach is repeated

to form  S . One gets;

0.008-0.007i 0.021-0.020i 0.026-0.025i

S1= 0.021-0.020i 0.060-0.059i 0.074-0.072i

0.026-0.025i 0.074-0.072i 0.092-0.087i

Placing the results in vector form gives;

0.008 -0.007

0.021 -0.020

0.060 -0.059

0.026 -0.025

0.074 -0.072

0.092 -0.087

=1,RŜ =1,IŜ

where we note that the main diagonal is also included

since it is also zero according to eq.26. The matrix S
is assembled by repeating the process for all the
modes, the results is;

0.008  -0.039   0.040  -0.000   0.007  -0.025  -0.020   0.001
0.021  -0.035  -0.030   0.002   0.020  -0.009   0.002  -0.002
0.060  -0.027   0.020  -0.011   0.059   0.002   0.007  -0.000

0.026   0.027   0.017   0.002   0.025   0.008  -0.001  -0.001
0.074   0.022  -0.011  -0.009   0.072  -0.001  -0.004  -0.003
0.092  -0.017   0.006  -0.006   0.087  -0.000   0.002  -0.004

Combining H  and S  one obtains the matrix Y. From
inspection of the singular values, s, it is evident that
the nulity is one. The singular values s and the
nullspace β  are shown below.

0.684 -0.3232

0.432 0.1191

0.191 0.0743

s  = 0.117 β = 0.1491
0.073 0.3386
0.053 -0.5149
0.009 0.5603

7.18E-17 -0.3999

From β one readily gets the complex constants, gd

from eq.30. The inverse of the mass and stiffness
matrices can then be calculated from eqs.24 and 25.
One gets;

0.41 0.00 0.00 0.004 0.004 0.004

0.00 0.34 0.00 0.004 0.012 0.012

0.00 0.00 0.25 0.004 0.012 0.017

α=−1
UM α=−1

UK

The exact values for these matrices are;

0.050 0.000 0.000 0.050 0.050 0.050

M e
-1= 0.000 0.042 0.000 K e -1= 0.050 0.150 0.150

0.000 0.000 0.031 0.050 0.150 0.208

x10-2

from where it can be seen that the difference is a
simple scalar multiplier.



Following the same steps outlined previously the
system matrices extracted for the structure in the
damaged state are;

0.41 0.00 0.00 0.005 0.005 0.005

0.00 0.34 0.00 0.005 0.014 0.014

0.00 0.00 0.25 0.005 0.014 0.018

α=−1
DKα=−1

DM

where the trace of M-1 has been normalized to unity in
both cases to ensure compatibilty of the missing
scalar. Once the flexibility proportional matrices are
calculated within a common multiplier, the SVD of the
change in these matrices yields the singular values
and right side singular vectors shown.

0.0041 0.58 -0.81 0.12

s= 5.41x10-17 V = 0.58 0.31 -0.76

3.44x10-18
0.58 0.50 0.64

Inspection of the singular values shows that there are
2 DLVs. Applying the two vectors identified as DLVs
as loads at the sensor coordinates one gets the axial
force distribution N shown in fig2.

N

0.64

0.12

m1 m2 m3 m4

k1 k2 k3 k4

c1 c2 c3 c4

0.64

0

N 0

0.500.50

0.80

DLV1

DLV2

Figure 2 Axial force distribution

Both vectors, as expected, locate the damage
correctly at the first spring.

CONCLUSIONS

This paper extends the DLV damage localization
technique to the important case where the input can
not be deterministically characterized. This is done by
showing that flexibility proportional matrices can be
extracted from the data without knowledge of the input
and that the undetermined missing scalar can be
made consistent for the reference and the damaged
states.

The paper shows that computation of the flexibility
proportional matrix is theoretically exact only when the
modal basis is complete. Examination of the
relationships involved suggests, however, that good
approximations of the truncated flexibility should result
when the truncated space provides a reasonable
approximation for M-1. The experience derived from
numerical experiments has thus far supported this
expectation.
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