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Introduction
A two-bay by two-bay four story steel frame owned by the University of British Columbia
has been selected as a benchmark structural model to test damage identification
techniques. The structure is approximately in a 1:4 scale and has member sizes and
details that may be found in Ventura et al. (1997). Testing to generate data for damage
identification is scheduled to begin in the summer of 2000. Before addressing the full
complexity associated with real experimental data, however, it was considered
appropriate to examine a number of cases using simulated data. For this purpose,
mathematical models of the test structure with various degrees of refinement have been
formulated and used to generate data for various damage scenarios. This paper documents
the damage identification approach used by the authors and presents the results obtained
for the cases considered thus far.

Cases Considered
In all the cases examined the structure in both the undamaged and damage states is
symmetric and loaded in such a way that the floor slabs undergo pure translation.
Boundary accelerations are not imposed and since the weight of the floors is large in
comparison to the weights of the columns and bracing elements, the dynamics are
dominated by the four horizontal translations of the floors in each direction. Two
damaged scenarios are considered: 1) removal of bracing elements on the first story and,
2) removal of bracing elements from the first and the third stories. Sensor noise is
simulated by contaminating the analytically computed response with white noise having a
RMS equal to 10% of that of the response. Two scenarios regarding available information
are considered, namely: a) the input is measured and b) the input is not measured. Finally,
two levels of refinement on the mathematical model used to generate the data are
examined: 1) the data is generated using a shear building model (12-DOF) and, 2) the
data is generated using a 120 DOF model (includes rotations and axial extensions).
Complete details of the cases considered can be found in the paper by Johnson et. al. that
appears in these proceedings.

Damage Identification Framework
The methodology presented in this section is formulated on the assumption that linearity
holds in the pre and post-damage states. For the simulated data used here this condition is
exactly realized.
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Module 1 – Identification of Modal Characteristics
a) When the input is available the Eigensystem Realization Algorithm with a Kalman

Observer is used (Juang 1994).
b) When the input is not measured Sub-ID, one of several subspace identification

algorithms currently available (Van Overschee and Moor 1996) is applied.

Module 2 – Location of Damage Regions
This module contains two parts: a) computation of the flexibility matrix at the sensor
locations and b) identification a subset of elements that contain the damaged elements.

a) Flexibility Matrix at Sensor Locations
Three techniques that apply when full sensor data is available are described in Bernal and
Gunes (2000a). A brief description of one of them is presented next.

We begin by assuming that a realization has been obtained and we designate the
eigenvalues and eigenvectors of the transition matrix A (in continuous time) as Λ and ψ,
respectively. Given that the basis of the realization is unspecified, the entries in the
eigenvectors reflect an undetermined combination of displacements and velocities and its
necessary to perform a transformation to obtain the eigenvectors in the standard
displacement-velocity form. The details of the transformation are well known and may be
found in Bernal and Gunes (2000a), final result is;
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where p = 0, 1 or 2 for displacement, velocity or acceleration sensing respectively, Φd
stands for the displacement partition of the eigenvector matrix and the matrix C is the
state-to-output influence matrix obtained in the realization. The contribution of the
identified modes to the flexibility matrix is;
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where φ is the matrix of undamped mode shapes, the term in parenthesis is a diagonal
matrix where ω is the undamped natural frequency and d is a factor such that φi di is a
mass normalized mode. If we assume that modal complexity is small then arbitrarily
normalized undamped modes are obtained simply by rotating the identified complex
modes of the realization. The mass normalization factor can be computed as follows
(Bernal and Gunes 2000a):

FYYYd TT ~~)~~( 1−= (4)
where

zBSIIY 1][ −Λ= ψ     ][1 IISd φ≈Φ −     2bF Tφ=          (5,6,7)
and

                        T
rYdiagYdiagYdiagY )]()...()([~

21=   T
rFFFF ]...[~

21= (8,9)



The previous mass normalization is restricted to cases where the input is measured. For
stochastic input the normalization is carried out by assuming that the mass matrix is
known.

b) Localization of Damaged Regions
As one anticipates, examination of the truncated flexibility can provide information on
the spatial distribution of damage. In the cases considered here the model of the structure
and the conditions considered are sufficiently simple that the region of damage can be
identified by inspection. In general, however, this is not possible a systematic approach is
necessary. A general approach to extract spatial information on the distribution of damage
from changes in flexibility has been recently developed by the first author and is outlined
next.

Consider a system for which the identified flexibility matrices in the pre and post damage
states are Fu and Fd. Assume that there are a number of load distributions that produce
identical deformations when applied to the undamaged and damaged systems. If we
collect all the distributions that satisfy this requirement in the matrix L it is evident that
one can write;
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which makes it apparent that L is the null left space of the change in flexibility resulting
from damage (assuming Fd – Fu ≠0). Performing a singular value decomposition of the
incremental flexibility one can write;
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where we have accounted for the fact that in practical applications the singular values
associated with the left null space will not be exactly zero due to modal truncation or
approximations in the identified eigenproperties. From a physical perspective one
appreciates that the load distributions that induce no stress in the damaged elements
belong to L. These type of vectors are here designated as Damage Locating Vectors
(DLV) since they identify regions that contain damaged elements as regions of zero
stress. It is important to emphasize that while elements with stresses from a DLV can be
exclude from the ‘free parameter space’ the elements that show zero stress may or may
not be damaged. The number of elements in the subset of potentially damaged elements
identified by the DLV’s decreases as the number of sensors increases.

It is possible to show that the number of vectors in L equals the number of sensors minus
the rank of a stress resultant influence matrix Q where Qi,j is the stress resultant at
damaged location j due to a unit value of a load at the ith sensor. Needless to say, the
matrix Q is unknown when the identification is carried out since the damaged locations
are undetermined. Nevertheless, the information is useful since it points out that there is
a limit to the number of damaged elements that can be spatially identified with a given
number of sensors. For example, in a truss where the damaged elements lead to a Q
matrix of full rank there will be no DLV’s when the number of damaged elements equals



or exceeds the number of sensors. An examination of the effect of the number of
identified modes and a complete documentation of other theoretical issues associated
with the DLVs, as well as an illustration of their performance in a number of structural
configurations will appear in a forthcoming paper. We note in closing this brief
introduction that in the case of the shear buildings considered in this portion of the
benchmark study the number of DLVs equals the number of sensors minus the number
of damaged floors.

Module 3 – Quantification of Damage (Model Updating)
The results from modules 1 and 2 provide a subset of elements that contain the damaged
ones. At this stage one may need to further discriminate between damaged and
undamaged elements and to quantify the damage in the damaged components using a
model update strategy. In the particular case of the benchmark structure, at the level of
complexity considered thus far, one is attempting to identify damage in terms of story
stiffness values and not at the level of elements. It is possible, therefore, to perform the
model update by simply fitting a shear building model to the identified flexibility (using a
least square criterion). In the damaged cases only the levels where the damage was
identified are treated as free parameters.

Results
a) Table 1 lists the identified frequencies and damping ratios for all the cases considered.

A comparison with the exact results (Johnson et. al.) shows excellent accuracy in all
cases.

b) The absolute value of the story shears induced by the DLVs are added and plotted in
Figs.1 and 2 for the cases considered. As can be seen from an inspection of this
figure, the damaged levels are clearly identified.

c)  The inter-story stiffness values obtained from the flexibility fit are presented in Table
2 together with the percent reduction.

Final Remarks
A multi-stage approach for damage identification, location and quantification has been
presented and applied to a benchmark structure. The results obtained showed that the
ERA-OKID technique and the Sub-Id approach were able to identify the modal
characteristics accurately in all cases. A new technique based on a singular value
decomposition of the change in flexibility has been described and utilized to identify the
levels of the structure where the damage occurred. In the particular application of the
decomposition of the change in flexibility has been described and utilized to identify the
levels of the structure where the damage occurred. In the particular application of the
benchmark structure the damage identification was restricted to the specification of the
levels where damage was detected and to a quantification of the percent reduction in the
inter-story stiffness resulting from the damage. In case 1 there is no modeling error
because the data used in the identification was generated using a shear building. The
results of the ID are in this case virtually exact. In case 2 there is modeling error in the
sense that the data was generated using a model that has 120 DOF while the model update



of the last stage is carried out assuming a shear building model. Accuracy in the
computed

Table 1  Natural frequencies and damping ratios
CASE 1: Known Input CASE 2: Known Input

No Damage Damage 1 Damage 2 No Damage Damage 1 Damage 2
Mode ξ(%) f(Hz) ξ (%) f(Hz) ξ (%) f(Hz) ξ(%) f(Hz) ξ(%) f(Hz) ξ(%) f(Hz)

1 1.03 9.41 1.11 6.24 1.12 5.82 1.04 8.21 1.13 4.91 1.15 4.36
2 1.01 25.54 1.01 21.53 1.01 14.89 1.00 22.54 1.01 18.38 1.04 10.26
3 1.00 38.67 1.00 37.38 1.01 36.06 1.01 35.58 1.00 33.99 1.00 33.81
4 1.00 48.01 1.00 47.83 1.00 41.35 1.00 46.12 1.00 45.80 1.00 37.47

CASE 1: Unknown Input CASE 2: Unknown Input
No Damage Damage 1 Damage 2 No Damage Damage 1 Damage 2

Mode ξ(%) f(Hz) ξ (%) f(Hz) ξ (%) f(Hz) ξ(%) f(Hz) ξ(%) f(Hz) ξ(%) f(Hz)
1 1.05 9.42 0.99 6.24 1.13 5.80 1.25 8.20 1.15 4.91 1.02 4.31
2 1.15 25.54 0.81 21.55 0.76 14.89 0.92 22.55 0.87 18.39 1.38 10.27
3 1.00 38.67 0.96 37.38 1.13 36.08 1.22 35.55 0.96 33.95 0.94 33.78
4 1.00 47.89 0.94 47.71 1.00 41.41 0.90 46.10 0.85 45.79 1.21 37.51

CASE 3: Unknown Input
No Damage Damage 1 Damage 2 No Damage Damage 1 Damage 2
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1 1.23 9.41 0.97 6.23 1.08 5.79 5 0.94 38.66 0.88 37.44 1.19 36.14
2 1.10 11.83 1.21 9.91 1.28 9.51 6 0.97 48.09 0.86 47.34 1.02 41.33
3 1.02 25.53 0.85 21.52 0.94 14.91 7 1.11 48.48 1.16 47.94 1.14 46.80
4 1.35 31.97 0.95 28.90 0.84 24.90 8 0.97 60.19 0.98 60.03 0.91 54.25

Table 2  Interstory stiffnesses and % reductions
CASE 1 (known input) CASE 2 (known input)

No Damage Damage 1 Damage 2 No Damage Damage 1 Damage 2
Floor K (×e7) K (×e7) % ∆ K (×e7) % ∆ K K (×e7) % ∆ K (×e7) % ∆

1 6.79 1.94 71.3 1.96 71.1 5.63e7 1.17 79.3 1.20 78.6
2 6.93 - - - 4.95e7 - - - -
3 7.02 - 1.95 72.2 4.88e7 - - 0.78 84.1
4 7.40 - - - 4.73e7 - - - -

CASE 1 (unknown input) CASE 2 (unknown input)
No Damage Damage 1 Damage 2 No Damage Damage 1 Damage 2

Floor K (×e7) K (×e7) % ∆ K (×e7) % ∆ K(×e7) K (×e7) % ∆ K (×e7) % ∆
1 6.79 1.96 71.1 1.96 71.2 5.76 1.18 79.8 1.18 79.5
2 6.76 - - - 4.75 - - - -
3 6.93 - 1.94 72.0 4.77 - - 0.77 83.9
4 6.84 - - - 4.51 - - - -

CASE 3  x-direction CASE 3  y-direction
No Damage Damage 1 Damage 2 No Damage Damage 1 Damage 2

Floor K (×e8) K (×e7) % ∆ K (×e7) % ∆ K(×e8) K (×e7) % ∆ K (×e8) % ∆
1 1.32 6.90 47.8 7.06 46.6 5.87 1.65 71.9 1.64 72.1
2 1.27 - - - 5.83 - - - -
3 1.33 - 6.86 48.5 5.80 - - 1.61 72.3
4 1.21 - - - 5.80 - - - -
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Figure 1  Story shears induced by DLVs for known input cases:
(a) Case 1-Damage 1 (b) Case 2- Damage 2 (c) Case 2- Damage 1 (d) Case 2- Damage 2
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Figure 2  Story shears induced by DLVs for unknown input cases:
(a) Case 1-Damage 1 (b) Case 2- Damage 2 (c) Case 2- Damage 1 (d) Case 2- Damage 2
(e) Case3x-Damage 1 (f) Case3x-Damage 2 (g) Case3y-Damage 1 (h) Case3y-Damage 2

reduction in inter-story stiffness can not in this case be compared to an “exact result”
since there is no exact inter-story stiffness (i.e, the ratio of shear to drift is dependent on
the lateral load distribution). Notwithstanding, it is interesting to note that the procedure
correctly identifies the inter-story stiffness of the first floor, which has a full rotational
restraint at the base, as substantially larger than the value of the other stories.
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