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ABSTRACT

The eigensystem realization algorithm with an observer
Kalman Filter (ERA-OKID) operates under the
assumption that the system is linear and time invariant.
Most practical engineering structures, however, behave in
a nonlinear fashion to a certain extent. The aim of the
investigation reported in this paper is to examine how the
system parameters identified by the ERA-OKID
algorithm vary as nonlinearity is introduced in the system
that generates the response data. The paper presents a
review of the theoretical foundation of the ERA-OKID
approach and offers numerical examples using two
hysteretic structures. The first is a two-dimensional, four-
story shear building and the second is a three-dimensional
building with plan eccentricity, also with four-stories in
elevation. In all cases, the excitation is taken as horizontal
ground acceleration with bidirectionality considered in the
three-dimensional case. The influence of the nonlinear
behavior on the eigensolution and the potential for using
the identified trends to characterize the nonlinear behavior
are discussed.

1. INTRODUCTION

The development of active control strategies that can
efficiently reduce the vulnerability of structures to
accidental loads such as extreme winds and earthquake is
recognized as an important objective structural
engineering. Since many control algorithms rely on the
availability of an accurate mathematical model of the
structure, interest in the use of system identification
techniques in Civil Engineering has increased sharply in
the last decade sharply in the last decade. Significant
attention has resulted also from the potential effectiveness
of system identification techniques in the detection of
extreme events, and for extracting information on the
deterioration of structures over time.

A theoretical framework that has proved convenient and
fruitful for the development of mathematical models from
input/output data is the state-space approach. Among
methods that operate entirely in time domain, the
Observer/Kalman Filter Identification (OKID) algorithm
has shown to be efficient and robust. A particular
noteworthy feature of the algorithm is the introduction of

an observer that transforms the mathematical structure to
one where the eigenvalues of the system matrix are zero
for noiseless data or nearly zero when noise is present. A
consequence of the modification introduced by the
observer is that the non-zero length of the modified
system's pulse response functions is drastically reduced
when compared to those of the original system, with
important gains in efficiency and robustness resulting. In
effect, the OKID algorithm treats the output data as
resulting from a modified input on a modified system.
The matrices of a minimum realization for the actual
system are then subsequently obtained for the modified
system. The name Observer/Kalman derives from the fact
that the gain of the introduced observer is that of a
Kalman filter.

The OKID algorithm, as is the case in most of the system
identification techniques commonly used in practice,
operates under the assumption that the system being
considered is linear and time invariant. In Civil
Engineering applications, however, the assumption of
linearity us hardly ever satisfied. Even in cases of
relatively small excitation intensities, closing and opening
of micro-cracks in concrete structures, yielding of regions
with high residual stresses in steel structures, and the ever
present interaction between the structural framework and
non-structural elements, introduces nonlinearity in the
response.

Current research efforts are directed towards the detection
and identification of nonlinearity in structures. The review
articles by Billings (1980), Tomlinson (1986), Natke, et
al. (1998) Imregun (1998) reveal a survey of nonlinear
system identification algorithms. However, because of
their specialized nature and limited applicability, there
seems to be some consensus that selection of a particular
algorithm depends on the objectives of the analysis. The
fundamental objective of this study is to examine the
effect of mild nonlinearities in the response of the system
on the system parameters identified by ERA-OKID
algorithm. In this investigation the hysteretic behavior is
based on Bouc-Wen model, which is mathematically
convenient and can provide a good approximation to the
conditions found in practice. The type of nonlinearity
introduced is of hysteretic type.
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2. Eigensystem Realization Algorithm with Observer
Kalman Filter

The eigensystem realization algorithm (ERA) was first
proposed by Juang and Pappa (1985) for modal parameter
identification and model reduction of linear dynamical
systems and was later refined and ERA with data
correlations (ERA/DC) was formulated to handle the
effects of  noise and nonlinearities (Juang et al., 1988).

This technique, operating on pulse response functions,
also known as Markov Parameters, produces an
input/output mapping having the smallest state vector
dimension that is compatible with a given accuracy. This
mapping is known as a realization and has the form

uBxAx +=& (1a)

DuCxy += (1b)

where x = state vector, y = output vector, and the matrices
A,B,C and D are the result of the realization. Since the
same input/output mapping of eq.(1) is also given by;

uBTzATTz 11 −− +=& (2a)

DuzCTy += (2b)

it is evident that the matrices that define the realization
are not unique (except for D which is independent of the
non-singular transformation matrix T). Note, however,
that since the system matrices of any two realizations are
related by a similarity transformation, the eigenvalues are
preserved.

In order to carry out the system realization with the
extracted impulse response data, the discrete counterpart
of the continuous state-space model can be expressed as

)()()1( 11 kuBkxAkx +=+ (3a)

)()()( kDukCxky += (3b)

For a system with r input and m measurement vectors, the
system response, yj(k) at time step k due to unit impulse uj

can be written as

[ ])()()()( 21 kykykykY rL= ,   k=1,2,…. (4)

and form the rsms × Hankel matrix
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where s is an integer that determines the size of the matrix

By definition, the submatrices Y(k) correspond to the
system Markov parameters and can be expressed as

DY =)0( (6a)

BCAkY k 1)( −= k=1,2… (6b)

The basic formulation of ERA starts with the factorization
of the Hankel matrix using the singular value
decomposition,

TVSUH =)0( (7a)

TVSASUH 2/12/1)1( = (7b)

Thus, the following triplet is a minimum realization:
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where T
mE is [ ]mmm OOI    L  and T

rE  is [ ]rrr OOI    L

and Oi is a null matrix of, Ii is an identity matrix of order
i.

The basic formulation of the ERA requires the system's
Markov parameters. An accurate identification of the
Markov parameters is vital for accurate system
realization. Identification of the system Markov
Parameters has traditionally been carried out by Discrete
Inverse Fourier Transformation (IDFT) of Frequency
Response Functions (FRF). The approach used here,
however, solves for the Markov Parameters directly in the
time domain. The approach avoids the well-known
difficulties associated with time-domain deconvolution by
the introduction of an observer. The observer, when
appropriately selected, leads to a state-space
representation where the output is mapped to a modified
input by a system whose pulse response functions decay
much faster than those of the original system. As one
anticipates, the Markov Parameters of the original system
can be recovered from the observer gain and the Markov
Parameters of the Observer Model.

The State-Space Observer Model is readily obtained from
eqs.(1). Specifically, adding and subtracting Gy to eq.(1a)
and defining
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one gets

vBxAx +=&  (10a)

DuCxy += (10b)



where;

CGAA += (11)

and

][ GDGBB −+= (12)

Provided the system is observable, the eigenvalues of the
modified system matrix eq.(11) can be placed arbitrarily.
One very attractive alternative is to select G such that all

the eigenvalues of A  are zero. In this case the resulting
system matrix is nilpotent and the Markov Parameters of
the Observer Model become identically zero after a finite
(typically small) number of time steps.  Because of the
close relationship between the gain G that leads to zero

eigenvalues in A  (dead-beat observer) and the Kalman
Filter, the foregoing approach is known as the
Observer/Kalman Filter Identification (OKID) technique.
In practice, the term is in fact generally used to refer to
the complete process of identifying the pulse response
functions followed by the generation of a minimum
realization, typically using ERA/DC. A detailed
presentation of the ERA/DC and the OKID procedures
can be found in Juang (1994).

4. Numerical Examples

The first example is a four-story shear building with the
mass and the initial stiffness corresponding to each floor
and the system frequencies as shown in Figure 1. The
structure has 5% damping in all modes. The input
excitation is taken as horizontal ground motion. The
restoring force relationship for the first floor is assumed
to be of the Bouc-Wen (Wen, 1976) type with parameters
that result in a smooth transition from elastic to plastic
behavior. The restoring force vs the drift of the first floor
is shown in Figure 2. Other floors are assumed to remain
linearly elastic.

Figure 1  Structural model for Example 1
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Figure 2  Restoring force vs. drift for the first floor

The input excitation is such that during the first 200 steps
(0.8seconds) of the response, the system remains in its
elastic range and after that the response becomes inelastic.
Sensor noise is simulated by contaminating both the input
and the analytically computed acceleration response for
all four floors with white noise having an RMS equal to
5%. ERA-OKID procedure is carried out first by using the
first 200 steps and the entire length of the response. The
results are summarized in Table 1.

Table 1  Modal identification results

Nsteps=200 Nsteps=2000
Mode ζ (%) f (Hz) ζ (%) f (Hz)

4 5.65 49.13 5.44 49.08
3 5.25 39.67 5.35 39.40
2 5.09 26.29 6.82 25.59
1 5.23 9.65 12.31 9.33

Figure 3 displays the variation of the estimated damping
ratios and the natural frequencies for the first mode as the
number of steps used in ERA-OKID algorithm increases
for both linear and nonlinear cases. This figure clearly
indicates that while the estimates of frequency remains
almost constant, the nonlinearity manifests itself with
increased damping ratio estimates. It should also be
mentioned that although the singular value decomposition
of the Hankel matrix with 200 steps of the data indicates
the order of the system as 8 (4 modes) during realization,
as inelasticity progresses, it becomes harder to determine
the order using the singular values and nonlinearity starts
appearing as fictitious modes. In this example, once the
order is determined in the first identification with 200
steps, the same value is used for the identification for
different data sets.

After the identification is carried out and system
realization is obtained, it is essential to test the accuracy
of the identified modes in predicting the response time
histories when subjected to different ground motions. The
structure is excited with a recorded time history from the

m4
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k

k

k

k Mode f (Hz)
1 9.67
2 26.37
3 39.81
4 49.03

k=7.5×107N/m
m1=3600 kg, m2=m3=2850 kg,
m4=1800 kg



Northridge (1994) earthquake (Alhambra station) and the
acceleration response of the structure is simulated once
again with the first floor having a hysteretic restoring
force relationship. The prediction is based on the
realization that is obtained using the entire length of the
data. Figure 4 shows the acceleration time histories for the
predicted and the actual accelerations of the fourth floor.
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Figure 3: Number of steps used in ERA-OKID vs. the
identification results for the 1st mode
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Figure 4: Computed vs predicted acceleration responses
(a) 1st floor (b) 4th floor

The predicted response is very close almost identical to
the actual response as long as the response remains linear.
As the response changes from linear to nonlinear, the
realization is no more capable of predicting the structural
response.

In the second example, we have analyzed a three
dimensional model of a four story shear building. The
building has 2 equally spaced frames along the minor axis
and 1 frame along the major axis. The translational
stiffness of each floor are 7.5×107 N/m in the major
direction and 2.9×107 N/m in the minor direction. The
mass distribution is the same as the first example and the
center of mass is eccentric on the second and fourth floors
so that the torsional modes are also excited. The input
excitation is horizontal ground motion in both x and y
directions and the output measurements are the
acceleration responses of each floor in both directions.
The noise level for both the input and the output
measurements are assumed to be 5%. The restoring force
relationship for the resisting elements on the first floor
along both the major and minor directions are assumed to
be hysteretic as shown in Figure 5. The other floors are
considered to remain linearly elastic during the entire
response. Table 2 displays the identified values of the
natural frequencies and the damping ratios with ERA-
OKID approach. Except the last three modes, most
vibration modes are picked up with good accuracy even
under noisy conditions with only the first 200 steps of the
response. The variation of the estimated values of
damping ratios and the natural frequencies as the number
of steps used in the identification values are shown in
Figure 6. In the 3D case, similar to the first example, the
frequency identification is found to be insensitive of the
inelasticity and the effect is mainly reflected in an
increase in the damping of the first mode
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Figure 5: Example 2-Restoring force vs. drift for the
  element along major axis
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Table 2  Modal identification results

Elastic (exact) Nsteps=200 Nsteps=2000
Mode

ζ (%) f (Hz) ζ (%) f (Hz) ζ (%) f (Hz)

1 5 8.26 6.12 8.10 16.77 8.00
2 5 9.28 6.02 9.30 13.61 9.04
3 5 10.74 5.93 10.75 12.00 10.52
4 5 22.53 5.16 22.45 6.94 21.75
5 5 25.26 4.47 25.08 6.65 24.52
6 5 28.41 5.63 28.37 8.11 27.93
7 5 35.07 5.68 35.16 7.89 35.15
8 5 38.67 6.22 38.06 6.17 37.90
9 5 42.73 5.11 42.93 5.59 41.91

10 5 45.63 7.51 49.66 8.18 48.12
11 5 47.67 - - - -
12 5 55.57 - - - -
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Figure 6: Number of steps vs. 1st mode

CONCLUDING REMARKS

In this study we have investigated the effectiveness of the
ERA/OKID algorithm for applications to civil
engineering structures with inelastic behavior. The
hysteretic model investigated in this study offers a
physically insightful model. The results of numerical
simulations demonstrated that (a) nonlinearity in the
system results in spurious modes (b) the estimation of
natural frequencies of the system are quite insensitive to
the inelasticity and the inelastic behavior is reflected in
terms of increased damping ratios in the first vibration
mode. In the context of damage detection technology this
technique might provide a Level 1 damage identification

method in which one determines whether damage is
present in the structure. It is also shown that the realized
model mimics the behavior of the original system very
well during the linear portion of the response when
subjected to a different ground excitation. However as
nonlinear action takes place, the realization is not capable
of predicting the actual response of the structure. The
realized model, therefore can not be used reliably to
predict the response of the structure to a different ground
motion excitation
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