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SUMMARY: Robust algorithms to construct minimum order state-space realizations from
input/output data have been developed in the past two decades. Extracting the flexibility
matrix at the sensor coordinates from the matrices of the realizations is of interest in damage
detection applications. The operation requires 1) extraction of the undamped modes at the
sensor coordinates and 2) a technique to obtain constants that permit the normalization of
these modes with respect to mass. This paper reviews the procedure involved in identifying
the modes at the sensor locations and presents closed form equations for computing the mass
normalization constants for the case when the damping distribution is classical.
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INTRODUCTION

State-space realizations can provide an accurate map between coordinates associated with
measured inputs and outputs and have been proven robust under realistic levels of noise.
Extraction of the properties associated with the second order dynamics from the realization
results is of interest in damage localization applications. In many cases, of course, it is
reasonable to assume that damage is restricted to changes in stiffness and thus, the task is
reduced to extracting the stiffness matrix from the matrices of the realization. In practice,
however, instead of the stiffness, the focus is generally placed on extracting its inverse, the
flexibility, because this matrix is dominated by the lower modes and good approximations
can be obtained even when the identified modal basis is sharply truncated. Damage
localization techniques that use changes in measured flexibility at sensor locations as the
basic source of information include those presented by Pandey and Biswas (1994, 1995),
Toksoy and Aktan (1994), Mayes (1995), Peterson et.al. (1995) and Bernal (2000), among
others.

The problem of extracting the flexibility from the matrices of a realization is equivalent to
that of identifying mass normalized modes and frequencies. The first step in the process, the
computation of the complex modes in standard displacement-velocity form at sensor
coordinates, can be carried without difficulty independently of the number of identified
modes or input/output coordinates measured. Computation of undamped modes and
frequencies from the complex solution, however, is a difficult problem in the case of a
general damping distribution. Much research on how to transform a truncated complex modal
basis to the ‘corresponding’ real one has been carried out [Ibrahim and Fullekrug (1990),
Ibrahim (1983), Zhang and Llalement (1987), Balmes (1997)]. It appears, however, that an
exact solution may not be feasible since the truncated complex an real modes may not span



the same space (Ibrahim and Sestieri, 1995). Nevertheless, in many practical cases the
magnitude of the damping, or its departure from classical, is sufficiently small that one can
approximate the undamped modes, with little error, by simply rotating the displacement
partition of the complex modes to minimize the imaginary part. In this paper the assumption
of small complexity is used to obtain arbitrarily normalized undamped modes.

Having identified a set of undamped modes, the next step is the normalization of these modes
with respect to mass. A procedure to obtain mass normalization constants from the results of
the realization has been presented by Alvin and Park (1994) in connection with development
of the CBSI algorithm. It appears, however, the approach is restricted to cases where the
sensing is displacement or velocity. While one can always integrate the measured
accelerations numerically to obtain velocities (and thus obtain a realization for velocity
sensing) this alternative introduces error and is likely to run into difficulties in the presence of
noise. This paper presents an approach to compute mass normalization constants that is
conceptual simple and has the ability to treat acceleration sensing directly.

The paper is organized as follows. The first section reviews the transformations that are
needed to extract the complex modes of the system in standard displacement-velocity form
from the matrices of the realization. The derivation of expressions to compute mass
normalization factors is presented in the next section. The paper concludes with a numerical
example where the flexibility is synthesized using a realization for acceleration sensing and
the results are compared with those obtained when velocities are first computed using
numerical integration.

ANALYTICAL FRAMEWORK

The first task in the extraction of the truncated flexibility is to transform the realization
results to a displacement-velocity (D-V) basis. The results of a realization, after
transformation to continuous time, provide the input-output map in eq.1.

uBxAx +=&                      (1a)

GuCxy +=                       (1b)

where x is the state vector, y is the measured output, u is the input, and the quadruple [A, B,
C, G] are the matrices of the realization. By introducing a change of basis and noting that the
output vector is invariant one can shown that;

Ψ=Φ zCC1                       (2)

where, Φ  and  Ψ  are eigenvectors of the system matrix A for two arbitrary state vectors and
C1 and Cz are the associated C matrices. Requiring that the D-V state vector be the one
associated with C1 one can write;

[ ] ][
0

11 Λ







ΛΦ

Φ
=Φ








−− −−

d

d

DMKM
I

                       (3)



where M, D and K are the mass, damping and stiffness matrices, Φd stands for the
displacement partition of the eigenvector matrix and Λ is the eigenvalue matrix. It can be
easily shown that for the D-V basis (Juang 1994);
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where Cd, Cv, and Ca are matrices connecting the output vector y to the physical coordinates.
Combining eq.2 with the second partition of eq.3 and then with eq.4 one can show that;

 p
zd C −Λ=Φ ψ           (5)

              







Λ
Λ

=Φ
+−

−

][
][
1p

z

p
z

C
C
ψ
ψ

           (6)

where p = 0, 1 or 2 for displacement, velocity or acceleration sensing respectively. Eq.6
allows the computation of the D-V complex eigenvectors from those of an arbitrary
realization.

Undamped Modes and Frequencies
As noted in the introduction, the extraction of undamped modes from a truncated set of
complex modes, available at an arbitrary number of sensor locations, is a difficult problem
for which an exact solution may not be feasible (Ibrahim and Sestieri 1995). Assuming that
the damping is small or nearly classical, however, one can always find a diagonal matrix S
for which;

][ IISd φ≅Φ          (7)

where the estimated undamped mode shape matrix,φ , is real.

The complex eigenvalues are given by;

   2
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where n, is the number of identified modes. Expressing eq.8 as;

iii i βα +=Λ            (9)

it follows that one can compute ω and ξ as;
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where ωi and ξi are typically designated as the undamped natural frequency and the damping
ratio. It is opportune to note that the value from eq.10 is only equal to the true undamped
frequency when damping is classical, for the general case, eq.10 provides an approximation
(albeit typically quite accurate) to the true undamped frequency.

Mass Normalization
Taking a Fourier transform of eqs.1a and 1b, solving for the state vector from eq.1a and
substituting the result in eq.1b one gets;

         )()( ]][[ 1 ωω ω uDAiICy +−⋅= −                      (12)

The Fourier transform of the output vector can be expressed in terms of that of corresponding
to the displacement vector, yD as

)()( )( ωω ω D
p yiy =                       (13)

where p = 0,1 and 2 for displacement, velocity or acceleration sensing.

Substituting eq.13 into eq.12 one gets;
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With mc as the number of co-located inputs and r as total number of inputs we define the
Boolean matrices q1 (m x mc) and q2 (r x mc) so that:  F. q1 and u .q2 are the columns of the
flexibility and the rows of the input associated with co-located sensors. Recognizing that the
flexibility relates yD(ω) to u(ω) at ω = 0 one can write;
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Except for the case of displacement sensing, the above limit leads to the un-determinate
expression 0/0, however, differentiating the numerator and denominator an appropriate
number of times one gets;

21 )1( qBAC pqF +−−=            (16)

In the simple case where q1 and q2 are both identities eq.16 gives the flexibility matrix
directly. This, however, is seldom the case and one needs to use the information in eq.16 to
extract the mass normalization constants. Expressing the system matrix and the flexibility in
terms of their eigenvalues and eigenvectors gives;
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where d is an (n x n) diagonal matrix listing the mass normalization coefficients (i.e.,

iii d⋅=φφ~ , where iφ~  is the mass normalized mode). While Eq.17 holds in general, the
important point is the fact that a mode by mode equality can be established when the damping
is classical. In other words, the contribution to the flexibility matrix from mode j is the same
as that given by the complex mode pair corresponding to the given eigenvalue (by the pair we
mean the mode and its conjugate and the corresponding vectors in the inverse of the modal
matrix). Restricting the remainder of the derivation to cases where classical damping is a
reasonable assumption one can write;
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Introducing the notation;
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eq.18 can be written as;

       jjj GdE =2                   (20)

Which is the basic expression for computing the mass normalization constants. Note that
eq.20 has redundant information since dj is a scalar and Ej and Gj are (m x mc) matrices.
Provided the damping is actually classical and there is no spurious modal complexity from
noise or other numerical sources, the value of dj obtained using any of the entries in eq.20
will be (within round-off error) identical. Nevertheless, if some modal complexity is
neglected in the process of computing the undamped modes then there will be a small
difference depending on the entry chosen. In any case, one can always proceed using a least
square approach which takes advantage of all the available information. Defining jE~ and

jG~ as (mxmc x 1) vectors containing columns 1,2 ..mc of Ej and Gj, the least square solution
follows as;

          
j

T
j

j
T
j

j EE
GE

d ~~
~~

=                 (21)

NUMERICAL EXAMPLE

This numerical example illustrates results for the error in the flexibility synthesized in two
ways. In the first case the flexibility matrix is obtained using the matrices of an acceleration-
based realization and in the second case the measured output is first transformed to velocity



so that a velocity sensing realization is obtained. Needless to say, the difference between the
two results derives from the approximate nature of the numerical integration of the
acceleration and, most importantly, from the magnified influence of the noise after the data is
integrated. It is assumed that the acceleration output vector is recorded at a sampling rate of
200Hz. The structure selected is a planar truss with 44 bars and a total of 39 DOF, as depicted
in Fig.1. All the bars are made of steel (with E = 200 GPa) and are taken to have an area of
64.5 cm2. Nine sensors recording motion in the vertical direction are located at each of the
unsupported joints of the lower chord. The excitation used to generate the vibration data is
random white noise applied in the vertical direction at nodes 5 and 7. Sensor noise is
contemplated in the excitation and the computed response. The output noise is prescribed to
have an RMS equal to 10 % of the RMS of the response measured on the sensor located at
joint 2 and the input noise RMS is 5% of the excitation level. Viscous dissipation is included
in the form of Rayleigh damping with a magnitude of 5% of critical in the two modes having
the largest modal mass in the y-y direction.

        Fig.1 Structure of Numerical Example.

Modal Identification
Application of the ERA-OKID algorithm to the data identified 19 modes associated with
significant singular values and having MAC indices in excess of 0.9. The periods of the first
eight identified modes are compared to the exact values in Table1. The accuracy of the
identification, even in the region where the modal density is high, is evident from a cursory
examination. For simplicity in the comparison, we have omitted the second mode from the
exact solution, which doesn’t show up in the identification because it has essentially zero
participating mass in the y-y direction.

Table 1. Exact and Identified Periods (sec) for the First 8 Modes
Mode Exact Identified Mode Exact Identified

1 1.5520 1.5527 5 0.2825 0.2781
2 0.6486 0.6486 6 0.2551 0.2541
3 0.4108 0.4107 7 0.2307 0.2304
4 0.3054 0.3066 8 0.2105 0.2103

Flexibility Matrices
To isolate the effect of noise from that of the approximation introduced by the numerical
integration of acceleration we have computed the flexibility matrix with acceleration data,
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with and without noise, and with velocity data, with and without noise. The results are
presented in Fig.2. The error in the coefficients listed in this figure represent the difference
between the computed result and the exact value normalized by the largest value in the
associated column of the exact matrix. In the figure, the relationship between the index and
the location of the coefficient in the matrix is given by counting from the main diagonal
downward, from column to column, sequentially.

Fig.2 Error in identified flexibility coefficients (a) noiseless case (b) noise considered in input
and output measurements.

An examination of Fig2.a shows that error introduced in the solution by the numerical
integration of the acceleration (at the sampling rate considered and for the frequencies of the
structure of this example) is not significant. As one anticipates, however, the error in the
flexibility coefficients is significantly larger when noise is considered and the data is
integrated prior to processing it to obtain the realization matrices.

CONCLUDING REMARKS

A review of the steps required to extract the displacement-velocity complex modes at sensor
coordinates from the matrices of a state-space realization is presented. It is recalled that the
identification of a set of undamped normal modes from the identified complex modes is, in
the general case of an arbitrary viscous damping distribution, a difficult problem for which an
exact solution may not be feasible. In particular, if the identified complex modes span a space
that can not be exactly spanned by an equal number of the true undamped modes then the
extraction of the undamped set appears impracticable. In connection with this issue, it is
worth noting that under experimental conditions modal complexity appears, not only due to
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deviations of the actual damping mechanism from classical, but also from noise and other
spurious numerical effects (Deblaw and Allemang 1986).

An expression to compute constant that can be used to normalize the undamped mode shapes
is derived for the case of classical damping. Central to the derivation is the fact that there is a
one-to-one correspondence between the complex mode (and its corresponding vector in the
inverse complex mode shape matrix) and the undamped mode shape associated with the same
eigenvalue. The resulting expression for the mass normalization constant does not involve
any curve fitting and, in the context of the accuracy of the measured data, is exact. Since only
one co-located sensor actuator pair is needed to evaluate the mass normalization constants,
redundant information is available when more than one pair is available. In the solution
presented here we opted to compute the constant using a least square solution that accounts
for all the available information. It may prove possible, however, to improve accuracy by
using a judicious choice of which columns (and perhaps rows) of eq.20 to include in the
solution.
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