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ABSTRACT

A flexibility based damage identification strategy is described and the results of
its application to the analytical phase of the benchmark problem developed by the
IASC-ASCE SHM Task Group are briefly summarized. The strategy contains
localization and quantification modules that operate in cascade. The localization
maps changes in measured flexibility to responsible elements in the structure using
stress fields computed from load vectors defined by the null space of the flexibility
change. The damage quantification is formulated as a quasi-linear optimization
problem where the free parameters are those identified in the localization stage. The
approach proved accurate with respect to the localization of the damage in all the
cases considered. The accuracy of the quantification, however, is found to degrade
notably in the presence of modeling error.

INTRODUCTION

Identification of damage from the analysis of vibration signals has received
significant attention in the civil, mechanical and aerospace fields. The problem most
commonly considered is that where data is recorded at two different times and it is
of interest to determine if the structure suffered damage in the time interval between
the two observations. The behavior of the system during the observation periods is
typically assumed linear and the damage is identified as changes in system
parameters. A solution, in principle, can be obtained by using the data to optimize a
model of the structure in the two states and inspecting the differences. In practice,
however, a solution is difficult because: a) the real structure is always more
complex than the mathematical model selected b) the measured data is limited and
imprecise and c) the number of system parameters is large and the inverse problem
posed proves ill-conditioned.

Many techniques that try to circumvent or minimize the difficulties listed
previously have been proposed [1]. Examination of the literature reveals, however,
that the assumptions used to establish the various approaches vary widely and it is

                                                          



unclear what is the true capability of the current state of the art in damage detection
of civil engineering structures. In an attempt to address this situation the dynamics
committee of the ASCE formed a Task group on Structural Health Monitoring in
1999. The fundamental objective was to explore the damage identification problem
with techniques selected by the participants but with the focus placed on a common
structure and a set of common clearly defined assumptions. The details of the first
selected benchmark structure, the damage scenarios, and a more elaborate
discussion on the background and objectives of the ASCE SHM task group can be
found in [2]. This paper discusses the techniques used by the authors in the phase 1
of the analytical work and presents a brief summary of the results obtained.

DAMAGE IDENTIFICATION STRATEGY

The sequence implemented has the following components:

1) Computation of a state-space realization from the measured signals.
2) Extraction of flexibility matrices from the matrices of the realization (to within

a scalar multiplier when the input is stochastic).
3) Computation of the change in flexibility from the undamaged to the damaged

state (or a matrix that differs from it by a scalar multiplier).
4) Reduction of the subset of potentially damaged elements by examination of the

change in flexibility.
5) Quantification of the damage using the identified damaged flexibility.

The theme of the previous steps is the uncoupling of uncertainties in inertial and
damping properties from the search for stiffness related damage. Since the
originally recorded signals are reduced to flexibility matrices it is evident that the
approach involves a substantial compression of the data. Whether or not the
compression discards useful information (for the identification of stiffness related
damage) depends on the position and number of sensors, on the number and
frequency band of the identified modes, and on the spatial distribution of the
damage. A detailed discussion, however, is not essential to the objectives of this
paper and is omitted for brevity.

System Realization

For the deterministic case the state-space model in discrete time can be
expressed as;

                                                  kkk uBxAx   +=+1                     (1a)

                                                 kkk   uDxCy +=                     (1b)

where A,B,C and D are the matrices of the realization and xk and yk are the state and
output vectors at step k. The Eigensystem Realization Algorithm with a Kalman



Observer [ERA-OKID] was used in the numerical analysis [3]. The selection of a
finite system order results in some compression of the data.

In the unknown input case the output data is assumed to derive from a
realization of the stochastic system;

                                                kkk wxAx +=+1            (2a)

kkk vxCy +=     (2b)

where wk and vk are white noise vectors. The objective of the analysis is to
establish, exclusively from output measurements, the matrices A and C and the
covariance of the process that generates the wk and vk sequences, namely;
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The analysis assumes that the state is a zero mean stationary random process
and that the disturbance and output noise vectors are not correlated with the state.
The algorithm selected in this study, Sub-ID, belongs to the general class of
subspace algorithms where the matrices of the realization are retrieved as subspaces
of projected data matrices [4].

Extraction of Flexibility Matrices

The second level of data compression is realized by focusing on the behavior of
the identified system at ω = 0.

Deterministic Input
Taking a Fourier transform of eq.1 the realization can be expressed in input-

output form, namely;

)()( ]][[ 1 ωω ω uDBAICy +−⋅= −i           (4)

It is convenient, for generality, to express the Fourier transform of the output vector
in terms of the transform of the displacement vector, yD;

)()( )( ωω ω D
pi yy = (5)

where p = 0, 1 or 2 for displacement, velocity or acceleration sensing, respectively.
Substituting eq.6 into eq.5 one gets;

)()( ]][[
)(

1 1
ùù iù

iù pD uDBAICy +−⋅= −           (6)

Taking ω = 0 in eq.7 gives a partition of the flexibility matrix. After appropriate
differentiation to eliminate indeterminacy one gets;



)0()0( uFy m,rD =           (7)

where Fm,r , the partition of the flexibility matrix associated with the m output
sensors (rows) and r inputs (columns), is given by;

            BACF rm,
)1( +−−= p             (8)

Note that eq.9 is general and thus applies equally well to cases with classical or
non-classical damping. When all the inputs and outputs are co-located the equation
provides the flexibility matrix directly. This condition, however, is rarely
encountered in practice and further processing is required to extract all the available
information. Indeed, the flexibility matrix can be obtained for all the input and
output coordinates provided two conditions are satisfied: 1) there is at least one co-
located pair of input-output sensors and 2) the damping distribution is classical. The
reasons for these restrictions are noted in the sequel.  Writing the partition of the
flexibility matrix in eq.4 in terms of the undamped mass normalized modes and
frequencies ψψψψ and ωωωω one has;

T
rm   ψψψψψψψψ   ùF rm,

2−=         (9)

where we note that the coordinates associated with co-located sensors are both in
ψψψψm and ψψψψr. Eqs. 9 and 10 can be written in series form and equated, one gets;
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where 2n is the system order and the notation of the right side comes from the
spectral decomposition of A, namely;

                                                          ÖÖA ΛΛΛΛ =                                                  (11)

where
                                                               1−= ÖÖ                                                   (12)

To compute the mass normalized modes using eq.10 two conditions need to be
satisfied: 1) the equality must hold term by term and 2) there must be at least one
column (on the left side) where the number of unknows is m (and not m+1). The
first requirement imposes a restriction to classical damping because it is only in this
case that the displacement partition of ΦΦΦΦi is related to ψψψψm by a complex constant.
The equivalence of the second condition to the need for a co-located sensor is
evident. Assuming the required conditions are satisfied the flexibility matrix at all
the input and output coordinates can be computed as;

                                                                Tψψψψψψψψ 2−≈ ù F                                            (13)



where ψψψψ = [ψψψψm ψψψψr]
T

  and ≈ is introduced to emphasize that the modal space may be
truncated.  The term by term equality in eq.10 is only strictly valid for classical
damping. The equality, however, is typically assumed to hold in general because
modal complexity deriving from damping is small in lightly damped systems and in
systems with well-separated frequencies [5].

Stochastic Input
In output-only systems flexibility matrices can not be assembled because the

information to obtain mass normalized modes is not contained in the measured data.
The damage localization strategy previously outlined can still be used, however, if a
matrix that differs by a scalar multiplier from the true change in flexibility can be
computed. Techniques to arrive at these matrices are presented in another paper
contained in these proceedings [6].

Damage Localization

A general approach to map flexibility changes to spatial localization of damage,
designated as the Damage Locating Vector (DLV) approach, has been recently
developed. The basic features of the technique are described next, a more detailed
discussion of the theoretical background as well as discussion on robustness and
other issues may be found in [7].

The basic idea in the DLV approach is that the vectors that span the null-space
of the change in flexibility from the undamaged to the damaged states, when treated
as loads on the system, lead to stress fields that are zero over the damaged elements.
Depending on the number and location of the sensors the intersection of the null
stress regions identified by the DLVs may or may not contain elements that are not
damaged in addition to the damaged ones. Elements that are undamaged but which
cannot be discriminated from the damaged ones by changes in flexibility (for a
given set of sensors) are inseparable. The steps of the DLV localization can be
summarized as follows:

1. Compute the change in flexibility as;

                                                      DU FFDF −=                                                   (14)

2. Obtain a singular value decomposition of DF, namely;
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where s2 are ‘small’ singular values (the conditions for which the set s2 is empty are
discussed in [7]). For ideal conditions the s2 values are zero and the DLV vectors
are simply the columns of V associated with the null space. For the noisy conditions
that prevail in practice, however, the values in s2 are never equal to zero and a
cutoff is needed to select the dimension of the effective null space. The steps to



make the determination are presented next, the theoretical support can be found in
[7] and is omitted for brevity.

1.   Consider a vector in V say Vj

2. Compute the stresses in an undamaged model of the structure using Vj as loads.
3. Reduce the independent internal stresses in every element to a single

characterizing stress, σ (defined in such a way that strain energy per unit
characterizing dimension is proportional to σ2). Designate the reciprocal of the
maximum value of the characterizing stress as cj.

4. Compute the svn index as;
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where;
sq cq

2 =max (sj cj
2)      for j=1: m (17)

5. The vector Vj can be treated as a DLV if;

svnj  ≤ 0.20         (18)

Once the DLV vectors have been identified the localization proper is carried out
as follows:

6. Compute, for each DLV vector, the normalized stress index vector as;
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7. Compute the vector of weighted stress indices, WSI, as;
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where,

                                                        )015.0,(max ii svnsvn =                                    (21)

and  ndlv is the number of DLV vectors.

8.  The potentially damaged elements are those having WSI <1.



Quantification

The quantification implemented in phase 1 of the analytical work fits a model of
the system to the damaged flexibility using the restricted set of free parameters
identified in the localization stage. The metric selected to define the cost function is
taken as the square of the deviations between the measured flexibility and the
flexibility of the model. For this metric the problem can be cast as an ‘almost’ linear
least square problem (strictly linear in statically determinate structures) that gives
some insight into the issue of uniqueness.

To describe the approach, consider a discrete structure for which an arbitrary
number of coordinates are defined. Assume, for simplicity, that the stiffness of the
various elements is characterized by scalar quantities such as EI, EA or GJ. The
reciprocals of these stiffness terms are element flexibilities, bj, where the subscript
identifies an element number. An arbitrary coefficient of the flexibility matrix can
then be written as;

baT
jif =, (22)

where a is a vector of influence coefficients and b is the vector of element
flexibilities. Placing all the coefficients of the upper triangular portion of the
flexibility matrix in a vector one can write;

åfbA += ˆ (23)

where A contains a collection of influence vectors aT, f̂  is the estimate of the

damaged flexibility and εεεε is a vector of residuals which exists due to the fact that
there is modeling error in the computation of A and truncation and approximation in
the measured flexibility. It should be noted that since the parameters in A depend on
the distribution of internal forces (due to unit loads) they are indirectly a function of
the vector b so eq.26 is not linear (except in the statically determinate case).
Ordering eq.26 so that the flexibility of the potentially damaged elements appears
first and introducing the subscripts 1 and 2 to indicate partitions associated with
potentially damaged and undamaged elements one gets;
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or
       ε+∆= fbA ˆ

11         (25)

where the first term on the right side of eq.28 is the total estimated flexibility minus
the contribution that derives from the undamaged portion of the system. Defining
the cost function as the squared length of the residual gives;
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The minimum with respect to b1 is obtained by setting the gradient to zero:
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where ββββ is a vector of appropriate dimension and N (⋅) indicates null space.
Although mathematically arbitrary, the vectors ββββ that lead to physically feasible
solutions are limited by the fact that b1 is positive and bounded from below by the
undamaged flexibility. Furthermore, note that any parameter associated with
identically zero rows in the null space of A1

T A1 can be computed independently of
rank deficiency in A1

T A1. We conclude by recalling that, with the exception of
statically determinate systems, eq.31 needs to be solved using iterations because A
is dependent on b.  Although a theoretical convergence analysis has not been
attempted at the time of writing, no convergence difficulties were encountered in
the cases examined.

SUMMARY OF THE RESULTS FOR THE BENCHMARK STRUCTURE

The simulation cases for the benchmark structure are summarized in Table I.
The first 2 cases are one-dimensional analysis in the weak (y) direction with
"ambient" excitation as the input. In case 2, modeling errors are introduced since
the data is generated with a 120 DOF model. The level of complexity is increased in
the subsequent cases. Case 3 replaces the ambient excitation at each floor with a
shaker excitation on the roof. Cases 4 and 5 enhance the 3-D response by
asymmetrical mass distribution on the top floor and further complicate the problem
by asymmetrical damage patterns (damage patterns (3) and (4)). Tables II-IV
display the results of modal identification, damage localization and quantification
for Case 4. The results obtained for the other cases can be found in [8].

TABLE I. SIMULATION CASES FOR THE BENCHMARK STRUCTURE

Case 1 Case 2 Case 3 Case 4 Case 5

Data
Generation

Model
12 DOF 120 DOF 12 DOF 120 DOF 120 DOF

Excitation Ambient Ambient Shaker Shaker Shaker

ID Model 12 DOF 12 DOF 12 DOF 12 DOF 12 DOF

Input
Known

Unknown
Known

Unknown
Known

Unknown
Unknown Unknown

Damage
Pattern*

(1), (2) (1), (2) (1), (2) (1),(2),(3),(4) (1),(2),(3),(4)

*(1) all braces in 1st story, (2) all braces in 1st and 3rd stories,
(3) 1 brace in 1st story, (4) 1 brace in 1st and 3rd stories



No difficulties were encountered in the modal identification. As expected,
however, the accuracy proved higher in the known input cases.

TABLE II. IDENTIFIED MODAL PARAMETERS FOR CASE 4

No Damage Damage (1) Damage (2) Damage (3) Damage (4)
ξ(%) f (Hz) ξ (%) f (Hz) ξ(%) f (Hz) ξ(%) f(Hz) ξ(%) f(Hz)

1.23 9.29 1.14 6.14 1.18 5.70 1.19 8.76 1.10 8.83
1.02 11.68 1.03 9.80 1.26 9.39 1.06 11.68 0.97 11.52
0.96 25.24 0.95 21.28 1.05 14.82 1.39 15.84 1.73 15.66
1.27 31.60 0.95 28.57 0.84 24.71 1.06 24.39 1.05 24.37
0.89 38.27 0.94 36.96 1.23 36.02 1.27 31.61 0.89 30.83
1.22 48.07 1.03 37.96 0.92 40.55 0.88 37.81 0.95 37.73
0.99 59.86 0.95 46.87 1.10 46.45 0.95 43.63 0.96 42.87
1.21 66.88 1.23 47.59 0.85 53.62 0.88 47.68 0.88 47.56
1.11 83.33 1.01 59.67 1.05 63.48 1.21 48.08 1.00 48.14

1.05 64.62 1.03 71.70 1.00 59.85 1.08 58.24
1.10 82.94 1.20 66.55 0.97 66.60

1.10 83.30 1.46 81.64

For all cases and damage patterns, the localization was performed successfully
as shown in Table III. Characterizing stress is taken as the story shears and the WSI
is computed for all the damage patterns. In all cases examined, the DLVs produced
a set that is exclusively the damaged region.

TABLE III. DAMAGE LOCALIZATION AND THE WSI INDICES FOR CASE 4

Damage (1) Damage (2) Damage (3) Damage (4)
Direction Floor WSI Floor WSI Frame Floor WSI Floor WSI

1 0.14 1 0.07 1 0.80 1 0.95
2 4.90 2 11.47 2 8.35 2 3.27
3 6.41 3 0.04 3 6.91 3 4.57

x

4 9.04 4 11.82

East side
(y-dir)

4 7.46 4 5.26
1 0.21 1 0.01 1 11.64 1 11.32
2 5.07 2 13.89 2 26.35 2 11.10
3 6.35 3 0.17 3 24.92 3 1.18

y

4 8.65 4 11.85

South side
(x-dir)

4 21.11 4 8.10

When the damage is symmetric (Damage patterns (1) and (2)) it can be
meaningfully characterized as percent change in the story stiffness for the complete
system. When the damage introduces asymmetry such as damage patterns (3) and
(4), however, it is necessary to quantify the damage at the level of the individual
frames. The reference undamaged stiffnesses for each of the perimeter frames are
specified as the analytical values associated with a triangular load distribution.

The error in the quantification of the percent damage for the extensive damage
cases (patterns (1) and (2)) proved to be less than 4% for the data generated by the
12 DOF model and 9% for the data generated by the 120 DOF model. For damage
patterns (3) and (4), however, the percent error in the quantification varies from 23-
28%.



TABLE IV PERCENT REDUCTIONS IN IDENTIFIED STIFFNESSES FOR CASE 4

Damage (1) Damage (2) Damage (3) Damage (4)

Floor x-dir y-dir x-dir y-dir
y-dir

(east)
x-dir

(south)
y-dir

(east)
x-dir

(south)
1 46.1 71.4 45.9 71.4 28.1 0.0 27.9 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 47.1 0.0 0.0 0.0 0.0 27.7
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CONCLUSIONS

The paper describes a flexibility-based technique to locate and quantify linear
damage and illustrates the performance in the case of the ASCE SHM task group
benchmark structure. The approach operates by compressing the time histories into
flexibility matrices synthesized at the sensor locations and uses these matrices as
targets for identifying the location and severity of the damage.

A potentially important limitation in the strategy derives from the ability to
assemble flexibility matrices from the measured data when only output signals are
available. As the paper shows, however, most of the difficulties can be
circumvented in the stochastic case if there are sufficient sensors because one can
then synthesize matrices that differ from the flexibility by a single scalar. The scalar
proves to be immaterial for localization purposes and is only of secondary
importance in quantification since the reductions in stiffness can be computed in
percentage without reference to specific values.

The analytical simulations of the benchmark problem have included most of the
complications that are encountered in actual applications. The complexity of
realistic field conditions is, of course, never fully captured by simulations so
experimental validations of damage identification techniques are essential.
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