
Using Ontologies for Recognition: An Example

Mieczyslaw M. Kokar

Department of Electrical

and Computer Engineering

Northeastern University

Boston, MA 02115

kokar@coe.neu.edu

Jiao Wang

Department of Electrical

and Computer Engineering

Northeastern University

Boston, MA 02115

jiaowang@coe.neu.edu

Abstract — In this paper we investigate a scenario
in which the fusion process (the algorithm) could be
synthesized at run time. This goal can be achieved in
two steps: first synthesize a formal specification of the
fusion process and then generate code from the specifi-
cation. In this paper we show the first of these steps.

Keywords: Ontologies, Unified Modeling Language,
Automatic Target Recognition, symbolic information,
dynamic process update.

1 Introduction

An ability to dynamically accommodate symbolic in-
formation by an automatic target recognition (ATR)
system is a high value feature that allows for the dy-
namic inclusion of new types of target into the recogni-
tion algorithm. The new symbolic information might
be obtained through various means, e.g., through an
intelligence channel, through reading a description of
a new type of target in a library of target specifications,
or by receiving a message from a software agent that
is part of a Situation Awareness system (SAW). Once
such information is received, it has to be incorporated
into the target recognition algorithm on the fly, i.e.,
at run time. After that, the algorithm can be used to
process sensory information. To achieve this kind of
goal the ATR system needs to “understand” both the
symbolic and the sensory information. This capabil-
ity is achieved through the use of an ontology. Both
the fusion agent and the knowledge provider know the
ontology, and both the symbolic information and the
knowledge of the sensors is “annotated” using that on-
tology.
In this paper we describe an approach to solving

such a problem, provide examples of symbolic target
descriptions, describe an artificial ATR scenario, and
use the example to show how some of the crucial steps
of the whole process could be accomplished. We also

summarize the advantages of the proposed approach
over that in which the recognition algorithm is fixed.
The main building ingredient of our approach is DAML
(DARPA Agent Markup Language) in which ontologies
are specified and symbolic information is annotated.

In Section 2 we present a simple scenario which we
use to explain the idea of ontology-based target recog-
nition. Then in Section 2.5 we describe the details of
our system. Finally, in Section 3 we present conclu-
sions.

2 Scenario

The main point that we want to stress in the sce-
nario is that the types of target are not known in ad-
vance. In our experiments we simulated a world of
simple geometric objects. We simulated two kinds of
sensor input, an intensity image and a range image.
Examples of images of two types of target (cube and
pyramid) are shown in Figures 1 and 2. The images
in the top row are from a range sensor and in the bot-
tom from an intensity sensor. It is clear that an ATR
system can take advantage of both sensors, since one
of the sensors might not give enough confidence of a
recognition decision. For instance, in Figure 1, where
both sensors are positioned above the target, the inten-
sity images look the same for both targets, while the
range images are quite different. On the other hand, in
Figure 2 the range sensor is positioned above, but far
from, the target and thus it cannot distinguish a cube
from a pyramid, while the intensity sensor positioned
on one side of the target is able to see a difference in
the shapes of the targets.

The scenario for developing a specification of a
processing algorithm is as follows:

1. Agent receives an update of the ontology that in-
cludes description of target called pyramid.

Figure 1: Examples of Images: Top View. Range im-
ages (top row), intensity images (bottom row).

Figure 2: Examples of Images from Far Away. Range
images from above (top row). Intensity images (bot-
tom row), views from one side.

2. It incorporates this knowledge into its existing on-
tology.

3. Agent receives a request for information
TargetType(X, ‘‘Pyramid’’).

4. Agent posts such a query to its query processing
engine.

5. The query processing engine invokes its generic
processing algorithms and returns a result (either
“yes” or “no”).

2.1 Corner Detection Algorithms

In our experiment we assumed that there is a fea-
ture extraction preprocessing block. The features are

corners classified into a number of types. To detect cor-
ners we used wavelet transforms. Towards this aim we
implemented the corner detection algorithm presented
in [5]:

1. For a given image I(x, y), calculate wavelet coef-
ficients Wx(s, x, y),Wy(s, x, y) at a given scale s.
For this purpose, the following basis wavelet was
used [12]:

ϕ1(x, y) = −x · e(
−(x2+y2)

2) (1)

ϕ2(x, y) = −y · e(
−(x2+y2)

2) (2)

2. Compute the modulus M and the orientation O

according to the following formulas:

M(s, x, y) = (|Wx(s, x, y)|
2+ |Wy(s, x, y)|

2)
1
2 (3)

O(s, x, y) = tan−1(
Wy(s, x, y)

Wx(s, x, y)
) (4)

3. Use the scale proportion property, i.e., M(s1,x,y)
M(s2,x,y)

−
s1
s2

= 0, to find edge points of an image. This prop-
erty is satisfied by corner points and edge points.
We used s1 = 2 and s2 =

√
(2), as in [5].

4. Eliminate edge points using the orientation vari-
ance property. This property captures the fact
that the orientation variance near a corner point
is much larger than near an isolated edge point.
Using this property we can eliminate isolated edge
points (might be spurious points, but unfortu-
nately, it also eliminates corner points, like the tip
of a pyramid). After this step, only corner points
and edge points that are very close to the corner
point are left.

5. Locate corners using the property of scale invari-
ance. This property is that the orientation O(x, y)
at a corner point (and isolated edge points) is in-
dependent of scale. Since it depends on the scale
at edge points, in this step, edge points are elimi-
nated and only corner points are left. In this step
we computed the values of O(x, y) for s1 = 2 and
s2 =

√
(2), as in [5]. The points for which the val-

ues of O(x, y) for the two scales were within the
threshold of 0.3 were removed by the algorithm.

2.2 Corner Classification

We defined two kinds of corner for each sensor
type. For the range sensor we had RangeRectCorner
and RangePyramidCorner. Similarly, for the intensity
sensor we had IntensityRightCorner and IntensityA-

cuteCorner. Examples of images of the two range types

Figure 3: Range Corner Types: RangeRectCorner

(left) and RangePyramidCorner (right)

Figure 4: Intensity Corner Types: IntensityRight-

Corner (left) and IntensityAcuteCorner (right)

of corner are shown in Figure 3 and for intensity in Fig-
ure 4.

RangeRectCorner is a rectangular corner, with all
the high-intensity points within the corner having
roughly the same value.
RangePyramidCorner is a rectangular corner in

which the edge points and the corner point have the
same value, but for other points the value increases
toward the center of the object.

IntensityRightCorner is a corner of 90o or more with
all the high-intensity points within the corner having
the same value.

IntensityAcuteCorner is an acute corner, with all the
high-intensity points within the corner having the same
value.
To classify a corner, the algorithm needs to first com-

pute the degree of the corner and then analyze the
variability of the values within the corner. To deter-
mine the degree, the algorithm positions the corner
in a small rectangular region so that the corner is in
the center of the region. Then the high and low value
points are counted. The ratio of the numbers of high
and low values points gives the angle.

2.3 Target Ontology

An ontology captures the basic terminology (con-
cepts) of the domain of interest and the relationships
among the concepts [6, 8]. In the following we show a
small ontology for target recognition. It is essentially
the same ontology as we used in [7]. First, in Section
2.3.1 we present the ontology in the UML language

[4]. UML is a graphical language and thus is easier to
understand by both the developer of an ontology and
by the reader. However, we need a computer process-
able representation. For this purpose we use DAML.
A small sample of the DAML representation of the on-
tology is given in Section 2.3.2.

2.3.1 UML Representation

A small piece of an ontology (in UML) for the sce-
nario of geometric object recognition is shown in Figure
5. The two main constructs in UML are Class and As-
sociation. Classes are represented as rectangles, while
Associations as arrows. Multiplicities of associations
are shown as numbers (or symbols) at the association
ends. We also show one special kind of relationship
between Classes, called generalization. Generalization
is represented by a hollow arrow. It means that one
class is a subclass of another.
As can be seen from the Figure, there are two main

kinds of Class, called Target and Corner. These two
classes are further subclassified into Cube and Pyra-
mid. Pyramid is a generalization of two subclasses,
Pyramid 1 and Pyramid 2.
There are two kinds of Corner, RangeCorner and

IntensityCorner, each of which is further subclassi-
fied into two: RangeRectCorner, RangePyramidCorner
and IntensityRightCorner IntensityAcuteCorner, re-
spectively.
The most important information in the ontology,

from the point of view of target recognition, is the
information about the relationships between types of
target and types of corner. At the top level of the
ontology we show the relationship hasCorner, which
is then specialized to hasRangeCorner and hasIntensi-
tyCorner. Strictly speaking, in UML, the higher level
and the lower level relations are different relations. But
in DAML the lower level relations can be treated as
subProperties of the higher level relation. At the bot-
tom level we show the multiplicities of each of the re-
lations. For instance, we can see that a target of type
Cube must have four corners of type IntensityRight-
Corner and four corners of type RangeRectCorner. A
target of type Pyramid 2 must have one corner of type
IntensityRightCorner, two corners of type IntensityA-
cuteCorner and four corners of type RangePyramid-
Corner.

2.3.2 DAML Representation

A fragment of the DAML representation of the ontol-
ogy shown in Figure 5 is shown below. This fragment
shows the description of the corner type IntensityRight-
Corner and of the target type Cube.

<daml:Class rdf:ID="IntensityRightCorner">

<rdfs:label>

IntensityRightCorner

</rdfs:label>

<rdfs:comment>

Corners in the intensity image are

either rectangular or obtuse.

</rdfs:comment>

<rdfs:subClassOf

rdf:resource="#IntensityCorner"/>

</daml:Class>

<daml:Class rdf:ID="Cube">

<rdfs:label>Cube</rdfs:label>

<rdfs:comment>

Cube is a cube.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Target"/>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="4">

<daml:onProperty

rdf:resource="#hasRangeCorner"/>

<daml:toClass

rdf:resource="#RangeRectCorner"/>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="4">

<daml:onProperty

rdf:resource="#hasIntensityRightCorner"/>

<daml:toClass

rdf:resource="#IntensityRightCorner"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

2.4 Input Information

Information from both the sensors and other (exter-
nal) sources needs to be annotated using the language
defined by the ontology shown in Section 2.3.2. Below
we show a sample of such annotation format.

<Target rdf:ID="T1">

<rdfs:label>T1</rdfs:label>

<rdfs:comment>T1 is a target.</rdfs:comment>

<hasIntensityRightCorner rdf:resource="#IC56"/>

<hasIntensityRightCorner rdf:resource="#IC57"/>

<hasIntensityRightCorner rdf:resource="#IC58"/>

<hasIntensityRightCorner rdf:resource="#IC58"/>

<hasRangeRectCorner rdf:resource="#RC59"/>

<hasRangeRectCorner rdf:resource="#RC60"/>

<hasRangeRectCorner rdf:resource="#RC61"/>

<hasRangeRectCorner rdf:resource="#RC62"/>

</Target>

This information must come from some sources. For
instance, the information can be from a feature (cor-

ner) extraction and classification algorithm. It is as-
sumed that algorithms for corner detection and classi-
fication as described in Sections 2.1 and 2.2 preprocess
sensory information. Additionally, the information
about corners is encoded in the language defined by
the given ontology. Such an encoding is called annota-
tion.

2.5 Target Recognition

The main idea behind the ontology-based recogni-
tion is that a particular object is classified as a target
of a given type if that object satisfies all the constraints
that this type of object is shown to satisfy in the on-
tology. In other words, for an object to be of type
Cube it must have the corners as specified in the ontol-
ogy. This means that the ontology should be used by
some executable code. There are various approaches
to solving this problem:

• Use a generic theorem prover to prove that the
facts known about this target satisfy all the con-
straints that a target of this type must satisfy.
This approach can be used off-line, especially for
the proof of concept.

• Use an expert system that invokes its inference en-
gine to check all the rules on the data provided by
the feature extraction module. The expert system
can derive that it is a target of some type (unique
conclusion), or that this could be an instance of a
number of types, or none.

• Generate code from a formal software specification
(cf. [9]).

• Use a generic inference mechanism, like Prolog,
to check the satisfiability of constraints of a given
target type.

In all the approaches listed above both the target on-
tology and the annotation must be first translated to
the language that a given inference engine can “under-
stand” (process). We experimented with two different
approaches: a Prolog implementation and a Slang im-
plementation. The Prolog solution was described in [7].
In this paper we report on the Slang based approach.
In order to be able to invoke a reasoner on the

DAML ontology and the DAML annotated facts, the
reasoner must be able to understand the DAML lan-
guage. While such reasoners are being developed
by the DAML community, in the absence of such
reasoners at this time, we used the Snark theo-
rem prover [3, 11] within the Specware tool [10, 1,
2]. Instead of using a DAML reasoner, we trans-
lated the target ontology represented in DAML and

the facts annotated with DAML into the Slang lan-
guage, the language of Specware. This translation
process was carried out manually. An automatic
translator from DAML to Slang is under develop-
ment. We then invoked the Snark theorem prover
on a query (conjecture) of interest, for instance:

Type(T1, Cube)

For Snark to prove or disprove such a conjecture, it has
to have a theory of targets. Such a theory was obtained
from the translation process, as described above. The
theory consists of a number of axioms.
Here are some of the axioms of the theory of targets.

op Cube : Element

axiom cube-is-a-target is

SubClass(Cube, Target)

axiom cube-is-restriction is

Type(Cube, Restriction)

axiom onproperty-of-cube is

PropertyValue(OnProperty, Cube, HasRangeCorner)

axiom toclass-of-cube is

PropertyValue(ToClass, Cube, RangeRectCorner)

op Card : Target * HasCorner -> Nat

op Four : Nat

axiom four-cardinality is

Card(t, h) = Four <=>

ex(c1:Corner, c2:Corner, c3:Corner, c4:Corner)

PropertyValue(h,t,c1) & PropertyValue(h,t,c2) &

PropertyValue(h,t,c3) & PropertyValue(h,t,c4) &

fa(cc:Corner) PropertyValue(h,t,cc) =>

cc=c1 or cc=c2 or c =c3 or cc=c4

axiom cube-has-four-rangerectcorner is

fa(t:Cube)(ex(h:HasRangeCorner)(Card(t,h)=Four))

axiom cube-has-four-intensityrightcorner is

fa(t:Cube)

(ex(h:HasIntensityRightCorner)(Card(t,h)=Four))

Some examples of the facts translated to Slang are
shown below.

Type(T1,Target)

Type(IC56,Corner)

Type(IC57,Corner)

Type(IC58,Corner)

Type(IC59,Corner)

Type(RC60,Corner)

Type(RC61,Corner)

Type(RC62,Corner)

Type(RC63,Corner)

hasCorner(T1,IC56)

...

hasCorner(T1,RC63)

Type(IC56,IntensityRightCorner)

...

Type(RC63,RangeRectCorner)

The theorem prover is given the following conjecture:

conjecture is-cube is

Type(T1,Cube)

In this experiment, we traced a number of proves
for this kind of inputs. The goal was to test all of the
components involved in this experiment: the ontology,
the annotations, the translations. But the ultimate
goal was to check the feasibility of this approach to in-
corporating symbolic knowledge about targets into the
processing algorithms of an automatic target recogni-
tion system.

3 Conclusions

As we stated in the beginning of this paper, the
main goal of this exercise was to investigate the fea-
sibility of an approach to Automatic Target Recogni-
tion in which not all of the targets are known at the
design time of the ATR system. Instead, we assume
that such knowledge can become available during the
operation of the system. It can come from various
sources - from the operator, from intelligence channels,
or simply from a communication link. The question is
then what kind of design is needed to accommodate
such requirements. In particular, we were interested
in the use of the DAML language for this purpose.
In other words, we assumed that the symbolic infor-
mation would be communicated to the system in the
DAML language. We then assumed that the sensory
information would also be annotated using DAML.

Although we did not implement a fully automatic
system, we implemented the whole process using ele-
ments that are, at least in principle, automizable. We
say “in principle”, since our approach involves theo-
rem proving, which may not be practical in real time.
There are various ways of approaching this problem.
The approach by the designers of the DAML language
involves constraining the language to make inferenc-
ing tractable. This philosophy comes from the com-
munity of Descriptive Logics. While not everybody
in the DAML community agrees with this philosophy,
it guarantees the tractability of the inferencing. The
main critique of this approach is that the annotation
process is very tedious. Other approaches are still be-
ing considered.

Acknowledgments

This research was partially supported by a grant
from the Air Force Office of Scientific Research under
contract No: F49620-98-1-0043 and from the Air Force
Research Laboratory under contract No: F30602-00-C-
0188.

References

[1] Specware: Language manual, version 2.0.3. Tech-
nical report, Kestrel Institute, 1998.

[2] Specware: User guide, version 2.0.3. Technical
report, Kestrel Institute, 1998.

[3] SNARK: SRI’s new automated reasoning kit,
2002. http://www.ai.sri.com/ stickel/-

snark.html.

[4] G. Booch, I. Jacobsen, and J. Rum-
baugh. OMG Unified Modeling Language
Specification, March 2000. Available at
www.omg.org/technology/documents/formal/-
unified modeling language.htm.

[5] C-H. Chen, J-S. Lee, and Y-N. Sun. Wavelet
transformation for grey-level corner detection.
Pattern Recognition, 28, No. 6:853—861, 1995.

[6] N. Guarino. Formal ontology in information sys-
tems. In N. Guarino, editor, Proc. of Formal
Ontology in Information Systems, pages 3—15,
Trento, Italy, 6-8 June 1998. IOS Press, Amster-
dam.

[7] M. M. Kokar and J. Wang. An example of using
ontologies and symbolic information in automatic
target recognition. In Sensor Fusion: Architec-
tures, Algorithms, and Applications VI, pages 40—
50. SPIE, 2002.

[8] D. McGuinness. Ontologies and online commerce.
IEEE Intelligent Systems, 16(1):8—14, 2001.

[9] D. R. Smith. KIDS: a semi-automatic program
development system. IEEE Transactions on Soft-
ware Engineering, 16 (9):1024—1043, 1990.

[10] Y. V. Srinivas and R. Jullig. SpecwareTM : Formal
support for composing software. Technical Report
KES.U.94.5, Kestrel Institute, 1994.

[11] M. Stickel, R. Waldinger, M. Lowry, T. Press-
burger, and I. Underwood. Deductive com-
position of astronomical software from subrou-
tine libraries. In Proceedings of the Twelfth In-
ternational Conference on Automated Deduction
(CADE-12), pages 341—355, 1994.

[12] Y. Y. Tang, L. H. Yang, J. Liu, and H. Ma.
Wavelet Theory and Its Application to Pattern
Recognition. World Scientific Publishing Co. Pte.
Ltd., 2000.

Pyramid

IntensityAcuteCorner

RangePyramidCornerPyramid1

3

1

3

1

41 41

Pyramid2 2

1

2

1
hasIntensityAcuteCorner

4

1

4

1

IntensityRightCorner

1

1

1

1
hasIntensityRightCorner

RangeRectCorner

Cube

4

1

4

1

4

1

4

1 RangeCorner

IntensityCorner

CornerTarget

hasRangeCorner

hasIntensityCorner

hasCorner

hasRangePyramidCorner

hasRangePyramidCorner

hasIntensityAcuteCorner

hasRangeRectCorner
hasIntensityRightCorner

Figure 5: UML Representation of an Ontology of Geometric Objects

