
THE USE OF ONTOLOGIES FOR THE SELF-AWARENESS OF COMMUNICATION NODES

J. Wang (Department of Electrical and Computer Engineering, Northeastern University,
Boston, jiawang@ece.neu.edu); K. Baclawski (College of Computer Science ,

Northeastern University, Boston kenb@ccs.neu.edu); D. Brady (Department of Electrical
and Computer Engineering, Northeastern University, Boston, brady@coe.neu.edu); M.

M. Kokar (Department of Electrical and Computer Engineering, Northeastern University,
Boston, kokar@coe.neu.edu); L. Lechowicz (Department of Electrical and Computer

Engineering, Northeastern University, Boston, leszek_lechowicz@ltx.com).

ABSTRACT

This paper investigates an approach to establishing
communication by explicitly maintaining self-awareness
and communication of knowledge about the operation of the
communication nodes. The self-awareness and
communication of knowledge is based on the maintenance
of an explicit, declarative knowledge base or ontology of
communication. Hence, we refer to the concept as Ontology
Based Radio (OBR). The proposed approach is based on the
model-driven architecture implemented by means of
ontologies, DAML-based annotations and Java’s reflection
capabilities. Each software module can be queried about its
structure and contents using a DAML based query. It can
then reply to the queries by analyzing its own structure
using Java’s reflection and the system’s inference
capability. In this paper we will show an example of such a
functionality in which two nodes exchange information and
then reason about the multipath structure. The net result is
that after analyzing the multipath structure nodes can
improve the efficiency of communication.

1. INTRODUCTION

Wireless transmission requires a robust and efficient
communication protocol. When the channel has been
estimated and the estimation has been sent back to the
transmitter, then the transmission can be adapted according
to the channel characteristics. The basic idea behind
adaptive transmission is to maintain a constant SNR level,

0/ NEb , by varying the transmission power level, symbol
transmission rate, constellation size and coding rate/scheme
or any combination of these parameters [1].
 Software radio is an emerging technology for building
flexible, multi-service, multi-standard, multi-band,
reconfigurable and reprogrammable radios [2]. Software
radio is very attractive for adaptive wireless transmission
because of its potential capability for dynamically adapting
to the radio environment (or channel characteristics) through

the reconfiguration of its components. Although migrating
algorithms from hardware to software can increase the level
of functionality, it does not necessarily change the fact that
the communication protocols are established at
design/development time. For example, if we want the
designed SDR to be adaptive to the rmsDelay (root mean
square delay spread) of the fading channel, we have to
hard-code it at design time. That means that the adaptive
characteristics are known at the time of design. While this
kind of assumption is sufficient for many cases, there are
situations in which it is not possible to design a
communication scheme in advance. In those situations, the
communication scheme needs to be constructed, managed
and efficiently controlled dynamically at run time.
 This paper investigates an approach to establishing
communication by explicitly maintaining self-awareness
and communication of knowledge about the operation of the
communication nodes. The self-awareness and
communication of knowledge is based on the maintenance
of an explicit, declarative knowledge base or ontology of
communication. Hence, we refer to the concept as Ontology
Based Radio (OBR).
 Here is what Mitola says about the lack of awareness,
including self-awareness, of current radios [3]: Today’s
digital radios have considerable flexibility, but they have
little computational intelligence. For example, the equalizer
taps of a GSM SDR reflect the channel impulse response. If
the network wants to ask today’s handsets “How many
distinguishable multipath components are in your location?”
two problems arise. First, the network has no standard
language with which to pose such a question. Second, the
handset has the answer in the structure of its time-domain
equalizer taps internally, but it cannot access this
information. It has no computationally accessible
description of its own structure. Thus, it does not “know that
it knows.” It cannot tell an equalizer from a vocoder. To be
termed “cognitive”, a radio must be self-aware. It should
know a minimum set of basic facts about radio and it should

Figure 1: OBR simulation scenario

be able to communicate with other entities using that
knowledge. For example, it should know that an equalizer’s
time domain taps reflect the channel impulse response.
 The rest of the paper will explain the concept of OBR
and the implementation of a simplified scenario. In section
2, we will present the concept of OBR. In section 3, a
simple scenario will be used to show how to establish
communication between two OBRs. In section 4, we show
how the concept of OBR was implemented. In section 5, we
show some results from our experiments. In section 6, we
present the conclusions.

2. OBR CONCEPT

The main idea of OBR is that the communication nodes
“understand” the contents of information to be transferred,
their own capabilities and capabilities of the destination
units. Based on this understanding, the communication units
establish a protocol that is “good” with respect to the
transmission needs, to the capabilities of the communicating
units and to the current situation of the whole
communication system. This understanding is expressed
using ontologies. Ontologies are at the core of semantic
information processing. Ontology captures the basic
terminology (concepts) of the domain of interest and the
relationships among the concepts. Ontologies can be
expressed graphically using the Unified Modeling Language
(UML) [4], represented using the DARPA Agent Markup
Language (DAML) [5] for ease of interchange, and
processed either off-line using a theorem prover or in real
time using an expert system engine.

3. PROOF-OF-CONCEPT SCENARIO

Figure 1 is a simple scenario which shows how the
communication protocol is established between two OBRs.
We use two personal computers with a speaker and a

microphone to simulate OBR. In other words, we simulate a
piece of functionality of an OBR using an acoustic link.
Three components are involved in establishing the
communication protocol: Radio, Monitor and Reasoning
Agent. The radio component is responsible for sending and
receiving data. The Monitor is responsible for synchronizing
the two OBRs and controlling the communication. The
Reasoning Agent stores the ontology in its knowledge base
and answers queries using this ontology and data obtained
from the system using Java’s reflection.
 A typical process for establishing communication
includes the following steps:
 Step1: Monitor1 determines that the quality of service
is too low and requests that Radio1 send a packet containing
a query to Radio2. Radio1 sends the query.
 Step 2: Radio2 receives a packet containing a query
and forwards the query to Monitor2. Monitor2 then requests
that Reasoning Agent2 answer the query. Reasoning Agent2
infers the data that is required to answer the query using the
Ontology, then uses Java reflection to extract the data from
the Radio2 software. Here the ontology is used for
formulating the reflective method invocation.
 Step3: Reasoning Agent2 sends the answers of the
query to Monitor2 which then requests that Radio2 send a
packet with the answer. Radio2 then sends the answer to
Radio1.
 Step4: Radio1 receives the packet and forwards the
answer to Monitor1. Monitor1 chooses new communication
parameters and requests that the radio send a packet with a
command. Radio1 then sends the packet to Radio2.
 Step5: Radio2 receives the packet and forwards the
command to Montor2. Monitor2 requests that Reasoning
Agent2 execute the command. Reasoning Agent2 infers
changes that must be made to the software of Radio2 using
the Ontology. Reasoning Agent2 then uses reflection to
update the program variables of Radio2. Here the ontology
is used for formulating the reflective method invocations.

Software
Radio 1

Software
Radio 2

Reasoner 1
(JTP)

Reasoner 2
(JTP)

Ontology

PC PC

answer

4. IMPLEMENTATION OF OBR

QAM MFSK

DSSS

Multipath

ChipQam ChipFskSymbol

Alphabet

belongsTo

HeaderDetector

Trainer
depend

SymbolSequence

0..*0..*
{ordered}

ChipAlphabet
generateChip

ChipchipBelongsTo

Sample

ChipWaveform

0..n0..n

{ordered}

representchip
0..n0..n

{ordered}

Noise
Equalizer

Header RandomDataTrainingData

Waveform

represent

0..n0..n

{ordered}

0..n0..n

{ordered}

Compressor

GetDataThread

Packet

useByPacket

tcpClient tcpServer

QueryGenerator

Translator

ReasoningComponentBuffer(SDR)

UseForCompress

use

UsedForReasoning

DataLink

SentAnswer
receiveAnswer

UsedByDataLink
Monitor

UsedByMonitor

DataGeneratorApplication

SentAndReceive
monitor

generateData

detectHeader

reason

generateQuery

translate

Figure 2: OBR Ontology (partial, details suppressed)

The proposed approach is based on the Model Driven
Architecture implemented by means of Ontology, DAML-
based annotations and Java’s reflection capabilities. Each
software module can be queried about its structure and
contents using a DAML based query. It can then reply to the

queries by analyzing its own structure using Java’s
reflection and the system’s inference capability.

4.1. Ontology

Figure 3: The architecture of OBR

Ontology captures the basic terminology (concepts) of the
domain of interest and the relationships among the concepts.
In Figure 2, we show the Ontology of OBR in UML. UML
is a graphical language so it is easier to read by people, as
compared to a language like DAML. But it is not computer-
understandable. So we translated the UML expressed
ontology into DAML, which can be used for information
interchange and for processing by many available tools.

4.2. Architecture

In figure 3, we show the architecture of OBR. The Physical
layer is simply a C program, which accesses the sound card
directly. The Data Link layer does most of the work of
SDR: compressing, filtering, modulation and so on. The
RLS algorithm is used to calculate the multipath structure of
the fading channel, and an equalizer based on the RLS
algorithm is used in the receiver to process the received data
[6]. The interface between the Physical and Data Link layers
is the Java native interface (JNI). Queries are generated by a
Monitor, which monitors the Data Link layer. The Data
Link layer notifies the Monitor whenever something
happens, wich then makes a decision whether the
performance is OK so far, or if not, then it queries the Data
Link layer using Java reflection. When it receives an answer
or a request to update the Data Link layer, it again uses Java
reflection. The queries generated from the Monitor or the
replies from the Monitor are sent to the Application Layer,
which then transmits the query/reply as normal data.
Producer-consumer queues are used here to save the
queries/replies generated.

4.3. Reasoning Agent

The reasoning agent of our OBR is a component of the
Monitor. When the Monitor receives queries, the queries are

sent to its Reasoning Agent, which keeps the OBR ontology
in its knowledge base, infers the data that is required to
answer the query using this Ontology, and finally uses Java
reflection to extract the data from the Data Link layer
software.
 We use JTP for a Reasoning Agent. JTP is KSL's
object-oriented modular reasoning system. It is based on a
simple and general reasoning architecture. The modular
character of the architecture makes it easy to extend the
system by adding new reasoning modules (reasoners), or by
customizing or rearranging existing ones [7]. JTP’s
knowledge bases are written in the Knowledge Interchange
Format (KIF). JTP also provides support for querying
knowledge represented in DAML. This is achieved by
translating a DAML ontology into KIF when the DAML
representation was loaded into the knowledge base.
 Java reflection is a built-in feature of the Java
programming language. It allows a Java program to examine
or introspect itself during run time. In order to use Java
reflection with JTP, a new reasoner, called the extractor,
was written and added to JTP.

DAML Query Language (DQL) [8] is a formal
language and protocol for agents to use in conducting a
query-answering dialogue using knowledge represented in
DAML. Since the knowledge base of JTP is written in KIF,
a translator was used to translate between KIF and DQL
before the query is sent to a Reasoning Agent and the
answer is sent back.

5. SOME RESULTS

Since the processing of radio frequency signals requires a
great deal of computational power, we use an acoustic link,
instead of an RF lin k. This allows us to experiment with the
main ideas relevant to the SDR, and yet use a PC platform.
Currently, one acoustic link has been implemented using a

Physical

Application

Monitor

Notify

Reflection

Query/Reply

Query

JNI

Physical

JNI

Notify

Reflection
Query

Query/Reply

Data Link Data Link Monitor

Application

Figure 4: Experimental Results

Speaker and a microphone, and the other link uses an
internet connection.

5.1. Example of Query/Answer

To demonstrate the concept, we show a query about the
ExcessDelay (multipath delay spread) and rmsDelay (root
mean square delay spread) of the multipath structure of the
channel, and the mean square root error of the equalizer.
Here the mean square root error of the equalizer represents
the average distance between the equalized data (the input
data of the equalizer multiplied by the equalizer chips) and
the output of the equalizer (the estimated symbol). BPSK is
used here, and it is assumed that the two symbols are in the
unit circle.

<SOAP: Envelope>
 <SOAP: Body>
 <dql:query>
 <dql:queryPattern>

 <rdf:RDF>
 <rdf:Description
rdf:about="&obr;buffer">
 <obr:currentrmsdelay
rdf:resource="&var;x"/>
 </rdf:Description>
 <rdf:Description
rdf:about="&obr;buffer">
 <obr:currentexcdelay
rdf:resource="&var;y"/>
 </rdf:Description>
 <rdf:Description
rdf:about="&obr;buffer">
 <obr:currentequalizererror
rdf:resource="&var;z"/>
 </rdf:Description>
 </rdf:RDF>
 </dql:queryPattern>
 <dql:mustBindVars>
 <var:x/>

 <var:y/>
 <var:z/>
 </dql:mustBindVars>
 <dql:answerKBPattern>
 <dql:kbRef rdf:resource="&obr;"/>
 </dql:answerKBPattern>
 </dql:query>
 </SOAP:Body>
</SOAP:Envelope>

The answer of this query is:

<SOAP:Envelope>
 <SOAP:Body>
 <dql:answerBundle>
 <dql:answer>
 <dql:binding-set>
 <var:x>1.0078370372505556</var:x>
 <var:y>1.062759005498691</var:y>
 <var:z>0.025987243652343</var:z>
 </dql:binding-set>
 </dql:answer>
 </dql:answerBundle>
 </SOAP:Body>
</SOAP:Envelope>

ExcessDelay and rmsDelay are in milliseconds.

5.2. Summary of Results

Figure 4 represents some experimental results with our
system. The top left plot shows that the rmsDelay increases
as the distance between the speaker and the microphone
increases. We tried four distances: 5cm, 1m, 2m and 3m for
a configuration without reflections, i.e., when there were no
obstacles in the line of transmission. Similarly, we used
three distances in a configuration with reflection: 1m, 2m
and 3m. In this case there were some objects around the
speaker and the microphone that were able to reflect the
sound wave. The ExcessDelay showed the same trend as the
rmsDelay, but we did not plot it here. The upper right plot
shows that the mean square root error of the equalizer is also
increased as the distance increases. In this experiment we
used an equalizer of size 48, 16 feedback chips and 32 feed
forward chips.

The bottom plots show the effect of the length of the
equalizer and the transmission power on performance. As
the length of the equalizer of the receiver increases, or as the
transmission power of the transmitter increases, the
performance improves.

 There is a trade off between performance and
processing time. As the equalizer length increases, the
processing time on the receiver increases. So to maintain the
same performance as the distance between the speaker and
microphone increases, or when lower power is used, the
length of the equalizer has to be increased, resulting in
increasing the processing time of the receiver. This can be
achieved through negotiation between two nodes using the
approach presented in this paper.

6. CONCLUSION

We have presented an approach for improving
communication by explicitly maintaining self-awareness
and communication of knowledge about the operation of
communication nodes. A simulated communication
scenario was presented to prove the concept we proposed. A
partial implementation of this scenario has been developed.
A PC with a speaker and a microphone (acoustic link) was
used to simulate wireless communication. An ontology of
communication software was written in DAML and
processed by JTP, which was used as the reasoning agent.
Some preliminary results have been shown. The main goal
of this was to show that communication can be improved by
exchanging information among nodes and adjusting some
communication parameters accordingly. The main
advantage of this approach is that an ontology provides
communication nodes with a very expressive language for
querying each other’s capabilities and communication
parameters. The work described in this paper is just a first
step towards the goal of a Cognitive Radio.

7. REFERENCES

[1] A. J. Goldsmith, “Variable-Rate Variable-Power MQAM for
Fading Channels.” IEEE Trans. Commun., vol. COM-45, pp.
1218-1229, Oct. 1997.
[2] E. Buracchini, “The Software Radio Concept.” IEEE
Communication Magazine, Sep, 2000.
[3] Joseph III Mitola, “Cognitive Radio: An Integrated Agent
Architecture for Software Defined Radio.” PHD thesis, Royal
Institute of Technology (KTH), 2000.
[4] OMG Unified Modeling Language Specification, Version 1.3.
Technical report, Object Management Group, 2001.
[5] DAML. DARPA Agent Markup Language web site, 2001.
www.daml.org.
[6] John G. Proakis, “Digital Communications”, McGraw-Hill,
New York, 1995.
[7] R. Fikes, J. Jessica, and F. Gleb, "JTP: A System Architecture
and Component Library for Hybrid Reasoning.", Proceedings of
the Seventh World Multiconference on Systemics, Cybernetics,
and Informatics. Orlando, Florida, USA. July 27 - 30, 2003.
[8] DQL Specification, Technical report, Joint US/EU ad hoc
Agent Markup Language Committee, 2003.

