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 ABSTRACT
As a consequence of environmental necessities, reuse of products has recently become an important issue for production and
planning. Many companies are involved in retrieving used products, where they repair, refurbish and upgrade the products in
order to sell them for profit. However, the regulations for many markets do not allow manufacturers to sell remanufactured
products under the same pretence as new products. Therefore, companies are forced to differentiate both the recovery and the
sales activities for the remanufactured products from that of the new products. In this paper, we study the impact of this
differentiation. We particularly look at the feasibility of substituting one version of the product with the other in order to
satisfy the demand. In the first phase of the study, we try to find optimal switching functions for substitution decisions using
a Markov decision process. In the second phase, we define several control policies and compare them with respect to the
expected total cost function of the system.
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1. INTRODUCTION

As a consequence of environmental necessities, reuse of products has recently become an important issue for production and
planning. Many companies are involved in retrieving used products, where they repair, refurbish and upgrade the products in
order to sell them for profit. Such companies engage either only in remanufacturing of used products or produce both new
and remanufactured goods. Companies that perform both activities are called hybrid companies.

In the literature, remanufactured parts and products are assumed to be restored to 'as good as new' condition. Models that
study hybrid systems generally make this assumption11, 13, 14, 15. Remanufacturing is simply considered as another source to
fulfill product demand. A state of the art review of remanufacturing models may be found in an extensive survey paper on
product recovery by Gungor and Gupta8 as well as in review papers by Guide et al.7 and Fleischmann et al.6.

Although some markets may accept remanufactured products as new products, the regulations for many others do not allow
manufacturers to sell remanufactured products under the same pretence as new products. Therefore, a hybrid company is
forced to differentiate both the recovery and the sales activities for the remanufactured products from that of the new
products. However, since both new and remanufactured products have the same functionality they may substitute each other
to fulfill a demand. In this paper, we look at the substitution cases where a penalty is associated with each substitution. Such
problems are studied in the literature as procurement substitution, where a set of sub-products may fulfill each other's
function in a production system5. Product substitution, in terms of quality levels, is encountered in inventory holding
problems of perishable items. Adachi et al.1 deal with products that deteriorate to three different quality levels over time and
are consumed by a single demand, while Ishii and Nose10 analyze a system with two different demands, one of which has
priority over the other.
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In this study, we address the optimal switching problem for end-products capable of replacing each other in order to satisfy a
demand. We define the problem in Section 2. Then in Section 3, we first give a stochastic dynamic programming model for
the average total cost calculation. Then, we show that there exists a switching function that divides the feasible region. In
Section 4, we introduce several switching functions. Finally, in Section 5 we conclude our work by comparing these policies.

2. PROBLEM DESCRIPTION

2.1  Notation
The following notation is used throughout the paper:

rmδ The ratio between the costs associated with remanufactured and new items.

nλ Demand rate for new products.

nλ
(

Uniformized nλ

rmλ Demand rate for remanufactured products.

rmλ
(

Uniformized rmλ

nµ New item production rate.

nµ( Uniformized nµ

rmµ Returned item remanufacturing rate.

rmµ( Uniformized rmµ
π Set of considered price policies.

l
nc Lost sales cost for a unit of unsatisfied demand.

nh Holding cost of a new item.

rmh Holding cost of a remanufactured item.

ns Sales price of a new item.

rms Sales price of a remanufactured item.

x State vector of the system.

nx Inventory holding level at the new item inventory.

rmx Inventory holding level at the remanufactured item inventory
πΓ Expected total cost of policy π .

( ),i k kR xπ Revenue obtained from demand type i by selling a unit product of type k under policy π .

( )V xπ Value function of policy π .

2.2  Problem Statement
We consider a production system that satisfies the demand for a product with both remanufactured and manufactured items.
That is, the system accepts used product returns and brings them to ‘as good as new’ condition through disassembly,3, 9

refurbishing, rework and upgrading activities to satisfy the demand. The system also fulfills the demand through its
traditional manufacturing of new products. When the demand is not met, the system experiences lost sales. Through the
remanufacturing (manufacturing) process, the products incur inventory holding costs.

The general assumption of remanufactured products being 'as good as new' enables the manufacturer to use them to satisfy
the demand for new products without compromise. However, in reality, even though the remanufactured products are good
enough to satisfy quality conditions set for new products, regulations in many countries do not allow manufacturers to sell
remanufactured products or products manufactured with reconditioned parts under the same pretence as new products. This
fact requires the remanufactured parts and products to be differentiated from the new parts and products. Hence, a hybrid
production company must separate the remanufacturing and new product manufacturing activities. Obviously, this approach
will result in products of two different types, viz, remanufactured (rm) and new (n) products. In our model, we assume this
fact.



In order to underline the difference between the remanufactured and new products, we assume that the price rms , of
remanufactured items, is a fraction, rmδ  ( )0 1rmδ≤ ≤ , of the price, ns , of new items. Furthermore, we assume that the same
relationship holds for inventory holding costs of remanufactured ( rmh ) and manufactured ( nh ) items.  We also assume that
there exists an infinite supply of returned items for the remanufacturing process and an infinite supply of raw material for the
manufacturing process. The demand arrives according to a Poisson process with rate nλ (Figure 1). Here the demand is either
satisfied with new items or remanufactured items that substitute new items for a predefined penalty. If the demand is not
satisfied by either product type, it incurs a lost sales per unit cost of n

lc . For a hybrid production system described above, it is
necessary to find a decision policy that determines when to substitute the new products with the remanufactured ones to
satisfy the demand. The objective is to minimize the expected total cost of the system.

nλ

rmx

nx

rmµ

mµ

Figure 1 : The hybrid system

3. THE EXPECTED TOTAL COST
In our model, we define the additional cost for a substitution as a loss in revenue in terms of the missed opportunity. That is,
when a remanufactured product is used to satisfy the demand for a new item, we miss the opportunity to satisfy the demand
with a new item and hence to obtain a revenue ns . Thus, when we satisfy the demand through a substitution we obtain a
revenue of ( )2 1n rms δ − . Obviously, for a substitution to be worthwhile, ( )2 1 l

n rm ns cδ − >  should hold. Using this
inequality, we find, ( )1 2rm lδ η≥ +  where l

l n nc sη = , 0 1lη≤ ≤ . Thus, any { },rm lδ η pair that satisfies this inequality
ensures the substitution to create a profitable revenue12.

As seen in Figure 1, the hybrid system of interest consists of two inventories. Let, ( ),rm nx x x=  show the state of the system,
with rmx and nx  giving the number of items at the remanufactured and new item inventories respectively. Also, let ie  be the
unit vector along the i th axis. Then, rmx x e→ +  at the remanufacturing rate of rmµ and nx x e→ +  at the manufacturing
rate of nµ . Also, rmx x e→ − when a demand is satisfied by substitution and nx x e→ −  when the demand is satisfied with a
new product. As expressed earlier, all service times are exponentially distributed i.i.d. variables with the above given rates
while the demand occurrences follow a Poisson distribution with mean nλ .

In order to find the expected total cost for the system, we define a holding cost function ( )h x  with holding costs rmh  and nh
for the remanufactured and new product inventories, respectively. In addition, we subtract the revenue for each sold item. For
this system, we define a value function17,

( ) ( ) ( )
( ) ( ) ( ){ }

( )

min 2 1 , ,

rm rm n n

n rm n rm n n

V x h x V x e V x e

V x e s V x e s

π π µ µ

λ δ

= Γ + + + + +

+ − − − − −

( (

( (1)

with the expected total cost πΓ  and the uniformized transition rates 1rm m nµ µ λ+ + =
(( (

. Here, a decision matrix D
associated with the state space { }2 : , 0rm nx x xΧ = ∈ Ζ ≥  gives the optimal decision rule for product substitutions at the
convergence of the expected total cost (Figure 2).
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Figure 2: The Switching Function on the Decision Matrix D

4. THE SWITCHING FUNCTIONS
We conducted a set of experiments using equation (1) in order to determine the behavior of the decision matrix D  under
different circumstances. As a result of our observations we conclude that there exists a switching function ( )w x  that divides
the state space into two parts such that for all states where ( )rm rx w x≥  it is optimal to supply the demand with the new
product, while it is preferable to meet the demand with the remanufactured product otherwise. Hence, the optimal control
problem for product substitution is reduced to finding a switching function ( )w x . In order to find near optimal control
policies, we take two different approaches to the problem. The first approach consists of defining a linear switching function

( )n nw x ax b= +  while the second approach involves the analysis of an equivalent fluid model [2].

The first approach consists of three policies, where we define a switching function for each of them. The first policy is based
on a simple switching function ( )1 n nw x x=  independent of cost parameters that divides the state space into two equal
subspaces. A second policy is given by another switching function ( )2 n nw x x b= +  where we determine b  using the
ratios between the holding costs and the revenue. Here, based on further observations we give 1 n rmb s h= − , since the
region for substitution decreases while 1rmδ →  and the n ns h ratio increases. Finally, we determine a slope

0.7 1 2 na λ= − empirically and define a switching function as ( ) ( )3 0.7 1 2 1n rm n n rmw x x s hλ= − + − .

For the second approach, we define an equivalent queueing system, where the demand process is regarded as service and both
manufacturing and remanufacturing service rates are considered arrivals that compete to receive service (Figure 3). Here, a
cµ  rule is used to determine the priorities4, 2. Thus, the decision rule is independent of the state x ∈ Χ  of the system. For
the rm rm n nh hµ µ<  case we satisfy the demand only with new products while for the complimentary case we only serve
remanufactured products.

rmµ

nµ nλ

Figure 3:The equivalent Fluid Model



5. EXPERIMENTATION
We designed an experiment, ( )13

27 3L  using orthogonal arrays16. We have 7 independent parameters; a full factorial design
of three levels of each variable would require us to conduct 73 2187=  experiments. Obviously, it is both time consuming
and impractical. By using the ( )13

27 3L  orthogonal array, we were able to cover the entire experimental region with only 27
experiments while designing a three level experiment set for all parameters. The levels of the independent variables of the
model are given in Table 1.

After constructing the orthogonal array using these values, we calculated the expected total costs for all four near optimal
control policies given in Section 4 by guiding the predefined decision matrix D  into the dynamic programming model. Then
we compared the expected total costs these policies generated with the values obtained by the optimal control policy. For the
sake of tractability, we have truncated the state space by an arbitrarily large value that enabled us a good approximation. In
order to assure the wellness of the approximate values, we set the convergence margin of πΓ  to 0.001ε < .

Table 1:Levels of the experimental design

Levels nh rmµ nµ nλ l
nc ns rmδ

1 4 1 0.6 0.4 6 20 0.5

2 10 1.4 1.2 0.6 25 50 0.7

3 20 1.8 2 0.8 70 100 0.9

The results are plotted in Figure 4. Here, the x-axis represents the experiments performed and the y-axis gives the expected
total cost each substitution policy calculates. As can be seen, the switching functions ( )1 nw x  and ( )2 nw x  perform better
than both the more complicated ( )3 nw x  and the fluid control in general. However, further experiments show that the
effectiveness of these functions is limited to low traffic densities. That is, as ( ) 1n n rm nλ µ µ λ+ + → , the accuracy of
these functions dissipates.
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6. CONCLUSIONS
In this paper, we have studied a hybrid system that satisfies the demand for a certain type of product with either new items or
remanufactured items. We have first observed that there exists a switching function that divides the state space into two parts
and determines which type of product should satisfy the demand. Then, we introduced four different policies that generate
near optimal results for the substitution control problem. We designed an experiment in order to test these four new policies
against the optimal switching policy obtained through an infinite horizon stochastic dynamic programming model. We have
observed that the state dependent switching policies perform better than the state independent policy defined by the
equivalent fluid queue. We also found that the impact of the lost sales price is insignificant compared to the holding costs and
revenues. We believe that the effect of failing to satisfy the demand on time can be easier on a model that permits
backordering. Yet, in such a model the effect of the holding costs will still be a significant determinant for choosing the
switching policy.
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