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ABSTRACT
The purpose of this study is to investigate the dynamic

response of axially translating continua undergoing both the
effect of friction and axial acceleration.  The axially moving
continuum is initially modeled as a string, neglecting its
flexural stiffness; the response, with particular interest given to
transverse vibrations and dynamic stability, is studied through
numerical methods.  A finite element method is employed to
discretize the space domain and an implicit α−method is
employed to integrate the resulting matrix equation in the time
domain. Results are given through time history diagrams and
stability considerations.

INTRODUCTION
Translating continua are encountered in numerous

machinery such as power transmission belts, band saw blades,
and processing systems such as magnetic tapes, thread lines,
paper and photographic film.

Many researchers have addressed the axially moving
continuum problems, but most of them have considered
conservative systems without friction [1,2]. However, in many
applications stationary frictional guides, which are potential
sources of undesired vibrations and dynamic instability, exist.
The response of a frictional, non-conservative system has been
studied by Chen [3], and Cheng and Perkins [4], among others,
who considered a string moving with constant axial velocity
under the effect of a stationary dry friction load.

Accelerations and decelerations, as well as the undesirable
fluctuations of the translational speed could have significant
effects on the vibrational behavior of the translating systems.
Miranker derived the governing equations of an accelerating
string using energy methods [5]. Solutions of this and similar
systems have been studied by Pakdemirli et al. [6], among
others. To the best of our knowledge the combined effect of
frictioned guides and acceleration has not been addressed.

In systems requiring frequent start-stop operations, such as
high capacity data tape-recorders, simultaneous consideration
of friction and acceleration is necessary. Here a generic model

and a numerical method are presented to address such a system.
The primary goal of this paper is to show the validity of
numerical model by comparing the numerical results with that
of reference [6].

EQUATION OF MOTION
A tensioned flexible string is translating with time

dependent velocity V(t) between two fixed supports at x = 0 and
x = L. At a distance D from the left support there is a frictional
guide resting on two springs. The surfaces of the guides are
assumed to remain in contact with the string because of a static
force N and the stiffnesses K1 and K2 of the guide supports. F1
and F2 are the top and the bottom friction forces due to the
guide. The longitudinal and the transverse displacements are u
and w, respectively.

In this paper the equation of motion is derived using the
extended Hamilton’s principle, assuming a time dependent
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Figure 1. System modeled as an accelarating string subjected to
stationary frictional loads F1 and F2.
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translation velocity, a Lagrangian strain and a concentrated
elastically supported frictioned guide. Equations have been
derived both for the longitudinal and for the transverse
vibration, ending up with a system of two coupled non-linear
partial differential equations with time dependent coefficients:
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where the subscripts x and t indicate partial derivatives with
respect to space and time respectively, w is the vertical
displacement, ρ is the linear density, k  the global stiffness of
the guide supports, δ  the Dirac function, q the eventual
distributed load, H the Heaviside function, T is the tension and
E is the elastic modulus of the string. In general, the friction
forces F1 and F2 depend on the vertical displacement w as
follows,
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In the time scale of the transverse motion, the longitudinal

inertia term is neglected considering that the speed of
propagation of longitudinal waves (EA/ρ)1/2 greatly exceeds
that of the transverse waves (T/ρ)1/2. Thus the study reduces to
the transverse displacement equation, that is now uncoupled
from the longitudinal displacements. The resulting equation of
motion is given below,
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This equation is solved subject to two boundary conditions.
On the right-hand side support the vertical displacement of the
string is constrained to zero. A harmonic motion is applied to
the left-hand side support in order to excite its various natural
frequencies. These conditions are expressed as follows,

(0, ) sin( ),      ( , ) 0   o ow t A t w L tω= =                  (4)

where Ao and ωo are the amplitude and frequency of the support
motion.

SOLUTION METHOD
Equations (2) - (4) are solved numerically. The total energy

of the system is minimized as follows,
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where EK and EP are the kinetic and potential energies of the
system, given by,
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Note that in this formulation the translation speed V, the
tension T and distributed load q acting on the string are allowed
to depend on time. Upon energy minimization, linear finite

elements are used to discretize equation (5) in space, resulting
in,

[ ]{ } [ ]{ } [ ]{ } { }M a G v K w q+ + =                   (8)

where [ ]M , [ ]G  and [ ]K are the mass, gyroscopic inertia and

stiffness matrices, and { }a , { }v , { }w and { }q are the nodal
normal acceleration, normal velocity, normal displacement and
load vectors, respectively. Resulting set of ordinary differential
equations were integrated in the time domain using the alpha-
method (Hilbert-Hughes-Taylor method [7]) with an implicit
integration algorithm as described in [8].

A Matlab program has been developed to solve the final
equation. In order to check its correctness, the results are
compared to Cheng and Perkins (CP), where an analytical
solution to a simplified problem has been presented [4]. In this
case the translation velocity and the friction forces F1 and F2
are assumed to be constant. The following non-dimensional
variables are defined by CP,

     X = x/L, d = D/L, c2 = T2/ρ, γ2 = T1/T2, η = V/c,
T* = tc/L, Ω  = ωL/c, K = 2KL/ρc2, W= w/L                (9)

For the comparison the following values are used d = 0.2 and
0.5, η  = 0.3, γ = 0.5, K = 20. The excitation frequency Ωo varies
in the range 0 - 10 and Ao = 1. The external pressure q is zero.
The time step ∆t and the spatial node spacing ∆x were chosen
such that c∆t/∆x = 1/√3 for consistent mass matrices [7].
Relatively small amount of numerical damping was chosen by
setting α = -0.05. The non-dimensional nodal spacing ∆x was
1/100.

RESULTS
The transient response of the string is obtained

numerically. The response envelope of the system is obtained
by superposition of the string shape at different time steps. The
excitation frequency corresponding to the maximum response
envelope is determined.

Figure 2 shows comparison of the response envelopes for
the case d = 0.2 and η = 0.3 predicted by CP and the numerical
methods. There is a good agreement between the analytical and
numerical results. The numerical method is capable of
capturing the response envelopes, especially for the second,
fourth and fifth mode shapes. In all cases the location of the
bigger response envelope is predicted properly, however for the
first and the third mode shapes, the relative amplitudes of the
response envelope to the left and to the right of the frictional
support (d = 0.2) are off, as compared to CP results.

d = 0.2 d = 0.5
Cheng-
Perkins

Numerical Cheng-
Perkins

Numerical

3.37 3.24 1.98 1.94
4.85 4.74 3.95 3.90
6.80 6.70 5.23 5.01
9.54 9.25 5.99 6.01
10.44 10.30 7.93 7.94

Table 1 Comparison of non-dimensional natural frequencies
obtained by Cheng and Perkins [4] and the numerical method.
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The maximum displacements Wmax from Figure 2 are
plotted as a function of the non-dimensional excitation
frequency Ωo in Figure 3. The first five natural frequencies of
the system are reported in Table 1, which shows that the
numerical method slightly underestimates the magnitudes of the
natural frequencies.

SUMMARY AND CONCLUSION
A generic numerical method for analyzing the dynamics of

a translating, tensioned string subjected to frictional point loads
from top and the bottom is developed. The method is also
capable of including the string acceleration. The effect of
friction is tested with a known, relatively simpler analytical
solution and good correlation is obtained. Future work will
include the stability analysis of the numerical time integration
method as applied to this problem, analysis of the dynamic
stability of the accelerating system, as well as a system with
acceleration and friction.
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Figure 2. The first five natural frequencies and corresponding mode shape envelopes a) the numerical results, b) Cheng and
Perkins' results, [4].

a) b)

Figure 3. Numerically obtained non-dimensional
frequency-amplitude diagram for d = 0.2 and γ = 0.5
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