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ABSTRACT 

The behavior of a nano-scale cylindrical body (e.g. a fiber), 
lying on a substrate and acted upon by a combination of normal 
and tangential forces, is the subject of this investigation.  As the 
scale decreases to the nano level, adhesion becomes an 
important issue in this contact problem.  Thus this investigation 
treats the two-dimensional plane strain elastic deformation of 
both the cylinder and the substrate during a rolling/sliding 
motion, including the effect of adhesion using the Maugis 
model.  For the initiation of sliding, the Mindlin approach is 
used, whereas for rolling, the Carter approach is utilized.  Each 
case is modified for nano-scale effects by including the effect 
of adhesion on the contact area and by using the adhesion 
theory of friction for the friction stress.  Analytical results are 
given for the normal and tangential loading problems, including 
the initiation of sliding and rolling in terms of dimensionless 
quantities representing adhesion, cylinder size, and applied 
forces. 

 

 
Figure 1.  Contact of a cylinder with a half-space under normal 
and tangential loading. 

INTRODUCTION 
Adhesion of cylindrical bodies on a substrate is 

encountered in nano-wires, carbon nano-tubes and nano-fibers, 
and in different fields such as microbiology, microelectronics, 
and MEMS/NEMS devices. Determination of the forces 
necessary to roll or slide a cylindrical body on the substrate are 
important quantities to know in these applications.  In some 
cases it is important to manipulate these single fibers to form a 
structure whereas in other instances the sliding and rolling 
motions are important in contamination removal processes.  

In this paper the adhesion of contacting cylinders, or 
equivalently a cylinder in contact with a half space, at the nano-
scale is considered.  If the cylinder is subjected to a combined 
tangential and normal loading it may remain at rest, roll, slide 
or undergo a complex motion depending on the magnitudes and 
the application points of the loading.  The elastic behavior of 
the cylindrical body and half-space with adhesion are 
investigated using the plane strain theory of elasticity.  A 
similar problem was treated in the thesis by Sari [1]. 

Numerous studies have been conducted on the adherence 
of spherical bodies.  Bradley [2] found the pull-off force 
required to separate two rigid spherical bodies, of radii R1 and 
R2, to be 2F wR�� where R = R1R2/( R1+ R2) is the 
equivalent radius of curvature, w is the work of adhesion 
w=�1+�2-�12, with the surface energies of the contacting bodies 
�1 and �2, and the interface energy of the two surfaces �12 . 

Johnson, Kendall and Roberts (JKR) presented a theory on 
the adherence of deformable elastic bodies [3].  In the JKR 
approximation, the adhesion outside the contact region is 
assumed to be zero, and the contact area is larger than the Hertz 
contact area.  The pull-off force was found to be F = (3/2)�wR. 

Derjaguin, Muller and Toporov (DMT) presented another 
theory where the adhesion force is considered outside the 
contact area, but the form of the contact stress distribution is 
assumed to be unaffected [4]. The same pull-off force as the 
Bradley relation was found.  It should be noted that F is 
independent of the elastic properties of the materials, for both 
JKR and DMT theories. 
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Although the JKR and DMT theories seem to be 
competitive, Tabor [5] showed that these two theories represent 
the extremes of a parameter 2 2 2 1/3

0( / )Rw E z� � , where E is the 
composite Young’s modulus and z0 is the equilibrium spacing. 
Thus bodies in which the elastic deformation is large compared 
to the range of surface forces are in the JKR regime, whereas 
the DMT regime corresponds to elastic deformations which are 
much less than the range of surface forces.  Greenwood 
constructed an adhesion map that covers these regimes [6].  

Maugis presented a model for the transition between the 
JKR and DMT theories [7]. Similar to the Dugdale model of a 
crack, the Maugis model assumes a constant tensile surface 
stress �0 in regions where the surfaces are separated by a 
distance less than h, where the adhesion separation distance h is 
obtained from the relation w=�0 h. When this work of adhesion 
is set equal to that for the Lennard-Jones potential, h is found to 
be 0.97 z0, where �0  is taken as the theoretical strength.  Baney 
and Hui [8] used the Maugis model to investigate the two-
dimensional problem of the adhesion of two circular cylinders.  
Results are given for the contact and adhesion regions as 
functions of the applied normal force and also for the pull-off 
force. 

The nano-scale sliding and rolling analysis treated in this 
paper differs from the corresponding macro-scale problem in 
two important ways. First, due to the small scale of the contact 
area, adhesion becomes important. The Maugis model is used 
to approximate the adhesive stress outside the contact region in 
a manner similar to Baney and Hui. Second, in the macro scale 
Coulomb friction, which states that frictional force is 
proportional to the normal load, is considered valid. At the 
nano-scale, however, where the contact radius is on the order of 
10 nm or less, a single real contact area and constant shear 
stress are assumed for sliding.   

 
THEORY AND DISCUSSION OF THE RESULTS 

The contact of a cylindrical body of radius R with a flat 
surface is investigated. The results are equally valid for the 
contact of two cylinders by using the equivalent radius of 
curvature.  Linear plane strain elasticity is used throughout, 
which implies that the forces are given per unit length.   
 According to plane strain linear elasticity [9], the 
derivative of the surface normal displacements can be written in 
terms of normal and shear stresses as,     
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Similarly the relation between the derivative of the relative 
displacements of the bodies in the tangential direction and the 
boundary stresses is given by 
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In (1)-(2) px is the tangential traction in the x-direction and the 
contact pressure py is considered positive in compression.  The 
material parameters A and B are given by 
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where G1, G2 are the shear moduli, �1, �2 are the Poisson's 
ratios and E1, E2 are the moduli of elasticity of bodies “1” and 
“2” respectively, and E is the composite modulus. Equation (1) 
can be simplified for either identical materials (B=0) or for the 
frictionless case (px(x)=0).  Even if the materials are not 
identical, the effect of the constant B is usually small [10] and 
is often neglected.  Thus normal/shear stresses do not produce 
relative tangential/normal displacements. 
 
Normal Loading 

Consider normal loading in which a normal load F is 
applied to a cylinder with the tangential force T equal to zero.  
This problem has been solved by Baney and Hui [8], but their 
analysis is summarized here because the results of the normal 
loading problem determine the contact region used in the 
sliding and rolling analysis.  There exists a central contact zone 
(-a<x<a) surrounded by two adhesion zones (a<�x�<c) in which 
the separated surfaces are under a constant tensile stress as 
described by the Maugis adhesion model [7].  This 
configuration is shown in Fig. 1 where, by symmetry, c1=c2=c, 
h1=h2=h, and e=0.  The tensile adhesive stress is effective up to 
a separation h, beyond which it vanishes. 

The relation for the deformations in the normal direction at 
the contact interface is 

R
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in the contact zone, where �0 is the maximum cylinder 
penetration which occurs at the center of the contact zone.   

By proceeding as Baney and Hui [8], Eqs. (1) and (4) are 
combined using the Maugis condition in the adhesion zones 

0)( ���xpy ,       cxaaxc ������ ,                    (5)                
with B=0.  The solution is given by the superposition of the 
Hertz solution, the solution for an exterior crack [11], and the 
homogeneous solution of (1).  That superposition of solutions is 
also subject to the conditions that the stress is bounded at both 
ends (x = � a).  The result is [8], 
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Because the contact half-width (a) and the adhesion half-width 
(c) are both unknown, two extra equations are necessary.  
These equations are obtained by using the force equilibrium in 
the y-direction, and by using the relation for the relative 
separation of the two bodies at x=c and x=a. These give the 
following nondimensional equations, 
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where the following nondimensional variables are used,  
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It is noted that Eqs. (7) and (8) form a pair of coupled 
nonlinear equations with F  known and ā and m unknown. 
These equations are solved numerically. The results for the 
dimensionless contact half-width ( a ) vs. the dimensionless 
normal force ( F ) for various values of � are shown in Fig. 2.  
As discussed in [8], large � correspond to the JKR regime, 
small � approach Hertz contact, and when � is of order unity 
the results can be approximated by the DMT theory.  For 
nonzero � there is a pull-off force which, for a sufficiently large 
value of �, occurs at a nonzero contact radius. 
 
Initiation of Sliding 

Tangential forces can be transmitted by friction in 
contacting bodies. Consider a cylinder in contact with a half-
space, compressed by a normal force F, and acted upon by a 
tangential force T (Fig. 1). With the normal load constant, the 
tangential force is gradually increased in order to initiate 
sliding. The problem is solved for the uncoupled case, i.e. B=0 
in Eq. (1).  Thus the contact area remains in a state of stick 
during the application of the normal load and the contact area 
remains constant during the application of the tangential force.  

Mindlin studied the initiation of macro-scale sliding of a 
cylinder using Coulomb friction without adhesion and showed 
that slip will occur at the edges of the contact zone [12].  
According to Mindlin’s theory there exists a central stick zone 
(|x| < d) surrounded by slip zones symmetrically located in 
both the leading and trailing edges.  

In nano-scale contacts, adhesion between the two bodies 
will affect the contact width.  This effect in cylindrical contacts 
is described in the previous section.  With respect to tangential 
loading, in the macro-scale Coulomb friction is used, whereas 
at the nano-scale the friction stress in the slip zone is assumed 
to be constant, as in the case of the adhesion theory of friction. 

The relation between the relative tangential deformations 
of the bodies to the boundary stresses is given by Eq. (2). In the 
slip regions the following equation prevails, 

0)( ��xpx ,    axd ��                                                  (10) 

where �0 is the shear strength. In the stick region, we have, 
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Prior to the initiation of global sliding motion, the horizontal 
shift (i.e. ux

(1)- ux
(2)) of the bodies in the stick zone (-d<x<d) 

will be constant.   
 The solution of Eq. (2) subject to (10)-(11) is found by 
superposition of the solution for an external crack loaded by a 
symmetric constant shear stress in a finite region near the crack 
tip [17, p. 110], 
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and the homogeneous solution of Eq. (2) [19] 

22
0

xd
D

xy
�

�� ,  -d < x < d                                          (12) 

where D0 is determined from the condition that �xy is bounded 
at x = �d� .  Thus the shear stress in the stick region becomes 
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Force balance in the horizontal direction can be used to find the 
relation between the half-length of the stick zone (d) and the 
applied shear force (T).  This procedure gives 
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The integral in (14) has been evaluated in [8]. As the tangential 
force reaches the critical value of 2a�0, a state of complete slip 
(i.e. global sliding) occurs with d = 0.  

 
Pure Sliding 

If the contacting cylinder has a relative sliding motion with 
respect to the plane, there need not be symmetry due to the 
nonlinear nature of adhesion.  In this case, the origin of the 
coordinate system will be chosen to be in the center of the 
contact region. The eccentricity e indicates the value of x 
corresponding to the apex of the undeformed cylinder.  The 
leading adhesion zone will be a strip (a<x<c2) and the trailing 
adhesion zone will be another strip (-c1<x<-a), as shown in 
Fig. 1. 

The relation between the deformations of the bodies in the 
y-direction inside the contact is 
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The same elasticity formulation used for the symmetric normal 
contact can be used here i.e. Eq. (1) subject to (15) in the 
contact region -a<x<a.  The solution can be found by the 
superposition of four problems.  The first problem is the 
solution for a constant tensile stress in the leading edge 
(a<x<c2) and the second is for a constant tensile stress in the 
trailing edge  (-c1<x<-a).  These solutions, which correspond to 
an external crack, are in Tada et al. [11, p. 107].   The Mode I 
stress intensity factors at the leading and trailing edges are 
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where m1=c1/a and m2=c2/a.  The third problem corresponds to 
the solution of (1) and (15) without adhesion, i.e. a Hertz type 
solution with an eccentricity which can be found using [13] 
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and the fourth is the homogeneous solution of (1), i.e. 
22/)( xaDxpY �� , -a<x<a                                     (18) 
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 The sum of these four solutions must be such that the 
normal stress is bounded at the ends at x = �a�.  Recall that the 
Mode I stress intensity factor at x = a is defined by  
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The bounded normal stress condition at x = a  gives 
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whereas the requirement that the normal stress must be 
bounded at x = -a, becomes 
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When the cylinder is in a state of steady sliding, the 
adhesion effect in the trailing edge is assumed to be larger than 
in the leading edge.  This assumption is considered valid 
because the surface will be partially cleaned due to the sliding 
motion of the contacting surfaces.  This effect is accounted for 
by taking the adhesion separation distance in the trailing edge 
(h1) larger than in the leading edge (h2), whereas �0 is assumed 
unchanged.  Due to the difference between h1 and h2, the 
adhesion width values will not be the same in the leading and 
the trailing edges. Since there are two more unknowns, the 
separation equations must be written for both the leading and 
trailing edges.  At the leading edge this procedure gives: 
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and at the trailing edge it yields: 
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Superposition of the four solutions yields 
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from the leading edge condition and  
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for the trailing edge. 

The applied normal force can be found from force 
equilibrium in the y-direction. Due to the asymmetry, a 
resultant moment will act on the upper body due to the 
asymmetric normal stress distribution.  If moment equilibrium 
is written with respect to the center of contact, the resultant 
moment (clockwise direction acting on the half-space taken to 
be positive). The applied normal force and the resultant 
moment are given in nondimensional form by, 
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where the following nondimensional quantities are used, 
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in which w=�0 h1.   Thus Eqs. (24)-(25), along with the explicit 
expressions in (20)-(21), and the nondimensional quantities in 
(27), represent a pair of equations which, for specified � and 

21 / hh , which can be solved for m1 and m2.  Finally the non-
dimensional force and moment are found from (26). 

The results for the dimensionless contact half-width ( a ) 
vs. the dimensionless normal force ( F ) for various values of � 
are shown in Fig. 3 for 5/ 21 �hh .  When Figs. 2 and 3 are 

compared, it is seen that as 21 / hh  increases from 1 to 5, the 
force required to produce a given contact width also increases.  
This effect is greater for large � (JKR region, due to elastic 
deformation) than it is for moderate � (DMT regime, limited 
elastic deformation) or small � (Hertz regime, small adhesion).  
Figs. 4 shows the dimensionless adhesion half-width difference 
(m1-m2) vs. dimensionless contact half-width ( a ) for different 
values of � with 5/ 21 �hh .  This measure of the asymmetry 
of the adhesion zones becomes large for small values of the 
dimensionless contact radius ( a ).  It is also much greater for 
small � than for large �.  This result may appear counter-
intuitive.  However the contact half-width is normalized by a 
quantity which includes the cube-root of the work of adhesion, 
whereas � varies as the two-thirds power of w.  Also large � 
corresponds to greater elastic deformation which is better 
capable of accommodating the asymmetry in the work of 
adhesion.  The results for the dimensionless average adhesion 
length (m1+m2)/2 vs. dimensionless contact radius are shown 
for various values of � in Fig. 5 for 5/ 21 �hh .  Finally the 

dimensionless moment ( M ) vs. the dimensionless normal 
force ( F ) are shown for various values of � in Fig. 6 for 

5/ 21 �hh .  Note that as the normal force approaches the pull-
off force, the moment approaches a finite value, even in the 
small � regime where a  vanishes at pull-off.  This result is the 
combined effect of the asymmetry in the work of adhesion 
along with the small elastic deformation. 
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Rolling 
The problem of steady state rolling of an elastic cylinder 

on an elastic half-space (or equivalently one cylinder rolling on 
another) with Coulomb friction was solved by Carter [14].  
According to Carter’s solution the leading edge of the contact 
zone  (d<x<a)  is in a state of stick whereas  the  trailing  edge 
(-a<x<d) is in a state of slip. As in the application to a 
locomotive wheel [14], the upper body is the driving cylinder.  
During this rolling motion, the linear velocity of the center of 
the cylinder is slightly less than � R, where � is the angular 
velocity. The creep velocity represents this velocity difference. 

At the nano-scale the shear stress (friction stress) in the slip 
zone is assumed to be constant, as previously discussed.  As 
with sliding, adhesion affects the relation between the normal 
force and contact width. The tangential relative displacement 
(shift) between the bodies is expressed as 

)(),0,(),0,(),( )1()2( tCtxutxutxs xx ��� ,                      (28) 
where C represents the rigid body motion of the upper body 
relative to the lower body.  In the stick zone the time derivative 
of the shift in the moving coordinate system is zero. The stick 
condition can be written as,                                                  

0)(),( 12 ���� Cuu
dx
dVtxs xx

�� ,  d<x<a                    (29) 

where )(tC�  is the constant rigid body slip (or creep) velocity.  
Furthermore the shear stress is constant in the slip region, i.e. 

0)( ���xpx , -a<x<d                                                         (30) 
 The solution of Eq. (2), subject to (29)-(30), can be found 
by superposition of the solution for a crack external to the stick 
region and loaded in shear on one side, i.e. the slip zone (Tada 
et al. [11, p. 107]), the solution of (2) due to the constant creep 
velocity, and the homogeneous solution of (2).  The Mode II 
stress intensity factors for the external crack problem at the 
ends of the stick zone are [11] 
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whereas the solution to the creep velocity and the homogeneous 
solution are 
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 The requirement that the solution be bounded at x = a and 
x = d leads to the following equations, 

� �10
1

3cosh 2
2

a d a dD a a d
a d

�

�

�
� � � �� �

� � �� 	
 �
�� � �

      (33)                                                         

�
�

�
�
�

�

�

�
�	 �

da
da

EV
C 3cosh2 10

�

�
�

  .                                         (34) 

If force equilibrium is written in the x-direction, the applied 
shear force can be related to the contact width parameter (d) by 

�
�

����

a

a
x adadxxpT )(2)( 0�                                   (35) 

 Equation (35) gives the variation of the applied tangential 
force with the extent of the slip zone.  The greater the traction 
force, the larger is the slip zone.  As d � a the rolling motion 
approaches complete slip. Equation (34) gives the 
dimensionless creep velocity, which is linear in �0/E and varies 
nonlinearly with the slip zone parameter (d/a).  As the traction 
force increases, d increases and hence the magnitude of the 
creep velocity increases logarithmically according to (34).  The 
meaning of the negative creep velocity is that �  R for the 
driving wheel is greater than the velocity of the contact zone.   
 
CONCLUSIONS 
 This paper treats the two-dimensional elastic contact 
problem of a cylinder on a substrate during a rolling/sliding 
motion and includes the effect of adhesion using the Baney and 
Hui version of the Maugis-Dugdale model. During initiation of 
sliding, there is a central stick zone surrounded by slip regions 
in the leading and trailing edges.  As the tangential force T 
increases, the lengths of the slip zones increase until complete 
slip occurs at a certain value of T. During steady sliding the 
abrasive action of the shear stress can be expected to partially 
clean the surface, resulting in different leading and trailing edge 
adhesive properties.  This effect is included in the model of 
steady nano-scale sliding. Variations of the creep velocity and 
the length of the stick zone with T are determined.  As the 
traction force increases, the stick zone length decreases and the 
creep velocity increases eventually leading to pure slip with 
rotation. 
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Figure 6.  The dimensionless resultant moment ( M ) vs. 
dimensionless contact half-width (ā) for various values of �
during sliding with h1/h2=5. 
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Figure 5.  The trailing and leading edge average (m1+m2)/2 vs. 
contact half-width (ā) during sliding with h1/h2=5. 
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Figure 4.  The trailing and leading edge half-width difference 
(m1-m2) vs. contact half-width (ā) during sliding with h1/h2=2.5 
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Figure 3.  The variation of the dimensionless contact half-
width (ā) with the dimensionless normal load ( F ) for various 
values of � during sliding with h1/h2=5. 

Figure 2.  The variation of the dimensionless contact half-
width (ā) with the dimensionless normal load ( F ) for 
various values of �. 
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