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Abstract

The fluid–structure interactions between a flexible web and an externally pressurized air cushion are modeled

allowing for the possibility of contact. The web is wrapped around a porous, cylindrical turn-bar at an oblique angle

(helically). The turn-bar supplies pressurized air into the web/turn-bar clearance to float the web. The shell model,

developed to represent the mechanics of the web, allows it to be wrapped around the cylinder in a helical fashion. The

fluid mechanics of the air in the web/turn-bar clearance is a two-dimensional form of the incompressible Navier–Stokes

equations averaged in the clearance direction and augmented by nonlinear source terms. Contact between the web and

the reverser, which is undesirable in a turn-bar application, is included in the model in order to enable the analysis of the

limiting cases. The coupled equilibrium between fluid mechanics, shell deflections and contact is found numerically.

This paper describes the theory. Case studies are conducted in order to understand the mechanics of the coupled system,

and to make design recommendations. It is shown that the helix angle has a strong influence on the equilibrium

configurations: increasing helix-angle results in increased web-reverser separation, while the air pressure settles to a

lower value. This behavior is due to the reduced shell stiffness and belt-wrap pressure for the helically wrapped webs.

Conditions that render a nearly uniform web/turn-bar clearance in the circumferential direction are identified. The

supply pressure and airflow rates necessary to prevent web-scratches are calculated.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Thin, flexible, continuous structures such as paper, various forms of films, metal sheets and magnetic tapes are

generally known as webs. These materials are typically processed at high transport speeds (1–20m/s), under tension

(10–200N/m). An air-reverser is used in a web handling application along the path of the web, where its transport

direction needs to be reversed without making contact with a rigid surface (Fig. 1(a)). In order to achieve this goal, the

web is wrapped around a cylindrical drum with holes on its surface to provide a pressurized air layer under the web. The

equations governing the fluid mechanics in the web/air-reverser clearance were given by Müftü et al. (1998), and Müftü

and Cole (1999) introduced a model to analyze fluid–structure interactions between the web and the airflow from an air-

reverser.
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The web is wrapped around an air-reverser in such a way that its transport (longitudinal) direction is perpendicular to

the axis of the air reverser. In another type of non-contact web support device, known as a turn-bar, the web is wrapped

around the cylinder in a helical fashion with a helix-angle b (Fig. 1(b)). This device allows the web transport direction to

be changed by an angle 2b, and thus enables more flexibility on manufacturing floor layout. In both applications the

web is transported in its longitudinal direction under an externally applied tension T. In this paper, a more general

model for the web mechanics is introduced, where the web approaches the reverser at an oblique angle, as shown in

Fig. 1(b).

The fluid–structure interaction between the flexible web and surrounding air is typically unavoidable and gives rise to

interesting problems. A flexible web drags the surrounding air into the guide-web interface while it travels over rollers
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Nomenclature

aab metric tensor
~aa tangent vectors in curvilinear coord. (a ¼ 1,

2)

bab curvature tensor

c web thickness, m
~ei Cartesian base vectors (i ¼ 1, 2, 3)

Db, Dt, Ds bending rigidity, in-plane and shear

stiffness of the web

E elastic modulus of the web, Pa

Eab total in-plane strain (a, b ¼ x, y)

eab membrane strain (a, b ¼ x, y)

Fx, Fy, Fz external tractions acting on the web, Pa

H web/air-reverser clearance, m

L1, L2 web tangency points at y ¼ 0, m

Lx, Ly length and width of the web, m

L0x, L0y length and width of the fluid domain, m

Mab bending moment (a, b ¼ x, y)

Nab in-plane stress resultant (a, b ¼ x, y)

N0ab in-plane stress resultant (a, b ¼ x, y)

n; ~n normal curvilinear coordinate and base

vector

p0 supply pressure, Pa

p, pc air pressure, contact pressure, Pa

Pa contact compliance, Pa

pnet air pressure acting on the web, Pa

Qa shear force resultant (a ¼ x, y)

R(x,y) web radius, m

Rc radius of the air-reverser, m

S middle surface of the web

T longitudinal external tension, N/m

U air discharge velocity at the holes, m/s

U0 (p0/2r)
1/2 reference discharge velocity, m/s

u0, v0 air velocities in x0 and y0 directions, m/s

u1, u2 in-plane curvilinear coordinates

v1, v2 in-plane web deflections

w̄ ¼ w� wr web disp. with respect to reference state,

m

w web disp. with respect to initial state, m

wr w(x,Ly/2) reference web displacement, m

x, y coordinate system for the web equations

x0, y0 coordinate system for the air equations

a(x0, y0) areal hole density

b helical wrap angle, deg.

g shear strain

d initial web-reverser clearance, m

yw wrap angle of the web

yF1, yF2, yF3, yF4 limits of the hole-region in circ-dir.

on the reverser, deg.

k discharge loss coefficient

kab web curvature (a ¼ x, y)

n Poisson’s ratio of the web

r air density, kg/m3

sa contact engagement (asperity) height (m)

t0xy, t0zy, t0zy fluid shear stress, Pa

t0x, t0y fluid normal stresses, Pa

w
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Fig. 1. Schematic representation of a web wrapped around (a) an air-reverser, and (b) a turn-bar, under tension T.
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or stationary guides. The resulting phenomenon is known as the foil bearing problem and has been extensively

studied (Ducotey and Good, 1999; Müftü and Altan, 2000; Hashimoto and Nakagawa, 2001). The foil bearing problem

stems from low Reynolds number effects, hence the fluid mechanics is governed by the Reynolds lubrication equation

(Gross, 1980).

In both air-reverser and turn-bar applications, pressurized air is introduced between the flexible web and the rigid

cylinder from the holes on the surface of the cylinder. The clearance between the web and the cylinder is typically on the

order of 3mm. The flow is inertia-dominated with the possibility of turbulent regions near the outer periphery of the

clearance (Müftü and Cole, 1999). The air pressure and the web deflections are coupled. The air pressure is primarily

balanced with respect to the belt-wrap pressure (T/Rc) acting on the web due to the external tension, where Rc is the

radius of the air-reverser. However, creating a flow pattern under the web, which will balance the belt-wrap pressure, is

a challenging task. The air pressure and flow pattern primarily depend on the distribution pattern of the holes on the

surface of the reverser. While the flow could stagnate in the central wrap-region and provide an air cushion with a fairly

uniform pressure, along the four edges of the wrap-region air could flow from underneath the web with speeds reaching

25–30m/s. A two-dimensional (2-D) air-flow model, in the plane of the web, has been introduced by Lewis and reported

by Müftü et al. (1998).

In order to derive the equilibrium equations for a web in an air-reverser application, Müftü and Cole (1999) took

into account the following steps the web takes until it finds equilibrium with a steady-state clearance. A detailed

description of their model is given in their paper, and described here for completeness. The web, which is initially flat,

is first wrapped around the cylinder, under tension T. This configuration forms the initial reference state, w0. At

this state, the effect of airflow is neglected. Once the air starts coming into the interface through the holes located

on the cylinder (air-reverser) surface, the web deflects away from the initial reference state. During this deflection, the

web tension is kept constant by a control mechanism, which allows the web length to increase between the two

support-rollers on the entry and exit sides of the reverser. The web eventually finds a steady-state condition

which is removed from the reverser surface on the order of few millimeters. Thus, the final reference state of the web

from which the web deflections are measured is removed from the initial reference state and depends on the conditions

such as tension and air pressure distribution of the particular application. This reference state, which is initially

unknown, is called the self-adjusting reference state, wr. The web deflections are measured with respect to the self-

adjusting reference state. As this state is not known a priori, the web deflection equations become nonlinear. The self-

adjusting reference state is a cylindrical surface extending from the mid-line of the deflected web defined as

wr(x) ¼ w(x,Lx/2). The normal component of the web deflection is measured with respect to wr and is indicated by

w̄ ¼ w� wr.

In this paper, the equation governing the mechanics of a flexible shell, wrapped helically around a cylinder with flat

parts at the leading and trailing sides is derived. This derivation follows Rongen (1994) and Müftü and Cole (1999). The

equations governing the fluid flow in the web/turn-bar clearance, reported below, are essentially the same equations

given by Müftü and Cole (1999), with modified boundaries as described. The coupled fluid and web equations are

solved numerically as described by Müftü (1999).

2. Theory

2.1. Coordinate systems used in the model

The geometry of a web wrapped at an oblique (helix) angle b around a cylinder of radius Rc is depicted in Fig. 1. Note

that the web and the air-reverser surface can be rolled out on a plane as shown in Fig. 2(a). The extent of the

circumferential wrap is given by the wrap-angle yw as shown in this figure. The wrap-region spans the length Rcyw. The

projection of the hole-region from the air-reverser onto the web is indicated by the span Rc(yF1+yF4). The web

deformation is calculated in the solution domain Ow, defined as

fðx; yÞ 2 Ow � R2j0pxpLx; 0pypLyg. (1)

The length (Lx) and the width (Ly) of this domain are defined in Fig. 2(b). The fluid mechanics equations are expressed

in solution domain Of on the cylindrical reverser, not shown here. The interpolation of the variables h and p between the

two solution meshes is performed on the (x0, y0) coordinate system shown in Fig. 2(b). The projection of Of on Ow is

Of-w and it is defined as

ðx; yÞ 2 Of!w � Owjy tan bþ x� LF1X0 ^ y tan bþ x� LF2p0
� �

, (2)
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where

LF1 ¼ L1 � R
tanðyF1 �

1
2
ywÞ

cos b

� �
and LF2 ¼ L2 þ R

tanðyF4 �
1
2
ywÞ

cos b

� �
.

The lengths LF1 and LF2 are the projections of the outer limits of the hole-regions on the web.

The geometry can be described, as shown in Fig. 2(b), as the union of two flat sections (OT1T4W4 and T2W2W3T3) on

the entry and exit sides of the wrap-region, with the wrap-region (T1T2T3T4). This figure shows the projections of the

tangency points and the limits of the hole-region on the unwrapped configuration of the web, where the lines T1T4 and

T2T3 are the lines of tangency.

2.2. Equations of equilibrium for a helically wrapped web

A web wrapped around a cylindrical surface with a helix-angle b represents a developable surface. Web equilibrium

equations are derived in curvilinear coordinates, described by Rongen (1994). The curvilinear coordinates are assumed

to coincide with the initial reference configuration w0, for an infinitely thin web. The equations of equilibrium are

derived using the Kirchhoff–Love assumptions (Timoshenko and Woinkowsky-Krieger, 1987).
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Fig. 2. (a) A schematic depiction of the web and the reverser rolled-out on a plane. (b) The geometric definitions used to define the web

Ow and fluid Of domains. (c) The web/turn-bar clearance h.
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2.2.1. Geometry of a helical shell

The geometry of a shell is described by its middle-surface S and thickness c. In a 3-D space, with Cartesian basis

vectors f~e1;~e2;~e3g and origin O, a generic middle surface, is described by two independent surface coordinates u1, and u2
as follows:

~r ¼~rðu1; u2Þ ¼ riðuaÞ~ei, (3)

where the Latin indices take the values 1, 2, 3 and the Greek indices take the values 1 and 2. The summation convention

applies to this equation where the repeated indices are summed. The location of any point ~x in the curved shell can then

be defined by its normal coordinates (u1, u2, u3),

~xðu1; u2; u3Þ ¼~rðu1; u2Þ þ u3~nðu1; u2Þ, (4)

where~rðu1; u2Þ is the position vector to a point on the middle surface, ~n is the unit normal on the middle surface at this

point, and �c/2pu3pc/2. The middle-surface S is located at u3 ¼ 0. The tangent vectors to this middle surface are

defined by

~aa ¼~ra ¼
q~r
qua

, (5)

which form the base vectors for the 2-D tangent plane, at each point. The normal vector to the middle surface is given by

~n ¼
~a1 �~a2
~a1 �~a2j j

, (6)

providing ~n �~aa ¼ 0 at every point of the surface. The first fundamental tensor or metric tensor of the surface is defined

by

aab ¼ ~aa �~ab. (7)

The second fundamental tensor or the curvature tensor of the surface is

bab ¼ ~aa;b �~n. (8)

In order to calculate the value of ~aa and ~n for the helical geometry, let us investigate the equation of the line wrapped

around a cylinder with the helix-angle b as shown in Fig. 3. Let the curvilinear coordinates (u1, u2) be oriented along

and perpendicular to this line, respectively. The point P on the cylindrical surface can be represented in terms of u1, and

u2, and Eq. (3) as follows:

~r ¼ R cos j~e1 þ R sin j~e2 þ ðu1 sin bþ u2 cos bÞ~e3; (9)

with

j ¼ ðu1 cos b� u2 sin bÞ=R.
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Fig. 3. Coordinates of a point P on Cartesian, ~e1;~e2;~e3, and curvilinear, ~u1;~u2;~n, coordinate systems.
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The tangent and normal vectors for this surface are found from Eqs. (5), (6) and (9) as follows:

~a1 ¼ � sin j cos b~e1 þ cos j cos b~e2 þ sin b~e3; ~a2 ¼ sin j sin b~e1 � cos j sin b~e2 þ cos b~e3,

~n ¼ cos j~e1 þ sin j~e2. ð10Þ

The metric and the curvature tensors become

aab ¼
1 0

0 1

� �
; bab ¼

1

R

�cos2 b sin b cos b

sin b cos b �sin2 b

" #
. (11)

These relations are used next to develop the equations governing the web static equilibrium equations for the helically

wrapped web under tension T. Shell theory is based on the Kirchhoff–Love assumptions which state that (a) the shell is

in a state of plane stress, where the normal stress in the thickness direction of the shell is neglected; and (b) a fiber of the

shell which is initially straight and normal to the middle-surface S, remains straight and normal to the middle surface

after deformation (Timoshenko and Woinkowsky-Krieger, 1987).

The in-plane displacements of the shell are indicated by va, and the out-of-plane displacement is by w. The

strain–displacement relations for the shell then become

Eab ¼ eab � u3kab; Ea3 ¼ ga,

eab ¼ va;b � babw̄þ
1

2
w̄aw̄b; kab ¼ w̄ab þ bab; ga ¼ w̄a, ð12Þ

where Eab is the total-strain, eab is the membrane-strain, ga is the shear-strain, kab is the curvature of the middle surface.

Note that the curvature bab is added to the curvature of the middle surface in order to take into account the initial

bending of the web around the cylindrical surface.

The in-plane stresses in the deformed shell are indicated by sab and the shear stresses in the direction normal to the

middle-surface S are indicated by sab. The shell theory is based on stress resultants which are defined as

ðNab;Mab;QaÞ ¼

Z c=2

�c=2
ðsab; u3sab; sa3Þdu3, (13)

where Nab are the in-plane stress resultants, Mab are the bending moment resultants and Qa are the normal shear stress

resultants. The static equilibrium of a curved shell is given by the following set of equations:

Nab;b þ Fa ¼ 0, (14a)

Qa;b þ ðwaNabÞ þ babNab þ Fz ¼ 0, (14b)

Mab;b �Qa þ Ca ¼ 0, (14c)

where Fa, Ca and Fz are the externally applied in-plane tractions, bending moment and pressure, respectively. Eqs.

(14a,b) represent the static equilibrium of in-plane and out-of-plane forces, respectively. Eq. (14c) represents the

moment equilibrium at steady state.

For an isotropic shell the constitutive equations are:

Nab ¼ Dt½ð1� nÞeab þ naabegg�, (15a)

Mab ¼ �Db½ð1� nÞkab þ naabkgg�, (15b)

Qa ¼ Dsga, (15c)

where Db ¼ Ec3/12(1�n2) is the bending rigidity, Dt ¼ Ec/(1�n2) the in-plane stiffness and Ds ¼ kGc the shear stiffness,

with the Young’s modulus E, shear modulus G and shear correction coefficient k. The correction coefficient usually

takes the value of 5/6.

The mechanics of the web is described with respect to a set of curvilinear coordinates located on the web (x, y, n) (Fig.

2). In order to describe the curved part of the web, a set of coordinate axes (u1, u2, n) are fixed on the helically wrapped

part of the web (Fig. 3). This allows the derivation of the web mechanics in the helically wrapped region. As the (x, y, n)

axis directions are coincident with the (u1, u2, n), the upcoming derivation is simplified; the only difference between the

flat and curved sections of the web will be based on the presence or lack thereof of the curvature 1/Rc. After combining

Eqs. (14b) and (14c), the equilibrium equations become

Nab;b þ Fa ¼ 0; Mab;ab þ ðwaNabÞb þ babNab þ Fz ¼ 0. (16)
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By using moment curvature relations, (15b), and the curvature tensor (11), Eq. (16) becomes:

Nxx;x þNxy;y þ Fx ¼ 0; Nyx;x þNyy;y þ Fy ¼ 0,

Dbr
4w̄� wxx �

cos2 b
Rw

� 	
Nxx � 2 wxy �

sin b cos b
Rw

� 	
Nxy � wyy �

sin2 b
Rw

� 	
Nyy ¼ Fz, ð17Þ

where Rw ¼ Rw(x,y) is the curvature of the shell defined as

1

Rwðx; yÞ
¼

0; for xþ y tan b� L1o0;
1

Rc

; for xþ y tan b� L1X0 and xþ y tan b� L2p0;

0; for xþ y tan b� L240;

8>>><
>>>:

(18)

in which L1 and L2 are the tangency points at y ¼ 0 (Fig. 2(b)). Eqs. (17) represent a set of coupled partial differential

equations, which in turn represent the equilibrium of a shell wrapped around a cylinder in a helical fashion, with a helix-

angle b, as described in Fig. 1, subjected to in-plane tractions Fx and Fy and external pressure p. Note that in obtaining

this equation the nonlinear terms w̄ðq2w=qx2Þ, ðqw̄=qxÞ2, ðqw̄=qyÞ2 have been neglected in order to linearize the

governing equation. This should not affect the results as long as the deflections are on the order of the web thickness;

however, these terms should be kept in the analysis to retain the ability to model large deflections in the future.

Moreover, the in-plane external tractions, Fx and Fy, are assumed to be zero.

In a typical web handling application, the web is pre-tensioned to a value T in the longitudinal direction. It is assumed

that, in the undeformed state, only T exists as in-plane stress, when the web is wrapped around the cylinder. The in-

plane stress resultants after deformation are indicated as follows:

Nxx ¼ T þN 0xx; Nyy ¼ N 0yy; Nxy ¼ N 0xy. (19)

A simplified equation which represents the equilibrium of out-of-plane force resultants and bending moments

can be obtained by considering that N0xx can be evaluated in terms of deformations by using the strain-displacement

relations (12) and the constitutive relation (15). Thus, the in-plane stress resultant in the longitudinal direction

becomes

Nxx ¼ T þDt
w̄

Rw

cos2 bþ
1

2
w̄2
;x þ n

w̄

Rw

sin2 bþ
1

2
w̄2
;y

� 	� �
. (20)

Then, using the above equations it can be shown that the equation of equilibrium for a flexible web wrapped around a

cylindrical drum with a helix-angle b, becomes

Dbr
4w̄þDtðcos

4 bþ n cos2 b sin2 bÞ
w̄

R2
wðx; yÞ

� Twxx ¼ pþ pc �
T cos2 b

Rw

. (21)

For b ¼ 0, this equation reduces to the same web equilibrium equation derived for the case of no helix angle (Müftü

and Cole, 1999). Note that the effect of the in-plane stress resultants Nyy and Nxy are neglected as they are small

as compared to the longitudinal tension. In Eq. (17), the vertical component of the external traction Fz is replaced

with the air pressure p and the contact pressure pc. The air and contact pressure distributions are obtained

from the solution of the fluid mechanics equations, and evaluation of the contact conditions as presented in the

next sections.

The web is supported by a roller on each of its two longitudinal ends, and is free on its lateral edges. These conditions

are represented as simple support conditions:

w̄ ¼ 0; Mx ¼ Dbðw̄;xx þ uw̄;yyÞ ¼ 0, (22)

at 0pypLy and x ¼ 0, Lx, and as free boundary conditions:

My ¼ Dbðw̄;yy þ uw̄;xxÞ ¼ 0; Qy ¼ Dbðw̄;yyy þ ð2� uÞw̄;xxyÞ ¼ 0, (23)

at y ¼ 0, Ly and 0pxpLx.

2.2.2. Initial clearance

The clearance h(x,y) between the web and the turn-bar depends on the initial clearance d(x,y) and the web

displacement w (Fig. 2(c)):

hðx; yÞ ¼ wðx; yÞ þ dðx; yÞ. (24)
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The initial clearance in the downstream and upstream sides of the web is obtained by calculating the distance between

the web and the cylinder. In the wrap-region, the initial clearance is zero. This is expressed by the following relation:

dðx; yÞ ¼

½ðxþ y tan b� L1Þ
2 cos2 bþ R2

c �
1=2 � Rc; ðx; yÞ 2 Owjy tan bþ x� L1o0

� �
;

0; ðx; yÞ 2 Owjy tan bþ x� L1X0 ^ y tan bþ x� L2p0
� �

;

ðxþ y tan b� L2Þ
2 cos2 bþ R2

c


 �1=2
� Rc; ðx; yÞ 2 Owjy tan bþ x� L240

� �
:

8>><
>>:

(25)

In obtaining the equations for the curvature and the initial clearance, the effect of bending rigidity of the web is

neglected; and, the web is assumed to consist of two flat segments and one ‘‘helically wrapped cylindrical’’ segment.

2.3. Equations of fluid mechanics

The steady-state form of the equations governing the fluid mechanics in the clearance between the web and the turn-

bar were derived by Lewis (Müftü et al., 1998). As the clearance h(x0, y0) between the web and the reverser is

considerably smaller as compared to the other two dimensions of the fluid domain, namely x0 and y0 directions, the flow

is assumed 2-D in the plane of the reverser. Thus, the flow velocities u0 and v0 in the x0 and y0 directions, respectively, are

averaged in the direction of the clearance height, and the flow component in the z0 direction is neglected. The effect of

the air coming into the interface through the holes is modeled as a distributed source, indicated by a(x0, y0). Velocity U

of air coming through each hole is a function of the supply pressure inside the reverser p0 and the local pressure of air p.

The 2-D flow assumption is invalid near each hole, and losses due to discharge are represented with the discharge

coefficient k, whose value lies in the range 0oko1. The air velocity through each hole is modeled as

U ¼ kU0 1�
p

p0

� 	1=2

, (26)

where the reference discharge velocity is U0 ¼ (p0/2r)
1/2. The conservation of mass in the web/turn-bar clearance is

given by

qhu0

qx0
þ
qhv0

qy0
¼ aU , (27)

where the term on the right-hand side represents the mass of air coming into the interface through the air holes. The

conservation of momentum in the x0 and y0directions is represented by the following two equations:

r u0
qu0

qx0
þ v0

qu0

qy0

� 	
þ

qp

qx0
� m

4

3

q2u0

qx02
þ

q2u0

qy02
þ
1

3

q2v0

qx0qy0

� 	
þ 2

tz0x0

h
þ arU

u0

h
¼ 0,

r u0
qv0

qx0
þ v0

qv0

qy0

� 	
þ

qp

qy0
� m

q2v0

qx02
þ

4

3

q2v0

qy02
þ

1

3

q2u0

qx0qy0

� 	
þ 2

tz0y0

h
þ arU

v0

h
¼ 0, ð28Þ

where r is the mass density, m the viscosity of air, and p the air pressure averaged over the normal direction.

Gross (1980) discusses the dimensional analysis of the complete 3-D Navier–Stokes and mass conservation equations

leading to Reynolds’ lubrication equation, and shows that for this type of flow the proper nondimensional parameter

representing the ratio of the inertial forces to viscous forces in the flow is the modified Reynolds number, Re* ¼ rVh2/

mL. The modified Reynolds number can be obtained from the Reynolds number for more general flow, Re ¼ rVh/m as

Re* ¼ Re(h/L). This in fact is an indication of the effect of the clearance-to-length ratio (h/L) on the lubricating flow.

Having said this, for the case discussed here, the following values are found: Re* ¼ 20, Re ¼ 5000 for r ¼ 1.2 kg/m3,

h ¼ 4mm, L ¼ 1m, m ¼ 1.85� 10�5 Pa s and V ¼ 20m/s. Thus, it is concluded that the flow is inertia dominated, and

that the flow could be turbulent in the regions where the flow velocity attains its highest values, such as the outer

periphery of the flow region.

In this model, the shear stresses tz0x0 and tz0y0 are found from the 1/7th-power–velocity distribution law for turbulent

flow in a 2-D channel (Schilchting, 1987):

tz0x0 ¼
1

2
r0:0676 cos ȳ

rh

m

� 	l0

ðu0
2
þ v0

2
Þ
ð2�l0Þ=2; tz0y0 ¼

1

2
r0:0676 cos ȳ

rh

m

� 	l0

ðu0
2
þ v0

2
Þ
ð2�l0Þ=2, (29)

with ȳ ¼ tan�1ðu0=v0Þ and l0 ¼ 1
4
. However, a more complete model would consider turbulence models such as the k–e

model. The solution of this equation is discussed in Müftü et al. (1997).
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The boundary Gf of the fluid solution domain is the outer periphery of the parallelogram, shown in Fig. 2(b), defined

as

Gf jðx
0; y0Þ 2 Of � R2; ðx0; 0Þ ^ ðx0;L0yÞ ^ y0 tan bþ x0 � L0F1 ¼ 0 ^ y0 tan bþ x0 � L0F2 ¼ 0

n o
, (30)

where LF1* and LF2* are the limits of the hole-regions at y* ¼ 0. Given these, the boundary condition for the fluid

becomes

pþ
1

2
kB½ðu

0Þ
2
þ ðv0Þ2� ¼ 0 on Gf , (31)

where kB is the boundary discharge coefficient.

2.4. Contact pressure

In case rigid body contact occurs between the web and the reverser surface, the web is supported (partially) by the

contact pressure pc. Whether contact will take place depends on the overall equilibrium of the web and the air pressure.

If contact occurs, its magnitude, and location are not known a priori. In general, surfaces are not smooth; and contact

between two surfaces takes place on the peaks of the surface asperities. A review of available multi-asperity contact

models is beyond the scope of this paper. However, in the context of web and tape mechanics, papers by Rice et al.

(2002), Lacey and Talke (1992) and Wu and Talke (1996) could be consulted for more information. In this work, the

parabolic contact model introduced by Lacey and Talke for tape mechanics is used. This model was later evaluated by

Rice et al. (2002) for contact of paper- and PET-based webs. In this model, the contact pressure is calculated by

pc ¼ Pa 1�
h

sa

� 	2

if hpsa, (32)

where Pa is the asperity compliance and sa the asperity engagement height. It is assumed that asperity contact takes

place when the web-to-reverser clearance h falls below sa. The values of Pa and sa are typically empirically determined.

Rice et al. (2002) provide these values for contact of various types of webs with a typical metal guide surface. In this

paper, the following values were used: Pa ¼ 1� 106 Pa and sa ¼ 100� 10�6m.

2.5. Coupled solution

The steady-state equilibrium between a nontranslating web and the air flow in the web turn-bar interface is modeled.

The fluid-to-web coupling requires that the velocities and the tractions at the coupling interface, n ¼ h as described in

Fig. 2(c), be continuous. In general, the velocity continuity requirement is expressed as follows:

u0 ¼
qv1

qt
; v0 ¼

qv2

qt
and w0 ¼

qw

qt
at n ¼ h, (33)

and the traction continuity requirement is expressed as follows:

t0zx ¼ Fx; t0zy ¼ Fy and p ¼ Fz at n ¼ h. (34)

The effect of the fluid shear tractions on the in-plane web equilibrium, at the steady state, is typically considered to be

negligible; and, therefore, as mentioned before, Fx and Fy are neglected. Due to the steady-state assumption, the time-

derivatives of the web displacements are zero. This implies that on the web surface, n ¼ h, the flow velocity should be

u0 ¼ v0 ¼ 0. The simplified fluid model used here assumes that u0 and v0 are constant through the clearance direction,

and thus does not exactly comply with the velocity boundary condition. This discrepancy should be corrected in the

future. In summary, the present model assumes that the web and the fluid are only coupled through the air pressure p

directly and the clearance height h indirectly.

The coupled fluid–structure interactions which include the possibility of contact are found by solving Eqs. (17),

(22)–(24), (27), (28) and (32) simultaneously. The solution method involves finite-difference discretization of the web-

domain, and a pseudo-transient solution of the fluid-domain (Müftü and Cole, 1999). The nonlinear contact is handled

by a standard Newton–Raphson algorithm (Müftü and Benson, 1995). The node spacing used for the finite difference

solution are reported in Table 3.
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3. Results and discussion

In order to investigate the effect of helical wrap, a case study of different helix angles varying in the range of

01pbp451 is conducted. The web wrap-angle around the reverser is kept constant as yw ¼ 1801. Three different cases of

hole distributions are investigated. In all three cases, the total span of the main hole-regions are kept at 401 in the entry

(|yF1–yF2|) and exit (yF4–yF3) directions of the web. In order to investigate the effect of placing the hole-regions in

relation to the web’s wrap-region, these 401 spans are moved in the circumferential direction, as defined in Table 1. All

of the other parameters were kept constant at their values listed in Tables 2 and 3.

3.1. Steady-state solutions

The steady-state conditions predicted by the model for b ¼ 01 and 451, for Case 1, are plotted in Figs. 4 and 5,

respectively. The web displacement (w) distribution, measured with respect to the initial wrapped state, is plotted in part

(a) of these figures. The air velocity distribution in the fluid domain is given in part (b), where the air pressure (p)

contours are also plotted. Finally, the air pressure and contact pressure (pc) profiles are plotted in 3-D in parts (c) and

(d). Note that the same contour legends are used in these figures.

In general, Figs. 4(a) and 5(a) show a large displacement in the central part of the wrap-region, where the web is

supported by the air cushion. In the case of b ¼ 0, the maximum displacement is on the order of 2mm. But, when the

web is wrapped with a helix angle of b ¼ 451, the maximum web displacement is found to be approximately 8mm.

In both of these figures, the air cushion support is insufficient to prevent web contact at the entry end exit regions.

This is evidenced by the nonzero contact pressure distribution shown in Figs. 4(d) and 5(d). Note that the nonsmooth

ARTICLE IN PRESS

Table 1

The extent of the hole-regions for the three cases discussed in this paper

Case yF1–yF2 yF3–yF4 Hole density, a

1 �901 to �501 50–901 0.075

2 �1001 to �601 60–1001 0.075

3 �1101 to �701 70–1101 0.075

See Figs. 1 and 2(a) for the definitions of the angles yFi. In addition, holes were placed along the lateral edges spanning 0pyp5 cm and

45pyp50 cm regions with a ¼ 0.05.

Table 2

Parameters common to the presented cases

E (GPa) 4 m (Pa s) 1.85� 10�5

n 0.3 R (m) 0.1

c (mm) 0.05 yw (deg.) 180

Tx (N/m) 40 k 0.9

r (kg/m3) 1 p0 (kPa) 0.8, 1, 1.2, 1.4

Table 3

Length parameters used for the presented cases

b 01 51 101 151 201 301 401 451

L1 (m) 1 1 1 1 1 1 1 1

Lx–L2 (m) 0.96 0.91 0.87 0.82 0.71 0.58 0.71 0.50

Lx (m) 2.31 2.27 2.23 2.19 2.15 2.07 1.99 1.95

Ly (m) 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.50

Dx ¼ Dy (mm) 5.78 5.68 5.58 5.48 5.38 5.18 4.96 4.87

Dx0 (cm) 0.88 0.90 1.11 1.25 1.39 1.75 2.21 2.48

Dy0 (cm) 1.24 1.25 1.26 1.26 1.26 1.27 1.27 1.24
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contact pressure in these figures is due to numerical discretization. Nevertheless, the web is supported in the

central wrap-region by the air cushion. In the case of zero helix angle, Fig. 4(c) shows that, in the central region,

the air pressure settles to approximately 800 Pa; the pressure drops to ambient in a narrow transitional region around

the outer periphery of the wrap-region. On the other hand, the air pressure for the helix angle of b ¼ 451 settles to

approximately 450 Pa in the central wrap-region. The pressure drops to ambient in a similar manner around the outer

periphery.

3.2. Contact

Fig. 6(a) shows web/turn-bar clearance h, air pressure p and contact pressure pc along the centerline of the web

(x,0.5Ly) for Case 1 and b ¼ 451. This figure shows that near the entry and exit regions, the air pressure is insufficient to

balance the belt-wrap pressure (T cos2 b/Rw) and contact occurs between the web and the turn-bar surface. For this case,

the maximum contact pressure is on the order of 400Pa. In the contact region the clearance h is on the order of the

assumed contact height sa ¼ 100mm. This allows minimal amount of airflow from the circumferential edges when

contact occurs, as observed in Figs. 4(b) and 5(b).

It is concluded that the hole distribution described by Case 1 is inadequate to prevent contacts. Fig. 6(b) shows a

comparison of the web/turn-bar clearance h, and air pressure p distributions along the centerline of the web for Cases 1,

2 and 3. Note that contact pressures, which occur for Cases 1 and 2 are omitted from this figure for clarity.

Nevertheless, presence of contact can be deduced from the low h values. This figure demonstrates that as the

circumferential hole-regions are moved outward to enclose the tangency points (yw ¼ �901 and 901) of the web, the

contact region diminishes, and for Case 3 no contact occurs between the web and the turn-bar.

ARTICLE IN PRESS

Fig. 4. (a) The web deflection w, (b) airflow vectors, (c) air pressure p and (d) contact pressure pc at steady state, for Case 1, with b ¼ 0

and p0 ¼ 800Pa.
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3.3. Effect of supply pressure, p0 and hole distributions

The supply pressure is one of the easiest design parameters to change. Next, the effects of using different p0 (800,

1000, 1200, 1400Pa) values on the equilibrium conditions are investigated, for different designs. Figs. 7 and 8 show

web/turn-bar clearance h and air pressure p along the centerline of the web, for different helix-angles b ¼ 01, 151, 301,

and 451 for all three hole-distribution cases considered in Table 1. In particular, Fig. 7 shows equilibrium conditions for

supply pressure p0 ¼ 800 Pa, and Fig. 8 for p0 ¼ 1200 Pa. The contact pressure distributions, for the cases where they

occur, have been kept out of the pressure plots for clarity. As before, presence of contact can be deduced from the plots

of h, where the h value becomes very close to zero.

For the hole-distribution Case 1, Fig. 7(a) shows, that the air cushion provided by the supply pressure of 800 Pa is

insufficient to overcome the belt-wrap pressure, and the web contacts the reverser surface near the tangency lines. This

figure also shows that, as the helix angle is increased, the web clearance in the central region of the wrap becomes larger,

but the air pressure becomes lower. Figs. 7(b) and (c) show the equilibrium conditions for hole-distribution Cases 2 and

3. While a little improvement is seen with respect to preventing contact in Case 2, none of the cases presented in Case 3

contact the turn-bar. Comparison of all three cases in Figs. 7(a)–(c), show that the hole distribution defined by Case 3

provides a more uniform web/turn-bar clearance in the circumferential direction.

The effect of using a supply pressure of 1200 Pa on the same three cases is presented in Fig. 8. Here, we see that Case 1

(Fig. 8(a)) is still inadequate for contact prevention, while Cases 2 and 3, given in Figs. 8(b) and (c), successfully

eliminate all contact for all helix angles. It is again observed that Case 3 provides a more uniform h distribution as

compared to Case 2.

The results of all the supply pressures p0 ¼ 800–1400 Pa are summarized in Fig. 9. This figure shows the mid-point

web/turn-bar clearance hmid ¼ h(0.5Lx, 0.5Ly) and the minimum clearance hmin as a function of the helix angle b and

supply pressure p0. In general, this figure shows that the mid-point clearance increases with increasing supply pressure

and increasing helix angle. However, for only Case 3 (Fig. 9(c)) is the minimum clearance entirely larger than zero. In

ARTICLE IN PRESS

Fig. 5. (a) The web deflection w, (b) airflow vectors, (c) air pressure p and (d) contact pressure pc at steady state, for Case 1, with

b ¼ 451 and p0 ¼ 800Pa.
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Case 2 (Fig. 9(b)), the minimum clearance can be improved by increasing supply pressure; and, in fact, p0 ¼ 1200 and

1400 Pa cases are predicted not to contact. On the other hand, the hole distribution of Case 1 shows no improvement

with p0. It will also be seen in Fig. 9(c) that the hmid and hmin values are relatively close to each other. This is due to the

fact that the clearance variation in the circumferential direction is fairly uniform, as shown in Figs. 7(c) and 8(c).

3.4. Effect of helix-angle b on equilibrium

Figs. 4 and 5 showed that the equilibrium air pressure and web displacements are strongly influenced by the helix

angle. At the low value of b ¼ 0 (Fig. 4), the steady-state pressure reaches 800Pa, whereas at the high value of b ¼ 451

(Fig. 5), it settles to 450Pa. Conversely, these figures show that the web displacement is lower for low values of b,
whereas it is higher for higher b values. In fact, as the helix angle increases from 01 to 451 the web displacement increases

while the maximum pressure decreases. This may at first seem counter-intuitive; However, it is actually due to the b
dependence of the shell stiffness and the belt-wrap pressure. Eq. (21) shows that the shell stiffness and the belt-wrap

pressure for the helically wrapped web are defined as

Dtðcos
4 bþ n cos2 b sin2 bÞ and

T cos2 b
Rw

,

respectively. Thus, it can easily be seen that the effect of both of these parameters is reduced when b40. As the belt-

wrap pressure is reduced at higher b values, the overall equilibrium is established at lower air pressure levels. Similarly,

the shell stiffness is also reduced as a result of increasing b, resulting in a more compliant web behavior.
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Fig. 6. (a) The web/turn-bar clearance h, air pressure p and contact pressure pc variation along the centerline (x, Ly/2) of the web for

Case 1, with b ¼ 451 and p0 ¼ 800Pa. (b) The web/turn-bar clearance and air pressure for Cases 1, 2, and 3 for the same conditions.
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ARTICLE IN PRESS

Fig. 7. The web-turn-bar clearance h and air pressure p distributions along the centerline (x, Ly/2) for hole distribution (a) Case 1, (b)

Case 2 and (c) Case 3. Supply pressure, p0 ¼ 800Pa, and the helix angles (b) are as indicated.
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Fig. 8. The web-turn-bar clearance h and air pressure p distributions along the centerline (x, Ly/2) for hole distribution (a) Case 1, (b)

Case 2 and (c) Case 3. Supply pressure, p0 ¼ 1200Pa, and the helix angles (b) are as indicated.
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(c) Case 3 with different supply pressures p0 and helix angles, b.
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Fig. 10. Variation of the supply flow rate Qin for (a) Case 1, (b) Case 2, and (c) Case 3 with different supply pressures p0 and helix

angles, b.
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3.5. Flow rate

The supply flow rate into the web/turn-bar interface depends on the local air pressure interface and the discharge

coefficient:

Qin ¼

Z
Of

UadOf .

The flow rates for the three cases considered here were evaluated for different p0 and b values, and they are reported in

Fig. 10. The flow rate for all the cases vary in the range of 0.04pQinp0.2m3/s. The flow rate increases with increasing

helix angle. This is primarily due to increasing surface area of the circumferential hole-regions at larger helix angles. The

flow rate also increases monotonically with increasing supply pressure. The hole-discharge velocity U depends on local

air pressure p and supply pressure p0 as given in Eq. (26). Thus, increasing flow-rate with increasing pressure is an

expected result.

4. Summary

A mathematical model for the steady-state deformations of a web wrapped around a turn-bar in a helical fashion is

developed. The web is modeled as a thin cylindrical shell. The fluid mechanics is modeled by a modified form of the

mass and momentum conservation equations, where the flow variables are averaged in the thickness direction, and

where the effect of the mass and momentum influx is considered through a distributed source structure. Contact

between the web and the turn-bar surface is considered by a nonlinear asperity compliance function. The governing

equations of the helically wrapped shell show that the shell stiffness and the belt-wrap pressure are both reduced as the

helix angle is increased. The coupled system is solved numerically. A case study shows the helix angle has a strong

influence on the equilibrium configurations; increasing helix angle results in increased web-reverser separation while the

air pressure settles to a lower value. This behavior is due to the reduced shell stiffness and belt-wrap pressure for the

helically wrapped webs.

It is shown that, in order to prevent web-scratches, it is advantageous to place the hole-regions circumferentially, on

the reverser, in such a way that they enclose the tangency points of the web. Conditions that render a fairly uniform

web/turn-bar clearance in the circumferential direction are identified.

The airflow rates were found to be on the order of 0.04–0.2m3/s for parameters considered in this paper. The flow

rates increase with increasing helix angle and supply pressure values. Future work should include transient effects and

dynamic stability of the web.
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