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The Transient Foil Bearing Problem

in Magnetic Recording

by

Sinan M�uft�u

Abstract

The transient foil bearing problem applied to the magnetic recording applications is
modeled and analyzed through numerical simulation. Air lubrication is modeled using the
Reynolds equation including the �rst order slip correction terms and air compressibility.
A segmented model for the out-of-plane tape displacements where the tape is modeled as
a cylindrical shell in the wrap zone and as a plate in the straight segments between the
guide pins and the tangency points is introduced. The tape inertia and transport e�ects
are included by using the material time derivative of the displacements.

A semidiscrete form of the equation of motion of the tape is obtained by using �-
nite di�erence approximations to partial derivative operators. The time integration of
this equation is performed by using the Hilber-Hughes-Taylor method. The Reynolds
equation is solved using the alternating direction implicit method.

The e�ects of axial tension variations, tape width, transient tension and tape speed
changes, as well as initial stages of drum rotation in split-drum recording are studied. It
is shown that the axial variations on the parameters mentioned can lead to unintended
tape-guide separations. For slow drum speeds and small drum radii the inertial e�ects
of the tape are damped out by the air bearing.

Wave propagation due to a point load in circumferentially transported cylindrical
shells, in the absence of air lubrication is analyzed. The existence of a critical load speed
is demonstrated, and the e�ect of shell's transport speed, thickness, and tension on this
critical load speed are identi�ed.

A frequency analysis for the tape equation is performed. It is shown that this medium
is anisotropically dispersive. It is shown that the long wavelength behavior in the tape
is due to the shell sti�ness and the short wavelength behavior is due to the bending
e�ects. The wave velocity deterioration due to spatial �nite di�erence discretization in
the numerical solution is shown quantitatively.
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Chapter 1

Introduction

Successful recording on magnetic media was �rst achieved by Valdemar Poulsen in 1898

in Denmark. To record his voice on a steel wire, stretched across his laboratory, Poulsen

moved an electromagnet, a battery and a telephone transmitter assembly along the wire

while he talked into the transmitter. To listen to what he had recorded he replaced the

transmitter and the battery with the receiver of a telephone and walked along the same

path [14].

In this experiment, by using the telephone transmitter Poulsen was creating a mag-

netic �eld whose strength is proportional to the changes in his voice. By walking along

the wire he magnetized the wire according to the strength of this magnetic �eld. Thus

he e�ectively put a magnetic duplicate of his speech along the wire. Almost a hundred

years later we can listen to our recordings on magnetic tapes with much less trouble than

Poulsen initially had to go through, thanks to the developments made on the magnetic

recording technology. However, the principle that Poulsen used remains the same.

Today, magnetic recording is not only used to record analog audio and video signals,

but digital data as well. The digital format has a wide spread use in the computer data

storage and its use in audio and video storage is increasing. The magnetic recording media

has experienced drastic changes as did the recording instruments. Today in addition

to tapes, two other widely used recording media are the hard and 
oppy disks used

1



2

in computer data storage. These two technologies provide a faster data access time

compared to the tapes in which information is stored in a sequential manner1.

In the early days of magnetic recording steel wires were used as the recording medium.

Later steel tapes and paper tapes coated with magnetic particles were introduced. Plastic

based substrates were introduced with success in 1935. Today the magnetic recording

tapes consist of polyethylene terephthalate substrates coated with magnetic particles

such as gamma-ferrite, 
-Fe2O3, chromium-dioxide, CrO2, held together with an organic

binder. Non-magnetic particles such as Al2O3 are added to the coating to improve the

abrasion resistance [43, Chapter 3].

There are two main types of widely used tape recording technologies. In linear record-

ing the magnetic tracks are laid in the direction of motion of the tape by a stationary

magnetic head. In helical-scan format a slowly moving tape is wrapped around a rotating

cylindrical drum in a helical fashion. In contrast to linear recording, the magnetic heads

protruding from the drum surface scan the tape with a high relative speed as the drum

rotates and write diagonally oriented tracks.

The interface between the magnetic head (the guide hereafter) and the 
exible tape

experiences a self lubrication phenomenon in which air acts as the lubricant2. Due to

this phenomenon a gap occurs between the tape and the guide. This gap is desirable

under certain circumstances because it reduces head and tape wear, but in general it is

undesirable as the strength of the magnetic signal degrades with increased tape gap [44,

Chapter 4]. This degradation is seen in the head output voltage, e, given by the Wallace

equation,
eh
ec

= exp(�2�h

�
) (1:1)

the subscript c denotes a full contact situation and h denotes a tape-guide separation of

h. The loss becomes more severe for small wave lengths, �, of the recorded signal [43,

Chapter 1]. Therefore, a thorough understanding of this interface is important for the

1The faster access time is due partly to the fast motion of the recording head and partly to the fact
that the head has to travel smaller distances on a circular tape.

2See Chapter 7 for a more detailed description of this phenomenon.
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quality of the magnetic recording. This self lubricated tape-guide interface constitutes

the foil bearing problem that we study in this thesis.

In the rest of this chapter we present a brief survey of the foil bearing problem

literature. In Chapter 2, the equations that we used to model the problem are presented.

These equations are the equation of motion of a cylindrical shell modi�ed to accommodate

the 
at parts of the tape, and the modi�ed Reynolds equation for the air lubrication

model. The methods that we used to solve these equations, as well as the method to

solve these equations together are presented in Chapter 3. Because we are including the

inertial e�ects of the tape we wanted to quantify the error introduced by the spatial

discerization of the tape equation. This study is given in Chapter 4, where we also

derive the dispersion relation for the partial di�erential equation governing the tape

displacements. In Chapter 5 we study the wave propagation due to a moving point load

in a circumferentially moving tape. As did some of the other investigators [29] [39],

we also found that the results of the one dimensional problem constitute a good initial

guess for the two dimensional case. Our approach to the solution of the 1D problem is

given in Chapter 6. The two dimensional foil bearing problem is studied in Chapter 7.

The tape width, axial tape tension variation and guide-shape e�ects are shown in steady

state. Tape response to asperity motion, time dependent tape tension and tape speed

variations are studied in the transient domain. In Chapter 8 the summary of the work

and the conclusions are given, and suggestions for future work are made.

1.1 A Brief Survey of the Foil Bearing Literature

Several publications address the historical development of foil bearings. A review of the

analytical work prior to 1969 is given by Wildmann [71]. Chapter 6 of the book edited by

Gross [27] expands this review to 1980, and includes transient 1D problems. A qualitative

classi�cation of the iteration techniques used to solve the steady state problem, is given

by Ono [53].
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1.1.1 One Dimensional Steady State Analysis

The �rst published work on the foil bearings was by Blok and von Rossum, in 1953.

This study involved experimental investigations as well as mathematical modeling. In

the early models of the foil bearing problem the foil was assumed to be perfectly 
exible,

its inertial e�ects were neglected and the air was assumed to be incompressible. The foil

was also assumed to be in�nitely wide [71]. This assumption is the basis for the name one

dimensional (1D) foil bearing problem. These studies identi�ed three distinctive regions

in a foil bearing: the entrance, constant gap and exit regions which are shown in Figures 1-

1 - 1-2. In the entrance region the tape-guide spacing, h, decreases exponentially to its

value in the constant gap region, ho. In the exit region we see a sinusoidal variation in h

before it increases exponentially. The behavior in the exit region is observed for relatively

large wrap angles (see for example [5],) and it can be explained by considering a simpli�ed

form of the lubrication equation relating the air pressure to the bearing height3,

dp

dx
= 6�Vx

h� ho
h3

(1:2)

where, � and Vx are the air viscosity and tape velocity, respectively [27]. Using this

equation together with Figure 1-2 the pressure gradient in the tape's running direction,

x, is found to be as follows:

dp

dx

8>>>>><
>>>>>:

> 0; in the entrance region where h > ho

= 0; in the constant gap region where h = ho

> 0; in the exit region where h > ho

(1:3)

In the entrance of the tape guide interface, dp
dx

is positive. Therefore, the air pressure

increases from ambient to its value in the constant gap region. In the constant gap

region the pressure gradient is zero, consequently the pressure remains constant. In the

exit region the pressure drops to the ambient pressure. However, close inspection of

Equation (1.3) shows that the pressure gradient is positive in this region. This causes a

3The Reynolds equation is introduced in Chapter 2. In Equation (1.2) in�nitely wide bearing as-
sumption was used along with incompressibility.
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Figure 1-1: Tape under tension Tx passing over a cylindrical guide, with radius R, with
speed Vx. Figure is taken from Barlow [4].

confusing situation which is resolved in the system by a sudden increase in the pressure

followed by a sudden decrease to the subambient pressure. Once the air bearing pressure

becomes subambient the sign of the pressure gradient changes for pressure to increase

to ambient. The shape of the pressure distribution on the foil bearing can be seen in

Chapters 6 and 7.

These theoretical results were obtained by asymptotic analysis and linearization of

the foil bearing equations around a constant foil bearing height, ho . The three regions

of the foil bearing were experimentally observed by Ma, and Licht in 1965 and 1968,

respectively [42, 41].

The e�ects of �nite width, 
uid inertia, compressibility, foil bending sti�ness were

addressed, in analytical studies, by Eshel and Elrod, and Licht [18, 41].

Various investigators used numerical techniques to solve the 1D, steady state foil

bearing problem in the last two decades; Hori et al. [32], White and Prabhu [69], Brewen

et al. [11], Tanaka [62], Adams [1, 2], Lacey and Talke, [38]. In these studies the steady

state solution of the problem is obtained by starting the iterative numerical solutions

with a good guess. Di�erent relaxation and iteration methods have been employed by

these investigators.
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Figure 1-2: Tape-guide spacing and air bearing pressure in a foil bearing,� = 6�Vx=Tx,
� = x�1=3=hO. Figure is taken from Gross [27].

1.1.2 Two Dimensional Steady State Analysis

In the two dimensional (2D) foil bearing problem the e�ects due to the �nite tape width

are considered. The �rst 2D formulation of the problem was published by Barlow, in

1967 [4]. Barlow did not publish a solution for his 2D formulation at that time.

To the best of our knowledge, the 2D, steady state foil bearing problem was addressed

for the �rst time by Greenberg in 1979, [25]. In his model Greenberg considered both

the in-plane and out-of-plane tape displacements. He presented an analytical method for

the tape deformation in terms of in�nite series. The coupling of the tape equation with

the Reynolds equation, which was solved with a �nite di�erence approach, was achieved

in steady state.

Ono, and Mizukawa employed a Green's function to solve the 2D, steady state tape

equation in 1981 [54]. In order to decrease computational and storage requirements of this

method they used the Green's function corresponding to the origin (which was located

at the center of the tape) for the rest of the tape. Through numerical experiments, they

found a strong correlation between the bending sti�ness of the tape and the minimum

spacing in the head tape interface.

In 1985, Mizukawa et al. [48], published their experimental results that they checked
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against Ono and Mizukawa [54]. They experimented on a spherical head geometry, and

used white light interferometry (WLI) technique for spacing measurements. A good de-

scription of the experimental technique is described in the paper. Their experimental

results about the e�ects of bearing penetration on the spacing distribution and the mini-

mum spacing agreed well with numerical predictions of [54] for low bearing penetrations.

In 1988, Yoneda and Sawada used the Kirchho� plate theory4 to properly account

for the additional sti�ening in the radial direction due to in-plane forces [73]. Their

equations did not involve the usual stress function formulation of the theory, but in-

plane displacements u and v were calculated instead. They applied Galerkin's method

to simultaneously solve the Reynolds and the plate equations.

Ono et al. used the inverse analysis concept (which is explained below) to reach

the steady state solution of the 2D foil bearing problem in 1991, [53]. In this paper a

qualitative evaluation of the steady state iteration techniques used to couple the to media

is given.

Mizoh et al. in 1992 [47] and Kotera et al. in 1993 [36] used a similar set of plate

equations as Yoneda and Sawada [73] with the addition of bending orthotropy of the

tape.

In 1993 Fujimoto et al. used a cylindrical shell formulation embedded into a Kirchho�

plate theory formulation [21]. This way they were able to account for the e�ects of the

in-plane force distribution on the out-of-plane displacements. They used a numerical

method in which the �nite di�erence approximations were employed.

1.1.3 Transient Analysis

Transient behavior of the foil bearing problem was addressed for the �rst time in a paper

by Eshel and Wildmann in 1968 [19]. They analyzed a 1D problem and neglected the foil

inertia and foil bending, but they considered the squeeze term5 of the Reynolds equa-

4See [64, Chapter 13] for the Kirchho� plate theory.
5See Chapter 2 for the de�nition of this term.
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tion. In this paper they reported that \... disturbances (to the foil bearing) propagate

at a speed equal to one half the tape velocity." Eshel in 1969 [17], and Barnum and El-

rod in 1971 [6] used similar assumptions and reached analytically the same disturbance

propagation velocity.

The �rst paper which considered the inertial loads of the tape was published by

Stahl, White and Deckert (SWD) in 1974 [58]. The tape was modeled by using a moving

beam equation with a 
at reference con�guration. Thus the analysis of non-circular head

shapes was made possible with certain restrictions. This study is explained in more detail

in Chapter 6. In this study they made use of the transient tape behavior to reach the

steady state de
ection as suggested by Eshel in 1969 [17].

Vogel and Groom [67] performed experiments in the same year to verify the results

that SWD had obtained through their analytical work. Among the conclusions that came

out of this paper was the signi�cance of the side 
ow of air on the lateral edges of the

tape based on observing lower experimental foil heights compared to SWD's numerical

results [58]. The same conclusion was reached by Hori et al. in 1975, [32], and by Tanaka

in 1985, [62] who compared experimental foil bearing heights with 1D analysis.

In 1984, Granzow and Lebeck employed the Crank-Nicholson technique in order to

improve the solution speed of the SWD approach [24]. They were able to use a time step

that was three orders of magnitude bigger than the one used by Stahl et al.

In 1986, Heinrich and Wadhwa analyzed the SWD equations using Finite Element

discretization of the tape equation, [30]. They used Newmark's method for the tempo-

ral discretization. Their approach eliminated the convergence problems that SWD and

Granzow and Lebeck's algorithms had for non-circular head geometries.

In 1990, Rongen published his work on the 2D problem in which he modeled the

tape with the large de
ection Kirchho� plate theory given with the stress-function for-

mulation [57]. In this study the inertial e�ects of the tape are neglected, but the time

derivatives6 are retained in the Reynolds equation. Rongen presented the results of an

6This is the squeeze term of the Reynolds equation. See Chapter 2 for its de�nition.
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analysis of the helical-scan problem. The plate equations used by Rongen were similar

to the one used by Wolf et al. [72] in 1983. However, Rongen's study included also the

bending sti�ness of the tape.

Heinrich and Connolly solved the 2D problem using the �nite element method in

1991 [29]. They modeled the tape as a plate, and retained the time derivatives in both

equations, but they neglected the term that represents the gyroscopic e�ects7 of the tape

transport. They used the Newmark's method in temporal domain, to reach steady state

solutions. They solved the SWD problem in 2D and veri�ed the predictions of Vogel and

Groom, on the e�ects of �nite width to foil height.

Fujimoto et al.'s study considered the inertial e�ects in all three directions, namely

x; y and z. However, they calculated an equivalent mass for the e�ects of the air bearing.

Thus, their transient simulations did not involve the coupled solution of the Reynolds

equation with the tape equation [21].

1.1.4 Inverse Analysis

Methods aiming to obtain a gap height distribution for a �xed head geometry, face the

di�cult task of obtaining the simultaneous solution of the two equations that represent

the tape and lubrication. By assuming that the gap height is a given design parameter,

the inverse method no longer has to �nd a simultaneously converged solution for the two

equations. Therefore, the mathematical problem becomes simpli�ed.

In 1985, White and Prabhu [69], and Brewen et al. [11] published studies on the

inverse design concept independently. This involves coupling of the tape and Reynolds

equations by; 1) assuming a gap height, 2) obtaining the pressure distribution according

to this assumed value, and 3) determining the tape deformation by using the pressure

distribution calculated in the previous step. Finally, in the last step the head shape is

determined from the tape deformation and the assumed gap height.

A drawback of this method is the limitations on the manufacturability of the head

7See Chapters 2 and 5 for the de�nition of the gyroscopic term.
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shape that the method predicts for the given gap height. However, one may impose an

iteration scheme, on the inverse analysis method, which would force the head shape to

converge to a predetermined value. In 1991, Ono et al. [53] showed that this method of

iteration converges faster compared to other iteration methods (relaxation of gap height

or air pressure) previously employed (see for example [25].)



Chapter 2

Governing Equations

2.1 Introduction

In this chapter we present the equation of motion of an elastic cylindrical shell, and the

Reynolds lubrication equation, along with the necessary boundary and initial conditions

for the foil bearing problem. The approaches by Fl�ugge [20], and Timoshenko [63, 64]

are the two main resources for the cylindrical shell equations. Derivation of the Reynolds

equation follows Gross [27]. The derivation of the cylindrical shell equation is given in

Section 2.2, and the Reynolds equation is is given in Section 2.4.

In our tape model for the foil bearing problem, we take the surface of the cylinder,

around which the tape is wrapped, as the reference con�guration. Barlow derived similar

equations to ours [4]. This choice allows us to study large angle of wraps, unlike some of

the previous work [58, 2, 1, 11, 24, 29, 30]. Using this reference con�guration complicates

the geometry, and leads to a segmented tape equation which is described in Section 2.3.

The tape-guide spacing is de�ned in a short section, at the end of the chapter.

11
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2.2 Equation of Motion of the Tape

Derivation of a plate or shell theory involves making several order-of-magnitude, and

extensibility assumptions, such as the ones made by Love listed below. Leissa [40] has an

extensive review of the literature on the di�erent forms of the cylindrical shell equations

based on di�erent assumptions. In our derivation below we consider the terms of the

equation of motion that are common to all of the investigators mentioned by Leissa. This

form of the equation is also coincident with the forms given by Fl�ugge and Timoshenko.

The tape-guide con�guration is shown in Figure 2-1. The tape is wrapped with

the wrap angle �, around a cylindrical guide that has a radius R. Depending on the

application, the tape extends out of the wrap zone in a straight line and it is supported

by a guide pin at each end. Tape dynamics is viewed in a Eulerian frame. A �xed

Cartesian coordinate system is placed on the left hand side pin. In this system the

circumferential direction is x, the axial direction is y and the radial direction is z. The

total length of the tape is Lx and the width of the tape is Ly. The limits of the straight

parts of the tape are located at x = Lx1, and x = Lx2 .

The equation of motion of a cylindrical shell derived in this section applies also to the


at parts of the tape as the tape's radius of curvature (R ! 1) is the only parameter

that is di�erent in the 
at parts. The equation of equilibrium of a cylindrical shell is

obtained by considering the balance of forces acting on the middle surface of the shell

element as shown in Figure 2-2. The equilibrium equations are simpli�ed by using the

following assumptions which were �rst given by Love, [20, 40]:

1. The thickness of the shell is small compared with the other dimensions of the shell.

2. Normals to unde
ected middle surface remain straight and normal to the de
ected

middle surface, and they do not experience any extension.

3. The transverse normal stress, �z may be neglected compared to other stresses.

4. All displacements are small so that they are negligible compared with the radii of
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Figure 2-1: The head tape con�guration. The warp angle is � and the guide radius is R.
The tape is modeled by a cylindrical shell in the wrap zone, and by plates outside the
wrap zone. The transition occurs at locations x = Lx1 , and y = Lx2 .

curvature of the middle surface and their �rst derivatives are negligible compared

to unity.

The forces and moments acting on the middle surface are obtained by using the stress

resultants which are determined by integrating the stresses acting on the side faces of the

shell element shown in Figure 2-2.

Nx =
Z c=2

�c=2
�xdz (2.1)

Ny =
Z c=2

�c=2
�y(1 +

z

R
)dz (2.2)

Nxy =
Z c=2

�c=2
�xydz (2.3)

Nyx =
Z c=2

�c=2
�yx(1 +

z

R
)dz (2.4)

Qx = �
Z c=2

�c=2
�xzdz (2.5)

Qy = �
Z c=2

�c=2
�yz(1 +

z

R
)dz (2.6)

Mx = �
Z c=2

�c=2
�xzdz (2.7)
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My = �
Z c=2

�c=2
�y(1 +

z

R
)zdz (2.8)

Mxy = �
Z c=2

�c=2
�xyzdz (2.9)

Myx = �
Z c=2

�c=2
�yx(1 +

z

R
)zdz (2.10)

where, �x and �y are the normal stresses acting in the x and y directions, respectively.

The shear stresses �xy and �yx act on the side faces of the shell element with unit normals

in the x and y directions, respectively. Also, note that the terms involving (1 + z
R

)

represent the fact that length of the the curved sides of the cylindrical shell element

changes with z. See Figure 2-2.

The equilibrium equations are obtained by taking the summation of the force and

the moment vectors in the x; y and z directions. Upon examining Figure 2-2 one would

notice that due to the curvature of the shell we need to consider the z component of Nx

in writing the z-direction force equilibrium. Following Timoshenko, this component is

given as Nx(
1
R

+ @2w
@x2

+ 1
R
@u
@x

), [64, page450]1. A similar consideration needs to be made for

Qx in the x-direction force equilibrium. Other stress resultant components also a�ect all

three of the force equilibrium equations. However, all of these resultants are multiplied

by the derivatives of the displacements, therefore any e�ects on the equilibrium equations

due to the product of the other stress resultants and the derivatives of the displacements

are neglected. The only product that is kept in the equilibrium equations is the term

mentioned above in the z-direction equilibrium, as the magnitude of Nx prevents us from

neglecting its product with ( 1
R

+ @2w
@x2

+ 1
R
@u
@x

).

in the x-direction,
@Nx

@x
+
@Nyx

@y
� Qx

R
= 0 (2:11)

in the y-direction,
@Ny

@y
+
@Nxy

@x
= 0 (2:12)

1The displacements that the shell experiences are decomposed as u; v, and w, in x; y, and z-directions,
respectively.
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Figure 2-2: Cylindrical shell element
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in the z-direction,
@Qx

@x
+
@Qy

@y
+ Nx(

1

R
+
@2w

@x2
+

1

R

@u

@x
) = p (2:13)

where p(x; y) is the radially applied external pressure. The static equilibrium of the

moments are as follows:

about the x-axis,
@My

@x
+
@Mxy

@x
�Qy = 0 (2:14)

about the y-axis,
@Mx

@x
+
@Myx

@y
�Qx = 0 (2:15)

about the z-axis,

RNyx �RNxy + Mxy = 0 (2:16)

Transverse shear force resultants Qx and Qy can be eliminated from (2.11) and (2.13) by

using (2.14) and (2.15). Thus, these two equations take the following forms,

@Nx

@x
+
@Nyx

@y
� 1

R

@Mx

@x
� 1

R

@Myx

@y
= 0 (2.17)

@2Mx

@x2
+
@2Mxy

@x@y
+
@2Myx

@y@x
+
@2My

@y2
+ Nx(

1

R
+
@2w

@x2
+

1

R

@u

@x
) = p(x; y) (2.18)

Hooke's law establishes the isotropic elastic relations between the stresses and the

strains.

�x =
E

1 � �2
(�x + ��y) (2.19)

�y =
E

1 � �2
(�y + ��x) (2.20)

�xy =
E

2(1 + �)

xy (2.21)

where, �x and �y are the normal strains in x and y-directions, 
xy is the shear strain,

E is Young's modulus and � is the Poisson's ratio. These strains are related to the

displacements in the shell through geometric constraints, [20],

�x =
@u

@x
� z

R

1

R + z

@2w

@�2
+

w

R + z
(2.22)
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�y =
@v

@y
� z

@2w

@y2
(2.23)


xy =
1

R + z

@v

@�
+
R + z

R

@u

@x
� @2w

@�@y
(
z

R
+

z

R + z
) (2.24)

where, the circumferential coordinate is, x = R�. For a thin shell, variations through

the thickness, z, can be neglected with respect to the radius, R, (i.e. z � R). This

assumption applies to the stress resultants, (2.2- 2.10), and to strain displacement re-

lations, (2.22-2.24). If we further assume that the e�ect of bending moments on the

in-plane stress resultants is negligible, we can express the stress resultants in terms of

the displacements as follows:

Nx =
Ec

1 � �2
(
@u

@x
+
w

R
+ �

@v

@y
) (2.25)

Ny =
Ec

1 � �2
(
@v

@y
+ �

@u

@x
+ �

w

R
) (2.26)

Nxy = Nyx =
Ec

2(1 + �)
(
@v

@x
+
@u

@y
) (2.27)

Mx = D(
@2w

@x2
+ �

@2w

@y2
) (2.28)

My = D(
@2w

@y2
+ �

@2w

@x2
) (2.29)

Mxy = Myx = D(1 � �)
@2w

@x@y
(2.30)

See Table 2.1 for the de�nition of bending sti�ness, D. Another result of neglecting the

trapezoidal shape of the curved side (i.e. z � R) is that the force resultants Nxy and

Nyx, and the moment resultants Mxy and Myx become equal to each other, respectively.

However, this condition causes the violation of equation (2.16), and it is a weakness of

the theory [20].

In this thesis we are interested in the radial equilibrium of the cylindrical shell. There-

fore, we neglect the e�ect of the in-plane displacements u and v on the strain displacement

relations and the radial equilibrium. Based on this assumption Equations (2.25-2.30) are

simpli�ed, and carry only the terms involving the radial displacement, w, and its deriva-

tives.
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As the tape has an initial tension, Tx, in the undeformed state, the in-plane stress

resultant, Nx, can be written as a superposition of the initial tension, and the tension

due to shell displacement (Equation (2.25)), as follows:

Nx = Tx +
Ec

1 � �2
w

R
(2:31)

Thus when w = 0 the in-plane stress resultant in the x-direction becomes, Nx = Tx.

Using Equation (2.31), and the stress-resultants, (2.25-2.30), in the static equilibrium

equation in the z-direction, (2.18), and assuming that the product of displacement, w

with its derivatives is negligible, the following equation is reached,

Dr4w + Kw � Tx
@2w

@x2
= p� Tx

R
(2:32)

This is the equation of equilibrium of a cylindrical shell that is subject to radial pressure,

p, and circumferential tension, Tx. See Table 2.1 below for the de�nition of shell sti�ness,

K. Note that for a plate the shell sti�ness term becomes zero, but the rest of the terms

are the same as in Equation (2.32). See Section 2.3 for more on this issue.

The inertial forces are added to this equation by the virtue of D'Alembert's principle.

As the tape is in motion, the inertial forces are given by �a
D2w
Dt2

, where the material time

derivative, D
Dt

, is essential in properly accounting for transport e�ects of the tape velocity

in the Eulerian frame, [70]. For the case of zero tape velocity this reduces to di�erential,

@
@t

. The material time derivative of the displacement w is given as follows:

Dw

Dt
=
@w

@t
+ Vx

@w

@x
+ Vy

@w

@y
+ Vz

@w

@z
(2:33)

where, Vx; Vy and Vz are the tape's velocity components in the x; y and z directions,

respectively. By observing that Vy and Vz are zero for the tape transport problem the

equation of motion for the tape becomes,

Dr4w + Kw � Tx
@2w

@x2
+ �a(V

2
x

@2w

@x2
+ 2Vx

@2w

@x@t
+
@2w

@t2
) = p� Tx

R
(2:34)

Variables of this equation are given in Table 2.1.
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D Ec3

12(1��2) Bending sti�ness

K Ec
R2(1��2) Shell sti�ness

E Young's modulus of the shell
� Poisson's ratio of the shell
c Thickness of the shell
�a Areal density of the shell
Tx
R

Belt wrap pressure
R Shell radius
Tx Circumferential tension
Vx Shell velocity in the circumferential direction
t time
x Circumferential coordinate
y Axial coordinate
r4 Biharmonic operator

Table 2.1: Variables of the equation of motion of the cylindrical shell.

2.2.1 Boundary Conditions and Initial Conditions of the Shell

Equation

The boundary conditions of the tape are such that the bending moment My and the

equivalent shear force Vy vanish on the free edges along the lateral sides of the tape. The

equivalent shear force is a combination of the shear force, Qy, and the gradient of the

twisting moments, @Mxy

@x
. In terms of the radial displacements this is given as,

Qeq
y = D[

@3w

@y3
+ (2 � �)

@3w

@x2@y
] (2:35)

[64]. The tape is supported by two guide pins on the two side boundaries. This support

is modeled as a simple support in which the bending moment Mx and the displacement

w are zero. See Figure 2-1 for the locations of the free and simply supported boundaries.
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Simply Supported Sides:

Zero Moment for x = 0; Lx, and 0 � y � Ly

Mx = D[
@2w

@x2
+ �

@2w

@y2
] = 0 (2:36)

Zero Displacement for x = 0; Lx, and 0 � y � Ly

w = 0 (2:37)

Free Edges :

Zero Moment for y = 0; Ly, and 0 � x � Lx

My = D[
@2w

@y2
+ �

@2w

@x2
] = 0 (2:38)

Zero Equivalent Shear Force for y = 0; Ly, and 0 � x � Lx

Vy = D[
@3w

@y3
+ (2� �)

@3w

@x2@y
] = 0 (2:39)

Solution of Equation (2.34) also requires two initial conditions for integration in the time

domain.

Initial Conditions :

Initial Displacement for t = 0

w(x; y; 0) = wo(x; y) (2:40)

Initial Displacement Velocity for t = 0

@w(x; y; 0)

@t
= vo(x; y) (2:41)

Here, wo, vo are two spatial functions to be de�ned.

2.3 Tape Geometry

Figure 2-3 shows the side view of the tape con�guration. The tape is wrapped around

the cylindrical guide for a wrap angle of � = �L + �R. It extends tangentially away from
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the guide, outside this wrapping region, over the \entry" and an \exit" regions. It is

supported by guide pins which are placed at ( �X; �Y ) = (0; 0) and ( �X; �Y ) = (L; 0) as

shown in Figure 2-3.

The 
at and curved parts of the tape have two di�erent radii. In the �rst, and the

third regions the tape is 
at with an in�nite radius. In the second region the tape follows

the curvature of the guide and its radius is identical to that of the guide,

R =

8>>>>><
>>>>>:

1; 0 � x � Lx1; (region 1)

R; Lx1 � x � Lx2; (region 2)

1; Lx2 � x � Lx; (region 3)

(2:42)

In the �rst and third regions we model the tape as a plate, and in the second region

we model it as a cylindrical shell. This requires the shell sti�ness, K, to be modi�ed as

follows:

K =

8>>>>><
>>>>>:

0 0 � x � Lx1

Ec
R2(1��2) Lx1 � x � Lx2

0 Lx2 � x � Lx

(2:43)

The belt wrap pressure Tx
R

is zero on the 
at parts of the tape. We de�ne a new variable,

PBW , as follows:

PBW =

8>>>>><
>>>>>:

0 0 � x � Lx1

Tx
R

Lx1 � x � Lx2

0 Lx2 � x � Lx

(2:44)

In our approach the reference con�guration of the tape is the cylinder's surface in

the second region, and the lines connecting the tangency points to the far-end simple

supports in the �rst and third regions. See Figure 2-3. The reference con�guration for

the Reynolds equation, on the other hand, is on the guide surface. In order to distinguish

these two reference con�gurations two di�erent notations are used for each system. The

\x-coordinate" is on the unde
ected tape as described above, and it is related to the

tape. The \s-coordinate" is placed on the surface of the rigid guide, and it is related to

the Reynolds equation.
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s=L x=L

x1
s1

s1

s
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Y
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Deflected tape position

X = L

u(x)

z

Figure 2-3: Tape geometry for the large angle of wrap analysis. Shown are the unde
ected
(reference) and de
ected shapes.
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On the x-coordinate system, the total tape length between two supports is Lx. The

tangency points between the tape and the guide are located at x = Lx1 and x = Lx2.

On the s-coordinate system the counterparts of Lx; Lx1, and Lx2 are Ls; Ls1, and Ls2,

respectively.

The distance between the unde
ected tape and the guide is denoted by �(x), and it

is given as follows:

�(x) =

8>>>>><
>>>>>:

q
( �Xi � �Xz)2 + ( �Yi � �Yz)2; 0 � x � Lx1

0 Lx1 � x � Lx2q
( �Xi � �Xz)2 + ( �Yi � �Yz)2; Lx2 � x � Lx

(2:45)

See Figure 2-3 for the locations of points i and z.

2.4 The Modi�ed Reynolds Equation for Gas Lu-

brication

In this section the derivation of the modi�ed Reynolds equation for air lubrication is

presented. Lubrication takes place in very narrow gaps in which we can assume that

there is only boundary layer 
ow. This kind of 
ow is subject to very large velocity

gradients across the depth of the lubricant, and therefore it is dominated by the viscous

forces. The ratio of the inertial 
uid forces (the �rst group of terms in Equation (2.46))

to viscous 
uid forces (the second group of terms), is given by the modi�ed Reynolds

number [27],

Re� =
�U

B

h2

�U
(2:46)

In this relation � is the 
uid density, U is the bearing velocity, B is a characteristic

bearing length, h is a characteristics bearing clearance and � is the lubricant viscosity.

The modi�ed Reynolds number should be, Re� � 1, for a 
ow to be dominated by

viscous forces.

In the lubrication zone the 
uid adheres to the lubricated surfaces. This situation

creates a no-slip boundary condition. If the lubricant is modeled by a Newtonian 
uid,
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h

x

z
y

Vx

Tape

Figure 2-4: The coordinate system for the lubrication of a tape.

(in which the velocity gradient is linearly related to shearing stress in the 
uid), then the

momentum equations corresponding to such a 
uid can be integrated through the gap

thickness and combined with the mass continuity equation to give a single equation that

governs the pressure distribution in a lubrication process. The equation derived this way

is called the Reynolds equation.

However, when the lubrication takes place in clearances that are comparable to molec-

ular mean free path of the lubricant, the 
uid velocity on the boundaries no longer satis�es

the no-slip conditions, and should be modi�ed with the slip velocity2. This was suggested

by Burgdorfer (1959) [13], and later modi�ed by Hsia (1983), [33], and Mitsuya (1992),

[45]. The equation obtained by using boundary conditions corrected for slip is called the

modi�ed Reynolds equation. The measure of the molecular rarefaction is the Knudsen

number, Kn,

Kn =
�

h
(2:47)

where � is the length of the mean free path of the lubricant molecules. The unmodi�ed

Reynolds equation is valid for Kn < 0:01 where as the modi�ed Reynolds equation can

2The slip velocity is de�ned in the next section.
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be used for higher Knudsen numbers3.

The assumptions used in the derivation of the modi�ed Reynolds equation, given in

the next section, are summarized as follows [27]:

1. The 
uid is Newtonian.

2. Vertical velocity components in the 
uid are negligible compared to horizontal com-

ponents.

3. Inertial terms in the momentum equation are negligible compared to viscous terms.

4. The 
ow is isothermal.

5. The gas behaves as an ideal gas, i.e. � / p, where p is the pressure.

2.4.1 Derivation of the Modi�ed Reynolds Equation

The Navier-Stokes equations govern the momentum balance in a given control volume of

a lubricating 
uid. By assuming that the lubricating 
uid is in steady state, the inertial

terms of the Navier-Stokes equations can be neglected. Considering that the thickness

of the lubricating �lm is much smaller compared to its length and width, we omit the

z-direction variables and pressure gradients. We also neglect the body forces acting on

the 
uid. With these simpli�cations the Navier-Stokes equations reduce to the following

momentum equations,

@p

@x
=

@

@z
(�
@�u

@z
) (2.48)

@p

@y
=

@

@z
(�
@�v

@z
) (2.49)

where, p is the 
uid pressure, �u, and �v are the 
uid velocities in the x and y-directions,

respectively, and � is the viscosity of the 
uid. The continuity equation determines the

balance of mass in a control volume,

@��u

@x
+
@��v

@y
+
@� �w

@z
+
@�

@t
= 0 (2:50)

3Gans showed that the �rst order correction can be used for arbitrarily small clearances, [23].
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In this equation �w denotes the 
uid velocity in the z-direction. When the lubricant is gas

the density can be interchanged with pressure according to the �fth assumption stated

at the end of the last section.

In the foil bearing problem the Knudsen number becomes considerably high, due to

low 
ying height requirements. For this reason the slip correction factors as suggested, in

the context of Reynolds equation, by Burgdorfer in 1959 are used to modify the no-slip

boundary conditions [13]. The corrections derived by Burgdorfer came to be known as the

�rst order corrections. Later Hsia and Domoto introduced the second order correction in

1983 [33], and Mitsuya introduced the 1.5-order correction in 1993 [45]. The slip velocity

considering the second order e�ects is given as follows:

�uslip jz=0 = (
2� �

�
)�[

@�u

@z
� �

2

@2�u

@z2
]z=0 (2.51)

�uslip jz=h = (
2� �

�
)�[�@�u

@z
� �

2

@2�u

@z2
]z=h (2.52)

where, � is the momentum transfer ratio when an air molecule strikes a surface, and �

is the length of the mean free molecular path of the lubricating 
uid. The combined

coe�cient (2��
�

)� represents the distance the wall should be moved back to recover no-

slip conditions, and it is called the coe�cient of slip, [35]. The slip velocities for �v are

similar to above equations. We consider the �rst order correction term in this study.

Then boundary conditions for the 
uid velocity become,

at z = 0 �u(x; y; 0) = Vx jz=0 + �uslip jz=0
�v(x; y; 0) = Vy jz=0 + �vslip jz=0

at z = h �u(x; y; h) = Vx jz=h + �uslip jz=h
�v(x; y; h) = Vy jz=h + �vslip jz=h

(2:53)

When we model linear recording with the foil bearing problem, we take the lower surface

of the bearing as stationary and the upper surface moving only in the x-direction. How-

ever, for helical-scan recording both lower and upper surfaces are in motion. Therefore,

to retain generality we keep all of the four surface speeds in the analysis, and we de�ne
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the following,

V G
x = Vx jz=0
V G
y = Vy jz=0
Vx = Vx jz=h
Vy = Vy jz=h

(2:54)

The superscript G is used to denote the guide. After this de�nition, the boundary

conditions for the velocities take their �nal form,

at z = 0 �u(x; y; 0) = V G
x + �@�u

@z
jz=0

�v(x; y; 0) = V G
y + �@�v

@z
jz=0

at z = h �u(x; y; h) = Vx � �@�u
@z
jz=h

�v(x; y; h) = Vy � �@�v
@z
jz=h

(2:55)

Using these boundary conditions the momentum equations can be integrated through

the thickness of the gap to give,

�u =
1

2�

@p

@x
[z2 � zh� h�] + (Vx � V G

x )[
z + �

2� + h
] + V G

x (2.56)

�v =
1

2�

@p

@y
[z2 � zh� h�] + (Vy � V G

y )[
z + �

2� + h
] + V G

y (2.57)

The momentum transfer ratio, �, depends on the surface characteristics, and it is an

experimentally determined constant. We are not aware of any study that has determined

the momentum transfer ratio between air and the magnetic recording tape. Therefore, in

Equations (2.55-2.57) the momentum transfer ratio is taken as one. This choice represents

a case where all of the incident momentum of the air molecule is transferred to the surface,

[35]. The modi�ed Reynolds equation is obtained by using (2.56, 2.57) in the continuity

equation and then integrating the result in the z-direction,

@
@x

[h3p @p
@x

(1 + 6�a
h

)] + @
@y

[h3p@p
@y

(1 + 6�a
h

)] =

12�a
@ph
@t

+ 6�a(Vx + V G
x )@ph

@x
+ 6�a(Vy + V G

y )@ph
@y

(2:58)

Note that the subscript a indicates that the variables have the properties of air. The

variables used in this equation are explained in Table 2.2. The �rst term on the right
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p Lubricant pressure
h Bearing clearance
Vx; Vy Tape speeds in x and y directions.
V G
x ; V G

y Guide speeds in x and y directions.
�a Air viscosity
�a Mean free path length of air

Table 2.2: Variables of the Reynolds equation

hand side of Equation (2.58) is called the squeeze term. It characterizes the contribution

of relative motion normal to the bearing surface. The second term on the right hand side

is the wedge term, representing the contribution of the shape of the 
uid �lm and the

tangential motion of the surfaces [28].

2.4.2 Boundary Conditions

The boundary conditions of the Reynolds equation are such that the pressure is ambient,

Pa, outside the head region and along the edges of the tape.

p(0; y) = p(Lx; y) = p(x; 0) = p(x;Ly) = Pa (2:59)

2.5 Tape-Guide Spacing, h

The Reynolds equation and the tape equation are coupled by the variable h. This variable

represents the distance between the tape and the surface of the rigid guide. It is de�ned

as follows:

h(x; y; t) = w(x; y; t) + �(x; y) (2:60)

Note that in this de�nition the tape de
ection, w, is added to guide shape, �, instead

of being subtracted which is usually the case in the formulations in which the reference

con�guration is taken as the line connecting the simple supports, i.e. �Y = 0 in Figure 2-3.
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2.6 Contact Pressure

Under some operating conditions the distance between the tape and the rigid guide

becomes as low as the mean value of the surface roughness height of the matching surfaces.

Such conditions include, low tape speeds and high tape tensions. In such cases the tape

is supported by the combined action of the contact pressure, Pc, and air pressure, p.

In our simulations the contact was encountered at the free edges of the tape where the

net air pressure is zero. In this section two approaches that can be used to calculate a

contact pressure value based on the distance between two surfaces are presented.

As the two surfaces approach each other the �rst contact occurs between the asperities.

The behavior of a single asperity, based on the elastic, Hertzian-contact, is known from

the study of Greenwood and Williamson, [26]. In this model all of the asperities are

assumed to have spherical tips with radius, Rp and their distribution on the surface is

assumed to follow a known statistical distribution, �. The contact pressure, thus, can be

expressed as a function of the tip radius, the mean surface roughness height, the density

of the asperities, �, the elastic moduli, E;Eguide, and the Poisson's ratios, �; �guide; of the

two surfaces, and the tape-guide separation h,

Pc =
4

3
(�tRp�)Ec(

�t
Rp

)1=2
Z 1
h

(z � h)3=2�(z)dz (2:61)

In general, the mean surface roughness height, �t, of the back side of a magnetic recording

tape is considerably higher than the surface roughness of a steel guide. Therefore, in this

study we neglect the latter. Another approach would be to compound the two roughnesses

into one value as suggested by Bhushan, [8]. That would be a negligibly small change on

�t. The composite modulus, Ec, is given as

E�1c =
1 � �2

E
+

1 � �2guide
Eguide

(2:62)

Bhushan used a Gaussian distribution for the statistical distribution of the asperities and

used tabulated values for integration, and �tted the resulting curves into a power form
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using least squares �t [8]. The equation for the contact pressure then becomes,

Pc = 0:57(�tRp�)Ec(
�t
Rp

)1=210�(
h

1:4�t
)1:54 (2:63)

Lacey, on the other hand, used an experimental approach to directly measure the

contact pressure between the tape and a guide surface [39]. He used an interferometric

technique in which he measured the tape-guide spacing, as the tape is statically pushed

against a glass guide with varying tensions. The results are plotted and then curve-�tted

to a second order polynomial, as follows:

Pc =

8><
>:

(
p
Pm
�t

(�t � h))2 if h � �t

0 if h � �t
(2:64)

where, Pm is the pressure required to force the spacing, h to zero. The values of Pm and

�t for chromium dioxide tape are reported as 4:72MPa and 93:4nm, respectively, [39].

We feel that the empirical relation given in Equation (2.64) would represent the contact

in magnetic tapes better than the theoretical relation given by Equation (2.63), because

it directly measures some of the assumptions regarding asperity densities, �, and the

uniformity of the asperity radius, Rp. This function is used for calculating the contact

pressure on the right hand side of the equation of motion of the tape, (7.1).



Chapter 3

Solution Methods

3.1 Introduction

In this chapter the numerical approaches that we used to solve the two governing equa-

tions of our model of the foil bearing problem are presented. In order to solve the

equation of motion of the cylindrical shell it is �rst put into a semidiscrete form using

second order accurate �nite di�erence equations. Then it is integrated in time using the

so called \�-family" of methods (Hilbert-Hughes-Taylor method), [34]. Sections 3.2 and

3.3 show this development. Reynolds equation is solved using the alternating direction

implicit (ADI) method, which is explained in Section 3.5. The solution technique for the

Reynolds equation follows White and Nigam, [68]. Finally the algorithm for coupling the

two equations in the transient domain is given in Section 3.6. This chapter is prepared

in such a way that using the contained information the reader would be able reconstruct

the building blocks of our solution method.

31
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3.2 Spatial Discretization of the Equation of Mo-

tion of the Tape

The equation of motion of the tape is repeated below. Note that the biharmonic operator

is given in its Cartesian form,

D[
@4w

@x4
+ 2

@4w

@x2@y2
+
@4w

@y4
] + Kw + (�aV

2
x � Tx)

@2w

@x2
+ 2�aVx

@2w

@x@t
+ �a

@2w

@t2
= F (3:1)

In this equation F represents sum of the gage pressure, p�Pa, the contact pressure, Pc,

and the belt wrap pressure, PBW ,

F = p + Pc � Pa � PBW (3:2)

The belt wrap pressure, PBW , and the shell sti�ness, K, are de�ned by Equations (2.44)

and (2.43), respectively.

The discretization process consists of replacing the derivatives of Equation (3.1) with

their �nite di�erence equivalents, as given in Equations (3.8-3.14), and discretizing the

tape into a rectangular mesh of nodes.

3.2.1 The Finite Di�erence Mesh

The tape is discretized to M +2 nodes in the x-direction and N nodes in the y-direction.

See Figure 3-1. First and last of the M + 2 nodes in the x-direction are placed on the

simply supported boundaries. The displacements of these boundaries are known from the

boundary conditions. Therefore, these two nodes fall out of the list of unknown nodes.

The number of nodes in the x-direction at which displacement is calculated becomes

M , and the number of unknowns in the y-direction is N . This discretization gives rise

to NEQ = N �M nodes placed on the tape. Note that in Figure 3-1 the nodes at

which the displacements are unknown are indicated by \+", whereas the nodes with

known displacements are indicated by \�". The spacing between the nodes in the x and
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y-directions are given by,

�x =
Lx

M + 1
(3.3)

�y =
Ly

N � 1
(3.4)

The location of a point (x; y) is given by the following pair on the discretized tape,

(x; y) ! (i�x; (j � 1)�y) (3:5)

where, i and j are the nodes in the x and y-directions. They range as follows,

1 � i �M

1 � j � N
(3:6)

It is cumbersome to use (i; j) pairs to locate a node on the discretized tape from pro-

gramming point of view. For this reason we assigned a node number, k, to every point

on the discretized tape. The following numbering scheme is used:

k = (i� 1)N + j where 1 � i �M and 1 � j � N (3:7)

The point k = 1, or equivalently (i; j) = (1; 1), corresponds to the lower left corner,

(�x; 0), of the tape. The node numbers are augmented in the y-direction. This scheme

results in the smallest half band width (2N) for the sti�ness matrix, that is introduced

later in this chapter, provided that N < M .

3.2.2 The Finite Di�erence Equations

The tape equation, (3.1), and the boundary conditions, (2.36-2.39), are discretized in

space by replacing the derivatives with the following second order accurate, O(�x2),

�nite di�erence formulas, [61],

@w

@x
' 1

2�x
(wk�N � wk+N ) (3.8)

@2w

@x2
' 1

�x2
(wk�N � 2wk + wk+N ) (3.9)
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Edge
S.S.

Edge
S.S.

Free Edge
i=M

j=1

j=N

Free Edge

∆

∆

x

y

i=k=1

k=N k=N M

Region 2Region 2 Region 1

x
y

Figure 3-1: Discretized tape where x is the circumferential and y is the axial direction.
The \+" indicates nodes at which the displacements are unknown. At \�"s displacements
are known.

@4w

@x4
' 1

�x4
(wk�2N � 4wk�N + 6wk � 4wk+N + wk+2N) (3.10)

@3w

@y3
' 1

2�y3
(�wk�2 + 2wk�1 � 2wk+1 + wk+2) (3.11)

@3w

@x2@y
' 1

2�x2�y
(wk�N+1 � wk�N�1 � 2wk+1 + 2wk�1 +

wk+N+1 � wk+N�1) (3.12)

@4w

@y4
' 1

�y4
(wk�2 � 4wk�1 + 6wk � 4wk+1 + wk+2) (3.13)

@4w

@x2@y2
' 1

�x2�y2
(wk�N�1 � 2wk�N + wkN+1 � 2wk�1 + 4wk

�2wk+1 + wk+N�1 � 2wk+N + wk+N+1) (3.14)

The �rst and second derivatives of w with respect to time, t, are not a�ected by the

substitution of the �nite di�erence approximations and they are retained in the equations,

given below, as _wk and �wk, respectively.

On the free edges of the tape, y = 0; Ly, substitution of the �nite di�erence equa-
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tions gives rise to two rows of \�ctitious" nodes (not shown in Figure 3-1). However,

these nodes also appear in the discretized form of the free edge boundary conditions,

Equations (2.38) and (2.39). Therefore, the �ctitious nodes are eliminated from the tape

equation by using the free edge boundary conditions.

On the simply supported edges of the tape, x = 0; Lx, the displacement is known

from the boundary condition, (2.37), therefore, the tape equation is not evaluated there.

Evaluation of the zero moment boundary condition, (2.36), on the pin boundaries, and

the tape equation at x = �x;Lx ��x gives rise to one column of �ctitious nodes (not

shown in Figure 3-1, either) extending beyond the simply supported boundaries. These

nodes are eliminated from the tape equation as described above. Thus, for each node on

the tape, an ordinary di�erential equation (ODE) in time, t, is obtained. Elimination of

the �ctitious nodes is straight forward but laborious. For this reason only the resulting

equations are shown below. Note that nodes a�ected by the simple support boundary

conditions are in Region 2. All of the other nodes are in Region 1.

Region 1: 2N + 1 � k � N(M � 2)

Lower Free Edge, (2N + 1; 3N + 1; : : : ; (M � 3)N + 1):

Q1(wk�2N + wk+2N) + Q2wk�2 + Q3(wk+N�1 + wk�N�1) + Q4(wk�N + wk+N )+

Q5wk�1 + (Q6 + QM2)wk + Qt2( _wk+N � _wk�N ) + Qt1 �wk = Fk

(3:15)

Nodes Adjacent to the Lower Free Edge, (2N + 2; 3N + 2; : : : ; (M � 3)N + 2) :

Q7(wk�2N + wk+2N ) + Q8wk�2 + Q9wk+1 + Q10(wk�N+1 + wk+N+1)+

(Q11 + QM2)wk + Q12(wk�N�1 + wk+N�1) + (Q13 + QM1)(wk�N + wk+N )+

Q14wk�1 + Qt2( _wk+N � _wk�N ) + Qt1 �wk = Fk

(3:16)

Middle Nodes,
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(k = (2N + 3; : : : 3N � 2); (3N + 3; : : :4N � 2); : : : ((M � 3)N + 3; ::(M � 2)N � 2)) :

Q7(wk�2N + wk+2N ) + Q8(wk�2 + wk+2) + Q12(wk�N�1 + wk�N+1 + wk+N�1+

wk+N+1) + (Q15 + QM2)wk + (Q13 + QM1)(wk�N + wk+N ) + Q14(wk�1 + wk+1)+

Qt2( _wk+N � _wk�N ) + Qt1 �wk = Fk

(3:17)

Nodes Adjacent to the Upper Free Edge, (k = 3N � 1; 4N � 1; : : : ; (M � 2)N � 1):

Q7(wk�2N + wk+2N ) + Q8wk+2 + Q9wk�1 + Q10(wk�N�1 + wk+N�1)+

(Q11 + QM2)wk + Q12(wk�N+1 + wk+N+1) + (Q13 + QM1)(wk�N + wk+N )+

Q14wk+1 + Qt2( _wk+N � _wk�N ) + Qt1 �wk = Fk

(3:18)

Upper Free Edge, (k = 3N; 4N; : : : ; (M � 2)N):

Q1(wk�2N + wk+2N ) + Q2wk+2 + Q3(wk�N+1 + wk+N+1) + (Q4 + QM1)(wk�N+

wk+N ) + Q5wk+1 + (Q6 + QM2)wk + Qt2( _wk+N � _wk�N ) + Qt1 �wk = Fk

(3:19)

Region 2: 1 � k � 2N and MN � 2N + 1 � k �MN

In order to save space we will only give the equations written for the left-hand -side simple

support. The equations that apply to the right-hand-side simple support can be obtained

by replacing N with �N , and wL with wR in the below equations. The displacements of

the left and right hand side supports are given by wL and wR as shown in Figure 2-3.

Free lower edge, k = 1:

Q1wk+2N + Q2wk+2 + Q3wk+N+1 + (Q4 + QM1)wk+N + Q5wk+1+

(Q6 + QM2 �Q1)wk + Qt2( _wk+N � _wk�N ) + Qt1 �wk

= Fk � (2Q1 + Q3 + Q4 + QM1)wL

(3:20)
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k = 2 :

Q7wk+2N + Q8wk+2 + Q9wk�1 + Q10wk+N�1 + (Q11 + QM2 �Q7)wk + Q12wk+N+1+

(Q13 + QM1)wk+N + Q14wk+1 + Qt2( _wk+N � _wk�N ) + Qt1 �wk

= Fk � (2Q7 + Q10 + Q12 + Q13 + QM1)wL

(3:21)

Middle nodes, 3 � k � N � 2:

Q7wk+2N + Q8(wk�2 + wk+2) + Q12(wk+N�1 + wk+N+1) + (Q15 + QM2 �Q7)wk+

(Q13 + QM1)wk+N + Q14(wk�1 + wk+1) + Qt2( _wk+N � _wk�N ) + Qt1 �wk

= Fk � (2Q7 + 2Q12 + Q13 + QM1)wL

(3:22)

k = N � 1 :

Q7wk+2N + Q8wk�2 + Q9wk+1 + Q10wk+N+1 + (Q11 + QM2 �Q7)wk + Q12wk+N�1+

(Q13 + QM1)wk+N + Q14wk�1 + Qt2( _wk+N � _wk�N ) + Qt1 �wk

= Fk � (2Q7 + Q10 + Q12 + Q13 + QM1)wL

(3:23)

Free upper edge, k = N :

Q1wk+2N + Q2wk�2 + Q3wk+N�1 + (Q4 + QM1)wk+N + Q5wk�1 + (Q6 + QM2

�Q1)wk + Qt2( _wk+N � _wk�N ) + Qt1 �wk = Fk � (2Q1 + Q3 + Q4 + QM1)wL

(3:24)

k = N + 1 :

Q1wk+2N + Q2wk+2 + Q3(wk�N+1 + wk+N+1) + (Q4 + QM1)(wk+N + wk�N )+

Q5wk+1 + (Q6 + QM2)wk + Qt2( _wk+N � _wk�N ) + Qt1 �wk = Fk �Q1wL

(3:25)

k = N + 2 :

Q7wk+2N + Q8wk+2 + Q9wk�1 + Q10(wk�N�1 + wk+N�1)+

Q12(wk+N+1 + wk�N+1) + Q14wk+1 + (Q13 + QM1)(wk�N + wk+N )+

(Q11 + QM2)wk + Qt2( _wk+N � _wk�N ) + Qt1 �wk = Fk �Q7wL

(3:26)
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Middle nodes, N + 3 � k � 2N � 2:

Q7wk+2N + Q8(wk�2 + wk+2) + Q12(wk+N�1 + wk+N+1 + wk�N�1 + wk�N+1)+

(Q15 + QM2)wk + (Q13 + QM1)(wk�N + wk�N ) + Q14(wk�1 + wk+1)+

Qt2( _wk+N � _wk�N ) + Qt1 �wk = Fk �Q7wL

(3:27)

k = 2N � 1 :

Q7wk+2N + Q8wk�2 + Q9wk�1 + Q10(wk�N+1 + wk+N+1)+

Q12(wk+N�1 + wk�N�1) + Q14wk�1 + (Q13 + QM1)(wk�N + wk+N )+

(Q11 + QM2)wk + Qt2( _wk+N � _wk�N ) + Qt1 �wk = Fk �Q7wL

(3:28)

k = 2N :

Q1wk+2N + Q2wk�2 + Q3(wk+N�1 + wk�N�1) + (Q4 + QM1)(wk+N + wk�N )+

Q5wk�1 + (Q6 + QM2)wk + Qt2( _wk+N � _wk�N ) + Qt1 �wk = Fk �Q1wL

(3:29)

3.2.3 Constants of the Tape Equation

The constants that are used in the above equations are given in this section. They are

grouped according to their origins from the governing tape equations.

The Biharmonic Operator:

Q7 = D[ 1
�x4 ]

Q8 = D[ 1
�y4

]

Q12 = D[ 2
�x2�y2 ]

Q13 = D[�4( 1
�x4 + 1

�x2�y2 )]

Q14 = D[�4( 1
�y4 + 1

�x2�y2 )]

Q15 = D[6( 1
�x4

+ 1
�y4

) + 8
�x2�y2

]

(3:30)
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Nodes at the Free Edges:

Q1 = D[1��
2

�x4
]

Q2 = D[ 2
�y4 ]

Q3 = D[ 4�2�
�x2�y2

]

Q4 = D[ 2�
�y4 � 4(1��2)

�x4 � 2(2��)
�x2�y2 ]

Q5 = D[ 4��8
�x2�y2

� 4
�y4

]

Q6 = D[ 2
�y4 + 8�8�

�x2�y2 + 6�6�2
�x4 ]

(3:31)

Nodes Adjacent to Free Edges:

Q7 = Same as above

Q8 = Same as above

Q9 = D[( 2
�y4

+ 2�
�x2�y2

)� 4
�y4

� 4
�x2�y2

]

Q10 = D[ 2��
�x2�y2

]

Q11 = D[ 6
�x4

+ 6
�y4

+ 7
�x2�y2

]

(3:32)

Membrane and Shell Terms:

QM1 = �aV 2
x�Tx
�x2

QM2 = �2�aV 2
x�Tx
�x2

+ K
(3:33)

Cross Derivative and Inertial Terms:

Qt1 = �a

Qt2 = 2�aVx
�x

(3:34)

3.3 Semidiscrete Form of the Equation of Motion

of the Tape

The above equations, (3.15-3.29), written for all of the nodes, constitute a set of NEQ

equations. This set of equations can be put into the following matrix form.

[K]fwg+ [G]
d

dt
fwg+ [M ]

d2

dt2
fwg = fFg+ ffbg (3:35)
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This equation is the semidiscrete form of the equation of motion. The matrices and the

vectors of Equation (3.35) are,

[K] : Sti�ness matrix

[G] : Transport matrix

[M ] : Mass matrix

fwg : Displacement vector

d
dt
fwg : Displacement velocity vector

d2

dt2
fwg : Displacement acceleration vector

fFg : External force vector

ffbg : Boundary condition vector

The sti�ness matrix contains terms representing the bending and membrane terms of

the tape equation. It is a banded matrix with a total band width of 4N + 1, and it is

composed of the the coe�cients of wk's of Equations (3.15-3.29).

The transport matrix contains the terms that represent the cross derivative term,

@2

@x@t
. [G] is a banded matrix with a band width 2N + 1. It is composed of the terms that

are multiplied by _wk in Equations (3.15-3.29).

The mass matrix represents the inertial acceleration term of the tape's equation of

motion. It is a diagonal matrix populated with tape mass. It is composed of the terms

that are multiplied by �wk in Equations (3.15-3.29). These three matrices are NEQ�NEQ

square matrices.

The three vectors involving fwg and its time derivatives represent the values of these

variables at each node of the discretized tape. At this point these vectors are spatially

discrete but temporally continuous.

The external force vector, ffbg, contains the terms arising from discretizing the simple

support boundary conditions. They are given on the right hand sides of equations (3.20-

3.29). This vector vanishes when wL = wR = 0. Also, note that the vector ffbg is time

invariant.
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3.4 Numerical Solution of the Semidiscrete Equa-

tion of Motion

Once the continuous partial di�erential equation (PDE), (3.1), is reduced to a set of

ordinary di�erential equations, as given by (3.35), a practical way to solve this set of

equations is to use numerical time integration. This technique should control the high

frequency noise of the response, which is a result of the spatial discretization of the PDE

[31]. The analysis of this situation for the equation of motion of the cylindrical shell is

given in Chapter 4. The method chosen in this study, the �-method, or otherwise known

as Hilber-Hughes-Taylor method, possesses good high frequency dissipation behavior.

In the �-method the semidiscrete system is further discretized in the time domain.

The temporally continuous variables fwg; f _wg, and f �wg become the following discrete

variables fwng; fvng, and fang calculated at time step n, respectively. If the upper time

limit on the time integration is � and the total number of discrete time steps are NT then

the time steps size is �t = �
NT

. The initial value problem given in Equation (3.35) thus

becomes,

[K]fwn+1g+ [G]fvn+1g+ [M ]fan+1g = fF n+1g+ ffbg (3:36)

with the following initial conditions,

fw(0)g = fwog (3.37)

fv(0)g = fvog (3.38)

3.4.1 Concepts Related to Discrete Time Integration

The numerical time integration of a semidiscrete system is expected to converge to the

analytical solution of the PDE. The convergence is stated for a �xed � and �t = �
NT

as,

wn ! w(t) as �t! 0

It is shown that the necessary and su�cient conditions for convergence of the numerical

integration scheme that we are considering, are stability and consistency [7]. The stability
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of the numerical solution procedure can be de�ned as its ability to predict a bounded

(displacement) response for t 2 [0; � ]. A consistent numerical solution has a bounded

truncation error "(t)1 for t 2 [0; � ].

If the numerical integration scheme uses the variables (fwn+1g; fvn+1g, fan+1g) of the

yet unknown time step n + 1 to determine them an implicit integration is obtained. On

the other hand, if the integration scheme uses only the information from the previous

time steps the integration scheme is called explicit. Implicit schemes are generally un-

conditionally stable, but they have the disadvantage of requiring matrix \inversions"2.

If the system parameters such as tension or velocity are time dependent then inversion

is required at each time step making the procedure computationally costly. The explicit

schemes, on the other hand, do not require any matrix inversion, hence they have faster

execution times per time step, but they are only conditionally stable. Stability requires

small time steps making the total execution times generally longer.

3.4.2 The �-method for Time Integration

The �-method was developed speci�cally to ful�ll the need for a time integration method

which can add controlled numerical damping, without sacri�cing the accuracy of the time

integration, [31]. The Newmark method, which is similar to the �-method, su�ers an

accuracy drop to O(�t) when its numerical damping is enabled, [34].

In the �-method the semidiscrete equation of motion becomes,

(1 + �)[K]fwn+1g � �[K]fwng+ (1 + �)[G]fvn+1g � �[G]fvng+ [M ]fan+1g =

(1 + �)fF n+1g � �fF ng+ ffbg (3.39)

where, � is the numerical damping parameter. The displacements and velocities for time

step n + 1 are approximated by,

fwn+1g = f ~wn+1g+ ��t2fan+1g (3.40)

1The di�erence between the exact solution of the di�erential equation and the numerical solution is
the truncation error, "(t) = Kw(t) + G _w(t) +M �w(t) �Kwn

�Gvn �Man

2See Section 3.4.3.
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fvn+1g = f~vn+1g+ 
�tfan+1g (3.41)

where, � and 
 are the parameters controlling the accuracy and stability of the time

integration procedure, and f ~wn+1g and f~vn+1g are the predictors de�ned as follows,

f ~wn+1g = fwng+ �tfvng+ (
1

2
� �)�t2fang (3.42)

f~vn+1g = fvng+ (1� 
)�tfang (3.43)

3.4.3 Implicit Integration Algorithm

By substituting Equations (3.40) and (3.41) into (3.39) the acceleration form of an im-

plicit algorithm is obtained.

1. Predict displacement and velocity vectors by f ~wn+1g and f~vn+1g.
If n = 0 then use the initial conditions fwog, and fvog.

2. Obtain the acceleration vector at time n+1, by solving

[K]eqfan+1g = ffn+1geq (3:44)

3. Calculate fwn+1g and fvn+1g vectors at time n+ 1 by using Equations (3.42) and

(3.43).

4. Increment time by �t, let n + 1 ! n, and go to Step 1.

In the preceding the equivalent sti�ness matrix, [K]eq, and the equivalent force vector,

ffgeq, are given by the following expressions,

[K]eq =
h
[M ] + (1 + �)
�t[G] + (1 + �)��t2[K]

i
(3.45)

ffn+1geq = (1 + �)fF n+1g � �fF ng � (1 + �)([G]f~vn+1g+ [K]f ~wn+1g) +

�([G]fvgn + [K]fwgn) + ffbg (3.46)

If the parameters are chosen in the following range, for this implicit �-method,

� 2 [�1

3
; 0]; 
 = 1

2(1� 2�); and � = 1
4(1� �)2 (3.47)
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an unconditionally stable second-order accurate scheme results. Decreasing � increases

the amount of numerical dissipation [7]. The matrix inversion to obtain fan+1g from

Equation (3.44), in the true sense of matrix algebra, is a costly operation. For this

reason LU decomposition is used to factor the equivalent sti�ness matrix, [K]eq. The

solution is then obtained by multiplying this factorized matrix with the equivalent force

vector, ffn+1geq, for each time step provided that [K]eq is time invariant. We use the

implicit time integration in Chapter 5 where we study the shell's response to a point

load.

Note that for � = 0, the �-method reduces to Newmark's family of methods [7]. For

completeness we are giving the limits for parameters � and � for unconditional stability

for the Newmark method,


 � 1
2 ; � � (
 + 1

2
)2

4
(3.48)

Selecting 
 = 1=2 and � = 1=4 gives a second order accurate system without any nu-

merical damping. Choosing the parameters in the range given by Equations (3.48) �lters

out high frequencies, however, if 
 6= 1=2 the order of accuracy of the solution drops to

O(�t).

3.4.4 Explicit Integration Algorithm

The high volume of matrix multiplications necessary for an implicit algorithm becomes

burdensome for the foil bearing problem especially when some of the problem parameters

such as tape tension, Tx, and speed, Vx are time dependent3. Therefore, to speed up the

calculations in the solution of the foil bearing problem we use an explicit method. In order

to obtain the explicit algorithm the following replacement is made in Equation (3.39) [34],

fwn+1g ! f ~wn+1g (3.49)

fvn+1g ! f~vn+1g (3.50)

3Tape tension and speed are represented in the equivalent sti�ness matrix, [K]eq. When they are
time dependent, for an implicit method this matrix needs to be factorized with the LU decomposition
at each time step.
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As the predictors, f ~wn+1g; f~vn+1g, consist of terms which belong to the known time step

n they can be transformed to the right hand side of Equation (3.39). Thus, the only

unknown for time step n+ 1 becomes fan+1g which can be obtained by a simple division

operation, since [M ] is a diagonal matrix. The explicit time integration algorithm is as

follows:

1. Predict displacements and velocities using f ~wn+1g and f~vn+1g.
If n = 0 use the initial conditions, fwog, and fvog.

2. Solve for accelerations at time step n + 1 using,

fan+1g = [M ]�1[(1 + �)fF n+1g � �fF ng � (1 + �)([G]f~vn+1g+ [K]f ~wn+1g)
+�([G]fvng+ [K]fwng)] (3.51)

3. Calculate fwn+1g and fvn+1g using equations (3.40) and (3.41).

4. Increment time by �t, let n + 1 ! n, and go to Step 1.

Analysis of the stability of the �-method with the above explicit algorithm is not

known to us at this point4. However, the stability analysis of the explicit algorithm

de�ned by Equations (3.40-3.43) and (3.51), for Newmark's method, (� = 0,) is given

by Hughes, [34, pp. 559-561]. There are no unconditionally stable explicit algorithms

available in the Newmark family. The stability conditions of the explicit algorithm, with

� = 0, are as follows:


 � 1

2
(3.52)

!�t � 
crit � (
2



)1=2 (3.53)

Stability is independent of the choice of � which is chosen as,

� =
(
 + 1

2)1=2

4
(3:54)

4We were able to obtain results with � = �0:05 and corresponding � and 
 using Equation (3.47).
Smaller � values resulted in catastrophic runs.
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As the PDE representing the equation of motion of the tape, (3.1), is a highly dis-

persive one, the critical frequency of the tape equation does not attain a single value5.

Therefore, we determined the critical value for the time step size, �t, for the coupled

problem by using an implicit tape equation solver in the coupled algorithm6. The critical

time step, �t, was found to be 0:15�s for the coupled problem with the implicit tape

integration algorithm. Time steps larger than this value caused unsuccessful runs.

3.5 Numerical Solution of the Reynolds Equation

Solving the transient form of the Reynolds equation is an e�ective method for determining

the steady state solution of a bearing as well as obtaining a time dependent response.

Castelli and Pirvics [15], summarize methods used until 1968 for the solution of the

transient Reynolds equation. Possible solution methods deal with the time derivative in

\explicit", \implicit" and \semi-implicit"7 manner. Moreover, they point out that alter-

nating direction schemes, in which the derivatives in di�erent spatial directions are dealt

with separately, mixed with the latter two temporal di�erentiation schemes, decrease the

solution e�ort. Methods that they discuss are O(�t) accurate.

Coleman [16] pointed out that phase shifts that are inherent in a numerical time

integration can cause the failure of the �rst order accurate implicit schemes, unless very

small time steps are used. In his case, phase shifts were characterized by the amplitude

error in the numerical temporal integration. In general period errors can also contribute

to the overall error [34]. Coleman demonstrated that employing a second order accurate

time di�erentiation scheme improves the handling of these errors.

White and Nigam, [68] used the alternating direction implicit (ADI) method with

second order accurate, O(�t2), time di�erentiation to solve the two dimensional Reynolds

equation. Easy implementation of this method has enabled other investigators to use it

5Refer to Chapter 4 for further discussion on this.
6See Section 3.6.
7Implicit in one spatial direction only.
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in transient elastohydrodynamic problems, as well as slider bearing problems, [46, 55].

This method is adopted here for the transient solution of the Reynolds equation.

The ADI method applied to the Reynolds equation reduces to the solution of the fol-

lowing set of linear equations. Interested reader may �nd the details of this linearization

in [46] or [68].

[1�  Lx( )][1�  Ly( )]�fzg = fRg (3:55)

The variables of this equation are as follows,

fzg = fpgfhg (3.56)

�fzg = fzn+1g � fzng (3.57)

where, fpg is the vector containing air pressure values and fhg is the vector containing

the bearing height values at nodal points. The di�erence operators  Lx( ) and  Ly( )

are given as follows,

 Lx( ) = a[(2hz;x � zh;x � 6�Vx)
xk � xk�N
D2X0

+ (z + 6�aPah
2

D2X0
]n( )k�N

a[(2hz;x � zh;x � 6�Vx)
2xk � xk�N � xk+N

D2X1
+ hz;xx � h;xz;x �

(2z + 6�aPa)h;xx + (z + 6�aPah
�2

D2X1
]n( )k

a[(2hz;x � zh;x � 6�Vx)
xk+N � xk
D2X2

+ (z + 6�aPa)h
2

D2X2
]n( )k+N(3.58)

 Ly( ) = a[(2hz;y � zh;y � 6�Vy)
yk � yk�1
D2Y 0

+ (z + 6�aPah
2

D2Y 0
]n( )k�1

a[(2hz;y � zh;y � 6�Vy)
2yk � yk�1 � yk+1

D2Y 1
+ hz;yy � h;yz;y �

(2z + 6�aPa)h;yy + (z + 6�aPah
�2

D2Y 1
]n( )k

a[(2hz;y � zh;y � 6�Vy)
yk+1 � yk
D2Y 2

+ (z + 6�aPa)h
2

D2Y 2
]n( )k+1 (3.59)

Note that the di�erence operators, given in Equations (3.58) and (3.59), contain terms

all of which are calculated at time step n. On the other hand, the right hand side vector,

fRg, contains hn+1k , which is at time step n + 1. For this reason the value of hn+1k needs
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to be known before fRg can be calculated. In this study this value is obtained by solving

the tape equation before the Reynolds equation. See the coupling algorithm given in

Section 3.6.

R = (zn + 6�aPa)(h
n+1 +

1� 




hn)[(zn;xx + zn;yy) + (zn;x + zn;y)]�

zn(zn + 6�aPa)[(h
n+1
;xx + hn+1;yy ) +

1� 




(hn;xx + hn;yy)]�

zn[zn;x(h
n+1
;x +

1� 




hn;x) + zn;y(h

n+1
;y +

1� 




hn+1;y )]�

2�(Vxz
n
;x + Vyz

n
;y) (3.60)

In these equations,

a =

�t

12�
(3:61)

where, 
 is an integration parameter. For second order accuracy it is taken as 1=2

[46]. The constants D2X0;D2X1;D2X2;D2Y 0;D2Y 1, and D2Y 2 are �nite di�erence

denominator expressions derived for non-uniformly spaced �nite di�erence grid points,

D2X0 = (xk � xk�N )(xk+1 � xk�1)

D2X1 = (xk � xk�N )(xk � xk+N )

D2X2 = (xk+N � xk)(xk+N � xk�N )

D2Y 0 = (xk � xk�1)(xk+1 � xk�1)

D2Y 1 = (xk � xk�1)(xk � xk+1)

D2Y 2 = (xk+1 � xk)(xk+1 � xk�1)

(3:62)

Equation (3.55) is cast in such a way that it can be solved in x and y-directions in

separate sweeps. This is done by de�ning,

f�g = [1�  Ly( )]�fzg (3:63)

Then Equation (3.55) can be reduced to solving,

[1�  Lx( )]f�g = fRg (3:64)

Moreover, the solution of this equation is further simpli�ed by the way Equation (3.58)

is given. When (3.58) is investigated closely we see that it consists of operations in the
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row-wise (j =constant) manner. These operations actually reduce to solutions of a set

of tri-diagonal matrices. Therefore, the operation de�ned by Equation (3.64) turns out

to be N solutions of M �M tri-diagonal matrices. Completion of this �rst part of the

procedure gives the vector f�g. Then (3.63) is used to determine �z. The solution

of this equation is similar to the x-direction \sweep". The only di�erence is that in

the y-direction operation the N � N tri-diagonal matrices are solved M times using

Equation (3.59). A system of equations, given in the tri-diagonal matrix form can be

solved by a special LU decomposition algorithm which takes advantage of the positions

of the components of the matrix. Therefore, the solution of Equation (3.55) is an e�cient

integration scheme.

3.6 Coupled Solution of the Governing Equations

The equation of motion of the tape, (3.1), and the Reynolds Equation (2.58) are solved

separately, and coupled through the tape guide spacing equation, (2.60). Due to strongly

nonlinear dependency of the air pressure, p, on tape guide spacing, h, it is necessary

to repeatedly solve all of the three equations, within a given time step, until these two

variables converge, at all of the nodes in the solution domain. The convergence tolerance

is indicated by �p and �w for air pressure and radial tape displacement. See the algorithm

given below for the de�nition of �p and �w. We used a convergence tolerance of 0:1% for

both variables.

The algorithm which couples the explicit solution of the tape equation with the ADI

solution of the Reynolds equation is given below. A similar algorithm for the implicit

solution of the tape equation can be obtained easily by using the information given in

Section 3.4.38.

8Heinrich and Connelly, used a similar implicit algorithm, [29].
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0. Initial Conditions

w0 = �w, p0 = �p, v0 = �v, n = 0, a0 = 0, t = �t.

1. Predictors:

~wn+1 = wn + vn�t+ (1
2 � �)�t2an, ~pn+1

(i)
= pn,

~vn+1 = vn + (1 � 
)�tan, hn = wn + �

~an+1 = 0, i = 0

2. Start Iterations:

wn+1(i+1) = ~wn+1, pn+1
(i+1)

= ~pn+1
(i)

,

vn+1
(i+1)

= ~vn+1, hn+1
(i+1)

= hn

an+1
(i+1)

= ~an+1; zn = hnpn

3. Calculate Pc; feq; a
n+1:

IF hn+1
(i+1)

k � �t THEN P (i+1)
ck

=
p
Pm
�t

(�t � hn+1
(i+1)

k ))2

F n+1(i+1) = pn+1
(i+1) � Pa� PBW + P (i+1)

c + fb

feq =
h
(1 + �)F n+1(i+1)) � �F n � (1 + �)(G~vn+1 + K ~wn+1)+

�(Gvn
(i+1)

+ Kwn(i+1))
i

an+1
(i)

=
feq
�a

4. Correctors:

wn+1(i+1) = ~wn+1 + ��t2an+1
(i+1)

vn+1
(i+1)

= ~vn+1 + 
�tan+1
(i+1)

hn+1
(i+1)

= wn+1(i+1) + �

5. Solve for pn+1

[1� Lx( )][1� Ly( )]�zn+1 = �n+1

zn+1
(i+1)

= zn + �zn+1 (3.65)

pn+1
(i+1)

= zn+1
(i+1)

=hn+1
(i+1)

(3.66)
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6. Check for Convergence:

j pn+1
(i+1)�pn+1(i)

pn+1
(i) j< �p and j wn+1(i+1)�wn+1(i)

wn+1(i)
j< �w

IF (NO) THEN

pn+1
(i)

= pn+1
(i+1)

; i = i+ 1

GO TO 3

IF (YES) THEN

pn = pn+1
(i+1)

; vn = vn+1
(i+1)

;

hn = hn+1
(i+1)

; wn = wn+1(i+1) ;

an = an+1
(i+1)

; n = n + 1,

t = t + �t,

IF t < � THEN GO TO 1

7. Stop



Chapter 4

Frequency Analysis of the

Semidiscrete System

4.1 Introduction

In this chapter we establish the validity bounds of the spatial �nite di�erence scheme

that is used to solve the equation of motion of a circumferentially moving cylindrical

shell. This is done by comparing the dispersion relations and the wave speeds of the

spatially continuous and discrete systems. We �rst obtain the dispersion relation for the

governing partial di�erential equation (PDE)1, (2.34). Then the dispersion relation for

the spatially discretized form of this equation is derived. Finally, the two equations are

compared as the node spacing, �, is varied.

The results show that considerable error due to spatial discretization can be intro-

duced into the solution by a careless choice of spatial step size. The sensitivity is greater

at smaller wavelengths. The amount of error can be identi�ed by the help of the phase

and group velocity error diagrams, such as Figures 4-13 and 4-11. For a given node

spacing the error is greater for the wavelength values near �, but it is much less than

10% for wavelengths greater than 10�.

1Equation of motion of the circumferentially moving cylindrical tape.

52
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4.1.1 Background on Dispersion

The study of this subject requires de�ning the following concepts related to wave propa-

gation in general. These de�nitions are taken from Brillouin, [12]. The de�nitions of the

group velocity, Vg, and the phase velocity, Vp, are important ones. The latter represents

the motion of elementary wavelets in a wave action, while the group velocity represents

the propagation of the modulation imposed on these individual wavelets.

This can be demonstrated by a simple example given in the book by Brillouin. If we

assume that a carrier signal has frequency !o and modulation C(x; t), it can be shown

that this signal, w(x; t), can be represented as follows:

w(x; t) = C(t� x

Vg
) cos!o(t� x

Vp
) (4:1)

In this equation the modulation, C, moves with Vg and the carrier, cos!o(t� x
Vp

), moves

with speed, Vp. In this example, Vg is a constant, but Vp is a function of the wavelength. In

more complicated systems the group velocity also becomes a function of the wavelength.

Thus we arrive at a de�nition for dispersive systems as systems which exihibit wavelength

dependent group and phase velocities. In a dispersive medium the following de�nitions

hold,

if Vg > Vp the system is said to have anomalous dispersion

if Vp > Vg the system is said to have normal dispersion.

In a system that has anomalous dispersion, wavelets build up in front of the group

and disappear in the rear end of the group. Whereas in a normally dispersive system the

wavelets build up at the back end of the group, progress through the group and disappear

in front of the group.

The information about the group and wave velocities is obtained by studying the dis-

persion curve of the system. This curve de�nes the relation between the time frequency,

�, and the wavelength, �. Along the lines of common practice, in what follows the wave
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number, k2,

k =
2�

�
(4:2)

is used instead of �, and the frequency is exchanged with !,

! = 2�� (4:3)

and for simplicity ! is called the frequency. The dispersion curve for a wave equation can

be obtained by assuming the following form for the signal, (displacement in our case)

w(x; y; t) = ei(
~k:~u�!t) (4:4)

In this equation, ~k is the wave number vector, ~u is the location vector. These two vectors

are de�ned as follows:

~k = p~�+ q~� (4:5)

and

~u = x~�+ y~� (4:6)

where, p and q are the coordinate wave numbers, and ~� and ~� are the unit vectors in the

x and y directions, respectively. The magnitude and the direction of the wave number

vector are

k = (p2 + q2)1=2 (4:7)

and

� = arctan
p

q
(4:8)

respectively3. An equivalent form of Equation (4.4) is as follows:

w(x; y; t) = ei(px+qy�!t) (4:9)

The dispersion relation gives the dependence of the the frequency, !, on the wave number,

k4. For a given system the dispersion relation is obtained by substituting Equation (4.9)

2Note that k used in this chapter, is di�erent than the node numbering counter used in Chapter 3.
3Note that � is di�erent from the wrap angle used in the rest of the thesis.
4If the frequency is independent of the wave number the system is non-dispersive.
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into the wave equation representing the system. The phase velocity of the system is

de�ned by,

Vp =
!

k
(4:10)

and the group velocity is,

Vg =
d!

dk
(4:11)

4.1.2 Analyzing the E�ects Numerical Solutions

Any form of numerical solution to the governing wave equation requires a spatial dis-

cretization of the system. In this section, we present the necessary tools to analyze the

e�ects of the spatial discretization with �nite di�erence equations, on the frequency !.

The approach that we employ follows Birkho� and Dougalis, [9], and Vichnevetsky and

Bowles [66].

This approach uses similar tools to the ones used for obtaining the dispersion curve

for a wave equation de�ned by a (spatially continuous) PDE. A function of the form,

wm;n(t) = ei(pxm+qyn�!�t) (4:12)

is substituted into the discretized form of the wave equation. In this equation the nodal

locations on the discretized domain are given by (m;n) pairs. The spatial step sizes in

the x and y directions are equal, and they are denoted by � = �x = �y. The symbol

!� indicates that the frequency is due to spatial discretization. The goal of the analysis

is to achieve,

!� ! ! as � ! 0 (4:13)

As noted in Birkho� and Dougalis, the analysis can be applied to �nite di�erence as well

as �nite element discretizations [9]. We consider the �nite di�erence case in Section 4.3.
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4.2 The Dispersion Relation

In this section the dispersion relation for the equation of motion of a cylindrical thin shell

is derived. The governing equation, (3.1), is repeated below,

D[
@4w

@x4
+ 2

@4w

@x2@y2
+
@4w

@y4
] + Kw + (�aV

2
x � Tx)

@2w

@x2
+ 2�aVx

@2w

@x@t
+ �a

@2w

@t2
= 0 (4:14)

In this equation D is the bending sti�ness, K is the shell sti�ness, �a is the areal density,

Vx is the tape transport speed, Tx is the circumferential tape tension, w is the radial tape

displacement, x is the circumferential coordinate, y is the axial coordinate, and t is time.

Table (2.1) gives the de�nitions of D and K. Note that as we are interested only in the

spatial and temporal modes of the equation we omit the forcing term. In what follows

in this chapter we assume that the guide pins (See Figure 2-1) are placed close to the

surface of the cylinder, so that the tape is completely cylindrical. We also neglect the

e�ect of the boundary conditions on the initial wave propagation.

The following dispersion relation is obtained by substituting Equation (4.9) into Equa-

tion (4.14), and using de�nitions given in Equations (4.7) and (4.8),

! = Vxk cos � � 1p
�

q
Dk4 + Txk2 cos2 � + K (4:15)

By examining Equation (4.15), we see that the frequency ! is a function of the wave

number, k. Therefore, we conclude that the system is dispersive. Furthermore, we note

that dispersion is orientation, �, dependent (anisotropic dispersion). The \+/-" signs

correspond to waves moving in �~u and +~u directions, respectively. Due to front-to-back

symmetry that exists in the tape, it is su�cient to consider �'s in the ��=2 � � � �=2

range.

For small wave numbers Equation (4.15) reduces to,

! =
q

K
�

as k ! 0, or equivalently as �!1 (4:16)

This indicates that the shell sti�ness, K, dominates frequencies of the large wavelengths.

On the other hand we see that as k ! 1 (or equivalently, � ! 0) in Equation (4.15),
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the bending and tension e�ects, represented by D and Tx terms, start to dominate the

frequencies. This result should be expected because the bending terms would be more

dominant where the derivatives of the displacements are higher due to short wavelengths.

On the other hand displacements vary slowly on the long wavelengths thus making the

bending sti�ness term more dominant.

Typical parameters for a helical-scan application are given in Table 4.15. All of the

�gures in this chapter use these values. Figure 4-1 displays Equation (4.15) for tape

transport speed of 25m=s. The e�ect of anisotropy in three � directions can be seen in

this �gure.

The phase velocity is obtained by using Equation (4.10),

V p =
!

k
= Vx cos � � 1p

�

s
Dk2 + Tx cos2 � +

K

k2
(4:17)

The interpretation of the \+/-" signs is similar to before. From Equation (4.2) it can

be seen that the phase velocity has a minimum at,

k� = (K
D

)1=4 or �� = 2�(D
K

)1=4 (4:18)

This minimum point indicates that the phase velocity, Vp, of the wave propagation is

dominated by,

Shell sti�ness e�ects for k < (K
D

)1=4 or �� > 2�(D
K

)1=4, and

Bending e�ects for k > (K
D

)1=4 or �� < 2�(D
K

)1=4.

The x and y components of the group velocity are calculated by using Equation (4.11).

To do this, k is replaced with p and q for x and y directions, respectively.

Vgx =
d!

dp
= Vx � 2D(p3 + pq2) + Txpq

�(D(p2 + q2)2 + Txp2 + K)
(4.19)

Vgy =
d!

dq
= � 2D(p2q + q3)q

�(D(p2 + q2)2 + Txp2 + K)
(4.20)

5These parameters are taken from M�uft�u and Benson [49].



58

These equations are plotted in Figures 4-2 - 4-4 with wavelength, �, as the independent

variable. The wavelength is obtained from Equation (4.2) by using k for the phase

velocity, and p and q for the group velocities in the x and y directions, respectively. These

�gures show that, for the parameters considered here, at the short wavelength region the

cylindrical tape shows anomalous dispersion, and at the long wavelength region it shows

normal dispersion. The phase velocity, Vp, and the group velocity in the y-direction, Vgy ,

switch magnitudes at,

k =

vuut Tx
2D

cos2 � +

s
(
Tx
2D

cos2 �)2 +
K

D
(4:21)

This value of k is only slightly higher than k� that we found previously in Equation (4.18)

for the tension value, Tx = 90N=m, considered. Therefore, after seeing that K=D >>

Tx=D, we can say that the phase velocity, Vp, and the group velocity in the y-direction,

Vgy intersect at k�. The physical signi�cance of this, if there is any, is not obvious to us.

We also observe for larger wavelengths the group velocity in y-direction asymptotes to

zero, whereas the phase velocity linearly increases with �. For wavelengths approaching

zero we notice that both of the velocities asymptote to in�nity. This unphysical result is

attributed to omitting higher order terms and coupling with the in-plane components of

the displacements and stress resultants in deriving the governing equation.

4.3 Dispersion Relation for the Discretized Equa-

tion

The semidiscrete form of Equation (4.14) is obtained as described in Chapter 3. In

order to keep the notation clearer the location of a node point on the discretized tape

is indicated by the (m;n) pair, rather than the node number k used in Chapter 3. The
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discretized form of the equation of motion then becomes,

D
��4 [wm�2;n + wm;n�2 + wm+2;n + wm;n+2 + 2(wm�1;n�1 + wm�1;n+1+

wm+1;n�1 + wm+1;n+1)� 8(wm�1;n + wm+1;n + wm;n�1 + wm;n+1)+

20wm;n] + V 2
x�Tx=�
�2 (wm�1;n � 2wm;n + wm+1;n) + K

�
wm;n+

Vx
�

@
@t

(wm+1;n � wm�1;n) = �@2wm;n

@t2

(4:22)

The dispersion relation for this equation is obtained by substituting Equation (4.12)

into the above equation. After the necessary substitutions and some work the following

dispersion relation is obtained,

!� = Vx
sin p�

�
� 
 (4:23)

where, 
 is,


 = fV 2
x (

sin p�

�
)2 +

2D

��4
[cos 2p� + cos 2q� + 4 cos p� cos q��

8(cos p� + cos q�) + 10] + 2
V 2
x � Tx=�

�2
(cos p�� 1) +

K

�
g1=2 (4.24)

The \+/-" signs are interpreted as before. By inspection of Equation (4.23) we can see

that it also is dispersive and anisotropic. The phase velocity corresponding to this case

is given by,

Vp� =
!�
k

(4:25)

and the group velocities in the x and y directions are calculated as before,

V �
gx =

@!

@p
= Vx cos p�� 1



[
sin p�

�
(V 2

x (cos p�� 1) +
Tx
�

) +

D

��3
(8 sin p� � 4 sin p� cos q�� 2 sin 2p�)] (4.26)

V �
gy =

@!

@q
= � D

�
�3
(8 sin q�� 4 sin q� cos p�� 2 sin 2q�) (4.27)
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4.4 Comparison of Wave Action on the Continuous

and Discretized Tape

The phase and group velocity equations obtained for the semidiscrete form of the equation

of motion are compared with their counterparts for the continuous solution in Figures 4-5

to 4-7. From these �gures we observe that when a coarse �nite di�erence mesh is used,

the curves for the analytical relations and the semidiscrete relations grow apart. This

di�erence is more severe near the smaller wavelengths (or higher wave numbers). This

result shows that;

For the �nite di�erence discretization of the equation of motion of the

cylindrical shell, the small wavelengths are artifacts of the spatial dis-

cretization.

This conclusion agrees well with a similar statement given by Hughes for the �nite element

method [34]. Moreover, the same �gures also show that, as the size of � is made smaller

the discrepancy between continuous and discrete cases become smaller. This is seen

better with the aid of the following error criteria,

"p =
���Vp�Vp�

Vp

���� 100% "g =
���Vg�Vg�

Vg

���� 100% (4:28)

where, "p is the phase velocity error, and the "g is the group velocity error expressed in

percent.

The errors involved in predicting the phase and group velocities using a �nite dif-

ference scheme as a function of wavelength � are given in Figures 4-8 - 4-10. These

�gures show that for a given nodal spacing, discretized equation has high errors for

wavelengths close to � = �. The error is lower for longer wavelengths. For example, the

error for predicting the velocities of a wave with a wavelength of � = 1mm, by choosing

� = 0:1mm ( �� = 10) is 2:5% for Vp and 8% for Vgx and reduces considerably at the

longer wavelengths. See Figures 4-8 - 4-9.
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Figures 4-11 and 4-12 show the e�ect of the tape transport speed, Vx, on the phase

velocity error, "p, and the group velocity error in y direction, "gy. Again we observe that

the error is high on the short wavelengths. These �gures demonstrate that faster tape

transport speeds cause slightly greater errors, but the the di�erence is insigni�cant.

Figure 4-13 shows the error in the phase and group velocities as a function of �
�
6.

The tape velocity in this �gure is Vx = 25m=s and the wave orientation is � = �=4.

In principle the lowest value of wavelength that can be predicted in a �nite di�erence

scheme is � = 2�. However, our analysis shows that for the discretization and the

parameters considered here, the error involved in predicting the velocities of waves with

wavelengths close to � is considerably high. From Figure 4-13 we can see that the highest

error involved in predicting the velocities is near 12% for the wavelengths, � ' 10�.

We also observed that the error introduced to the solution is anisotropic. For the

waves that have orientations close to � = 0, and �=4, the error curves for Vgx and Vgy are

coincident, but as the wave orientation is away from these limits the error in Vgx becomes

higher.

Based on the observations made above we conclude that the high frequencies cor-

responding to short wavelengths should be removed from the numerical solution using

numerical damping. The e�ect of the numerical damping on a previously published work,

[49, 50], is presented in the next chapter.

4.5 Summary and Conclusions

In this chapter we showed that the wave propagation in a circumferentially moving thin

cylindrical shell is anisotropically dispersive. Upon analyzing the phase speed as a func-

tion of the wavelength we determined that the long waves encountered in this medium

are dominated by the shell sti�ness term, K, and the short waves are dominated by a

combination of the bending rigidity, tension and transport speed.

6In calculation of �
�

the wavelength belonging to each velocity de�nition was used. For example for
calculating this non-dimensional ratio for Vgx , the corresponding wavelength, �gx was used.



62

�a Areal density 1400 � c kg=m2

Vx Tape transport speed variable
Tx Circumferential tension 90; N=m
E Young's modulus 4 GPa
� Poisson's ratio 0.3
c Tape thickness 20 �m
R Drum radius 2 cm

Table 4.1: Typical parameters for a helical-scan application.

We also analyzed the e�ect of spatial discretization on the predicted wave speeds in

our numerical solution method. We determined that inadequate spatial step size a�ects

the short wave velocities. We showed that in order to prevent the occurence of incorrect

wave speeds a safe rule is to use a step size that is 1/10th of the shortest wavelength of

interest.
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Figure 4-1: Analytical dispersion curve for Vx = 25m=s, at di�erent orientations, � =
0; �=4; �=2.
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Figure 4-2: Phase and Group Velocities for Vx = 25; � = �=4. The wavelength is given
by 2�=k; 2�=p; and 2�=q for Vp; Vgx; and Vgy , respectively. Note that the phase velocity
and the group velocities switch magnitudes, so that small wavelengths show anomalous
dispersion and large wavelengths show normal dispersion.
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Figure 4-3: Phase and group velocities for di�erent tape transport speeds, Vx =
0; 25; 50; 75m=s, at � = �=4. Note that the wavelength is given by 2�=k; 2�=p; and
2�=q for Vp; Vgx; and Vgy , respectively.
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Figure 4-4: Phase and group velocities for di�erent orientations, � = 0; �=4; �=2 at tape
speed Vx = 25m=s. The wavelength is given by 2�=k; 2�=p; and 2�=q for Vp; Vgx ; and
Vgy , respectively. The phase velocity is highest for the running direction, � = 0. The x
and y direction group velocities coincide for � = 0 and �=2 directions.
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Figure 4-5: The e�ect of �ner � on the phase velocity, Vp, predicted by the discretized
solution for Vx = 25m=s; � = �=4. As expected, by making � smaller the phase velocity
curves come closer to the analytical result. Note that the label dx is �.
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Figure 4-6: The e�ect of �ner � on the group velocity, Vgx , predicted by the discretized
solution, for Vx = 25m=s; � = �=4. The error is greatly reduced by choosing � = 0:1mm
whereas, � = 1mm predicts answers that are entirely wrong. Note that the label dx is
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Chapter 5

Numerical Solution of the Transient

Displacement of a Circumferentially

Moving Cylindrical Shell

5.1 Introduction

In magnetic tape recording control of the tape's displacement as it is transported over

guides and recording heads is an important issue. This is especially true in helical-scan

recording in which a high velocity read-write head diagonally traverses a magnetic tape

that is wrapped around a cylindrical drum in a helical fashion, thus forming magnetic

tracks at an angle to the tape length. In this way high data transfer rates can be obtained

as a result of the high relative velocity between the head and the tape [43]. However,

the quality of the magnetic recording depends on the uniformity of tape deformation

that is due to head-tape interaction along a track [60]. This interaction results in a non-

symmetrical 
exural wave propagation in the tape due to a combination of the following:

diagonal path of the head, transient e�ects at �rst and last contact of the head with the

tape, and wave re
ection from the sides of the tape [3], [37].

In this chapter the solution method presented in the Chapter 3 for the equation of
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motion is applied to analyze the transient motion of a circumferentially moving cylindrical

tape. We, thus, obtain three dimensional transient simulations of 
exural waves following

a radial load. In this chapter the tape-air interactions, the in-plane tape de
ections and

the friction and contact between the tape and the underlying surface are neglected.

In the following section we present the e�ect of numerical damping on the solution.

Then we analyze two types of loading. First in Section 5.3 we investigate the e�ects of

a stationary concentrated load on the tape as the tape speed is varied. This system is

studied in order to make comparisons with the existing literature. Then in Section 5.4

we look at the case in which the load is allowed to traverse the tape diagonally, as in the

case of a recording head of a helical-scan recorder, while the tape is moving slowly.

In this chapter we assume that the tape is wrapped around the cylindrical guide, and

that the guide pins are located such that there are not any 
at parts of the tape in the

analysis domain. See Figure 5-7. Because of this con�guration the shell sti�ness, K is

Ec=(R2(1� �2)) for the entire tape.

5.2 The E�ects of Numerical Damping

In Chapter 4 we showed that the high frequency spatial waves are a result of the spatial

discretization. In this chapter, in order to be able to introduce numerical damping, we

use an implicit time integration method with � damping, as described in Section 3.4.3.

To demonstrate the e�ect of the numerical damping we show three cases with di�erent

numerical integration parameters, �; � and 
. These test cases are run with a load that

is moving diagonally across the tape as explained in Section 5.4. The parameters of the

problem that we considered are given in Table 5.2.

In the �rst case the Newmark method with � = 1=4 and 
 = 1=2 is used, and � = 0.

This case has O(�t2) accuracy and no numerical damping. In Figure 5-1 a \snapshot" at

t = 240�s is shown. As there is no numerical damping in this solution any high frequency

contribution is retained.
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Tx Tension 135N=m
c Tape thickness 30�m
VL Load Velocity 90m=s
Vx Tape Velocity 2:5m=s

Table 5.1: Parameters for Figures 5.1-5.3. Rest of the parameters are identical to that
of Table 5.2

To test the e�ect of numerical damping we ran the same case with the Newmark

parameters according to Equation (3.48). In Figure 5-2 we present a case with a small

amount of numerical damping where � = 0; 
 = 0:55; � = 0:275625. As it can be seen in

this �gure, this range of parameters a�ect the amplitude response of the all wavelengths,

but no apparent improvement on the high frequency response can be detected.

When we employ the �-method with a comparable amount of dissipation, i.e. � =

�0:05; 
 = 0:55; � = 0:275625, we recover the same amplitudes as in the �rst case.

This is shown on Figure 5-3. We note that Figures 5-1 and 5-3 are practically identical.

From these three �gures we conclude that the high frequency reponse for the example

parameters that we considered does not constitute a problem. We also con�rm that

the � method with dissipation gives better results compared to Newmark's method with

dissipation.

In a previous study [50], [49] we studied the same problem without using any numerical

damping -i.e. � = 0; � = 1=4; 
 = 1=2. Here we compared the results obtained in those

studies to the results generated with �-dissipation and saw no noticeable di�erence.

Nevertheless, we decided to use the dissipative scheme with � = �0:05.

5.3 Simulation of the E�ects of a Stationary Load

on a Moving Tape

One of the ways to simplify the solution of Equation (2.34) is to make a transformation

to a coordinate system that is attached to the magnetic recording head, and study the

standing wave pattern that develops at steady state. In this section we are presenting
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Figure 5-1: The case that is run without numerical damping. Numerical parameters are
� = 0; 
 = 1=2; � = 1=4.
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Figure 5-2: The case that is run with numerical damping in the Newmark family. Nu-
merical parameters are � = 0; 
 = 0:55; � = 0:275625. The amplitude of the response
reduced.
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Figure 5-3: The case that is run with �-method damping. Numerical parameters are
� = �0:05; 
 = 0:55; � = 0:275625. The amplitude response is preserved.
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results that are obtained with a similar idea. We apply a time invariant loading to the

middle of the tape and study the e�ects of wave propagation due this loading. To obtain

a steady state solution we simply run the code for a long time and obtain a solution that

way.

Various investigators studied this problem using analytical techniques. Bogy et al.

[10], and Nishida and Hosaka [51] among others, modeled the tape as a cylindrical shell,

and computed the steady state tape displacements due to a point load. They have con-

cluded that above a \critical" tape speed the wavelength of the standing wave is smaller

upstream of the load in comparison with the wavelength downstream the load. Ono

and Ebihara [52] generalized the solution methods for the same problem. Sundaram and

Benson [59] solved the transient equations of motion, and investigated the displacements

in the cylindrical shell in response to a point load in space applied as a step function

in time. Each of these studies represent the tape displacement with in�nite series that

require calculation of a great number of modes for convergence. The standing wave pat-

tern that is predicted by Bogy et al., and Nishida and Hosaka were qualitatively and

experimentally veri�ed by Albrecht et al. [3], Feliss and Talke, and Lacey and Talke [37].

There are few analyses for the transient displacement in a circumferentially moving

medium. One exception is Wickert and Mote [70] who studied a traveling string (a

spatially one dimensional tape) and showed that mode shapes are non-symmetric when

a \gyroscopic" e�ect is included. This e�ect vanishes when the tape transport velocity

is zero.

The implicit time integration method outlined in Chapter 3 is used here to analyze

the time history of a concentrated load. With this method the wave action in the tape

is followed by making time history plots consisting of three-dimensional (3D) wire frame

drawings. This investigation showed that the continuous re
ection and superposition of

waves from the lateral edges of the tape contribute signi�cantly to the displacement of the

load point. We were able to �nd similar results as the previous studies, on critical tape

speed, and dominant period of the displacement at the load point. Moreover, we found
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that this dominant period is a function of the tape transport velocity. We also con�rmed

the dispersive nature of the wave behavior, hence making it impossible to observe a single

wave speed. Nevertheless, our time history plots allow for determination of an apparent

wave speed.

5.3.1 Results and Discussion

The concentrated load is placed at the middle of the tape and is turned on in a step

function manner. This is represented mathematically as follows:

P = Poe
���(x�xo)2e���(y�yo)2H(t) (5:1)

where, xo, and yo mark the centroid of the load, and H(t) is the Heaviside step function.

The centroid of the load will be referred to as the load point hereafter. The tape was

initially in static equilibrium, i.e. wo = 0 and vo = 0. The exponential function in

Equation (5.1) is chosen to approximate a concentrated load. The parameter �� is adjusted

so that the function decays to 1% of its maximum within a decay distance of 5% of Ly

from the load point. All of the �gures related to this section are obtained using the

speci�cations given in Table 5.2.

In Figure 5-4, the transient response of the load point is plotted for Vx = 0; 50; 70; 80

and 85m=s. The load is located at the center of the tape, (xo =
Lx
2
; yo =

Ly

2
). In order

to choose the time step we performed numerical experiments in the range 0:5�s � �t �

12:5�s, on a spatial mesh with �x = �y = 1:6mm. We chose the largest possible time

step, �t = 1�s, that did not cause an appreciable di�erence in the time history of the

load point.

We note from Figure 5-4 that at lower tape speeds, the tape motion consists of the

superposition of several modes with one dominant period. For the case of Vx = 0 the

dominant period is close to 2�(�a=k)
1

2 , which is approximately 50�s for the speci�cations

of this problem. We also note that the displacement of the tape decays within an envelope

that asymptotes at a �nite amplitude. As Equation (2.34) does not have a dissipative
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Figure 5-4: Transient displacement of the load point (xo = Lx=2; yo = Ly=2) for a
concentrated step load as a function of tape velocities, (0; 50; 70; 80; 85m=s). Numerical
parameters are � = �0:05; 
 = 0:55; � = 0:275625.

D Bending rigidity (= Ec3

12(1��2)) 2.9x10�6Nm

k Shell sti�ness (= Ec
R2(1��2)) 219.8x106N=m3

E Young's Modulus 4x109Pa
� Poisson's ratio 0:3
�a Shell density per unit area 0.014 kg=m2

R Radius of the shell 2x10�2m
c Shell thickness 20x10�6m
Tx
R

Belt wrap pressure 4500Pa
Tx Tension per unit length 90N=m
Ly Width of the tape 6.35x10�3m
Lx Length of the tape 4Ly

Po Concentrated load Magnitude 200 Pa

�x = �y Spatial Step 1.549x10�4m
�t Time Step 2x10�6 s
� Parameter for �-Method -0.05
� Parameter for �-Method 0.275625

 Parameter for �-Method 0.55

Table 5.2: Variables and typical values for a magnetic recording application
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term1 the tape displacement will asymptote on a quasi-periodic motion around a steady

state value. Similar observations were also made by Sundaram and Benson [59]. The

dots on Figure 5-4 indicate the non-dimensional displacements at steady state. These

values were separately obtained by running the program with parameters � = 0; � = 1

and 
 = 3=2.2 The steady state values obtained in this way match the static solution of

Equation (2.34).

Furthermore, from Figure 5-4, we observe that the dominant period and the mean

displacement increases as the velocity of the tape is increased. These increases are non-

linear functions of velocity, and a very large change is observed near Vx = 85m=s.

Increasing tape transport velocity has an e�ect of reducing the e�ective tape tension,

Teff = Tx � �V 2
x . See Equation (2.34). At the transport speed,

Vx =

s
Tx
�a

(5:2)

the e�ective tape tension vanishes. At tape transport speeds above this value Teff be-

comes compressive, and the tape becomes prone to buckling. However, the shell sti�ness,

K, acts as a spring foundation and prevents the immediate appearance of buckling. As

the tape transport speed is increased, the in-plane compression created by the e�ective

tension can no longer be counteracted by the resisting e�ect of the shell sti�ness and

unbounded displacements occur. The speed at which this phenomenon occurs is called

as the critical tape speed.

We have found that for the parameters used in this paper, a small positive change

in the transport speed from the value Vx = 85m=s causes the unbounded displacements.

This value lies between the values calculated by using the approximate critical tape

speed expressions that are derived by Wickert and Mote [70], (80 m=s), and Sundaram

and Benson [59], (111 m=s). The di�erence can be explained as follows; in Wickert and

Mote, the expression for the critical tape speed is derived for an axially moving beam,

1The displacement decay is due to dispersion.
2This choice of the integration parameters is used to introduce the maximum amount of damping to

reach the steady state quickly [34].
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hence the shell sti�ness term does not play a role which explains the reason for a lower

bound approximation. In Sundaram and Benson, on the other hand, the expression for

the critical tape speed is derived for a cylindrical shell simply supported on all of its sides.

In our study the tape is modeled as having two free edges, which simulates a structure

which would have lesser resistance to buckling loads. Therefore, we �nd it natural to

observe a critical tape speed less than that given by Sundaram and Benson, and greater

than that given by Wickert and Mote.

Figures 5-5 and 5-6 show 3D wire frame time history plots of the tape response to

two di�erent tape transport velocities, Vx = 0 and 50m=s. These �gures show that step

loading, (5.1) causes displacements waves in the tape. When Vx = 0, waves propagate

radially away from the load point, and are symmetrical with respect to the x = Lx
2

line. Due to applied tension, the tent-like shape of the displaced tape has an ellipsoidal

\footprint" whose major axis is aligned with the tensioned direction.

The waves that re
ect from the free edges travel back toward the source. From

Figures 5-5 and 5-6, it can be observed that �rst wave re
ection from the free edges

occurs near time t = 30�s. By the time the forward traveling wave front reaches the

simply supported edge, several side-to-side wave interactions have already occurred. We

believe that the wave re
ection from the free edges explains the major reason for the

non-periodic behavior of the load point in Figure 5-4.

Figure 5-6 demonstrates the e�ect of the tape transport velocity (Vx = 50m=s) on

the wave pro�les. In this �gure we see that the wavelength of the displacement is larger

downstream of the load, than upstream of the load. This was also predicted by the steady

state analysis of Bogy et al. [10] and observed experimentally by Lacey and Talke [38]

among other investigators.

Comparison of Figure 5-5 to Figure 5-6 shows that the wave front traveling toward

the support on the downstream side of the tape has a shorter travel time when the

tape transport speed is increased. This result agrees well with the results obtained

in Chapter 4 for the x direction group velocity given in Equation (4.19). Numerical
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simulations showed that determination of a wave speed is not straight forward. Because

the governing equation is dispersive, as shown in Chapter 4, wave fronts with small

wavelengths reach the simply supported boundaries in a shorter time than the ones with

longer wavelengths3. We are able to visually detect only a simple dominant wave front

by looking at Figures 5-5 and 5-6.

3See Figure 4-2.
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Figure 5-5: Displacement Wave Propagation of the Tape in Response to a Concentrated

Step Load, Vx = 0m=s.
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Figure 5-6: Displacement Wave Propagation of the Tape in Response to a Concentrated

Step Load, Vx = 50m=s. Tape motion is in the + x direction.
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5.4 Wave Action Due to a Concentrated Load Mov-

ing on a Circumferentially Transported Tape

In this section we are presenting the e�ects of a moving load acting on a circumferentially

moving cylindrical shell. This is done as a �rst approximation to simulate the interac-

tion between the tape and the recording head of a helical-scan recorder. This analysis

is limited because the air lubrication e�ects, and the contact between the tape and the

helical-scan drum, as well as the resulting friction are neglected. Leaving the air lubri-

cation out of the solution results in prediction of more 
exural waves than observed by

the experimental study by Lacey and Talke [37].

The moving load is modeled by Equation (5.1). The load center moves according to

the following line,

xo(t) = VLtcos� + xi

yo(t) = VLtsin� + yi (5.3)

where, VL is the speed of the load, � is the skew angle (see Figure 5-7), and (xi; yi) is

the initial location of the load. Here, � and (xi; yi) are 14o and (0; 7:4)mm, respectively.

V Vx
L:x

y

R

Lx

Figure 5-7: Tape con�guration in helical-scan recording
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5.4.1 Results and Discussion

Each one of Figures 5-8-5-13 shows �ve wire frame snapshots of the wave propagation

at the same load locations along a track. The displacement w is non-dimensionalized by

using thickness c. Note that magni�cation in the z-direction is di�erent on each �gure.

In Figure 5-8 the load velocity is VL = 50m=s. A predecessor wave front is seen in

this �gure as the 
exural waves created by the load propagate in the tape faster than

the load itself. The non-symmetrical wave front, seen in this �gure is attributed to the

skewed load path. Figure 5-9 shows the case of VL = 80m=s at which the load and the

predecessor waves have nearly the same speed. This load speed is called the critical load

speed, VLcr
. Note that in Figures 5-8 and 5-9 the wave front is essentially straight and

moving in the longitudinal direction of the tape. When the load speed is faster than the

critical value, the load penetrates the wave front which becomes V-shaped, as seen in

Figure 5-10, for VL = 100m=s.

In order to investigate the factors that a�ect the critical speed, the tape tension,

Tx, thickness, c, and tape transport speed, Vx, were changed while the load speed, VL,

was kept constant at 80m=s. Figure 5-12 shows that increasing the tape tension to

Tx = 135N=m restores subcritical conditions, i.e. the predecessor waves return. In

Figure 5-11 the tape thickness is doubled to c = 20�m. Predecessor waves are also

visible in this case, and the maximum displacement of the tape reduced signi�cantly, due

to increased resistance from shell sti�ness, K. The e�ect of increasing the tape transport

speed to Vx = 25m=s, on the critical speed is shown in Figure 5-13. In this case, too, an

increase in the critical wave speed of the tape is observed.

This study also showed that there is more free edge 
utter in thicker tapes than in

thinner ones (see Figures 5-9 and 5-11). Near VLcr
severe wave interaction may occur

near the location where the load leaves the tape (see Figure 5-9).
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5.5 Conclusions

In section 5.3 we studied the interaction of a moving tape and a stationary concentrated

load. In that section we showed that the wave front propagating in the width (or axial)

direction has a substantial e�ect on the displacement behavior of the load point. As this

wave is re
ected from the free edges, it contributes to the displacement amplitude of the

load point which eventually settles into an envelope over time. We concluded that the

reason for the irregular load point displacements within this envelope is the continuous

superposition of the waves re
ecting from the free lateral edges of the tape. We con�rmed

the observations in [59] that the load point displacement, however irregular looking, has

a dominant period which is approximated by 2�(�a=k)
1

2 for Vx = 0. This period is found

to increase with increasing tape transport velocity.

We also observed a critical tape transport speed that was predicted by other inves-

tigators. However, since we modeled the lateral sides of the tape as free edges, we were

able to evaluate the critical tape transport speed closer to its actual value than predicted

by alternative models with di�erent boundary conditions.

In section 5.4 we investigated the a moving tape's response to a moving concentrated

load. Through numerical experiments we estimated the critical conditions for which the

wave propagation speed equals the load speed. The critical speed was seen to increase

with higher tape tension, higher tape transport speed and in thicker tapes.
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Figure 5-8: Tape de
ections at subcritical head velocity, VL = 50m=s. Problem param-
eters are c = 10�m;Tx = 90N=m;Vx = 2:5m=s and � = �0:05; � = 0:275625; 
 = 0:55.
Tape motion is in the + x direction.
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Figure 5-9: Tape de
ections near critical head velocity, VL = 80m=s. Problem parameters

are c = 10�m;Tx = 90N=m;Vx = 2:5m=s and � = �0:05; � = 0:275625; 
 = 0:55. Tape

motion is in the + x direction.
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Figure 5-10: Tape de
ections at super-critical head velocity, VL = 100m=s. Problem

parameters are c = 10�m;Tx = 90N=m;Vx = 2:5m=s and � = �0:05; � = 0:275625; 
 =

0:55. Tape motion is in the + x direction.
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Figure 5-11: The e�ect of increasing the tape thickness on the critical head velocity,

c = 20�m. Problem parameters are VL = 80m=s; Tx = 90N=m;Vx = 2:5m=s and

� = �0:05; � = 0:275625; 
 = 0:55. Tape motion is in the + x direction.
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Figure 5-12: The e�ect of tension increase on the critical head velocity, Tx = 135N=m.

Problem parameters are c = 10�m; VL = 80m=s; Vx = 2:5m=s and � = �0:05; � =

0:275625; 
 = 0:55. Tape motion is in the + x direction.



98

Figure 5-13: The e�ect tape transport speed increase on the critical head velocity,
Vx = 25m=s. Problem parameters are c = 10�m; VL = 80m=s; Tx = 90N=m and
� = �0:05; � = 0:275625; 
 = 0:55. Tape motion is in the + x direction.



Chapter 6

Foil Bearing Problem for a Large

Angle of Wrap and In�nitely Wide

Tape

6.1 Introduction

The interaction of a 
exible magnetic recording tape and air when the tape is transported

over a rigid surface, is called the foil bearing problem. As the tape moves, the air that

is entrained between the tape and the rigid guide experiences a pressure increase. This

super-ambient pressure causes the tape to de
ect away from the rigid guide. However,

any tape de
ection a�ects the air pressure, because the air pressure and the gap height

between the rigid surface and the tape are closely coupled. This system eventually �nds

a state where the tape de
ection and the air pressure acquire steady values.

Experimental studies show that in the steady state the tape takes a \cupped"1 shape.

As a consequence of cupping the two sides of the tape usually have a lower gap height than

1The cupped shape can partly be attributed the anti-clastic curvature e�ects, and partly to the fact
that the tape is exposed to ambient pressure at the sides. Due to the latter condition the net air pressure
on the tape edge is zero leading to less de
ection on the free edges. See Figure 7-6.

99



100

the middle region. This situation prevents the air leakage from the sides of the tape [67].

In linear recording applications magnetic tracks are usually laid in the middle region of the

tape, therefore the non-uniformity in the gap height on the sides becomes a less important

issue. For this type of applications the tape is, usually, modeled by using a beam type

of formulation, and the air lubrication e�ects are modeled by using the one dimensional

Reynolds equation. See for example [58]. In this thesis, the problem described above is

called to the one-dimensional (1D) foil bearing problem, or the in�nitely wide foil bearing

problem.

Recently published studies on the 1D foil bearing problem treat the tape as a beam

whose reference con�guration is the 
at state of the tape (line �Y = 0 in Figure 2-3)

[1, 2, 11, 24, 29, 38, 58]. This approach to tape modelling allows the study of non-

circular head shapes to a certain extent. However, the applications of this approach

are limited to small wrap angles since the head penetration above this reference state

is usually several orders of magnitudes bigger than the tape's thickness. Actually, even

when the wrap angle is small the validity of the beam equation is violated2. In Chapter

2 we presented an alternative formulation in which the reference con�guration of the

unde
ected tape is taken as the surface of the cylindrical head. We are later going to use

the results of the 1D study as initial conditions for the �nite width (2D) problem.

6.2 Governing Equations

Neglecting side-
ow of air, the modi�ed form of the Reynolds equation, (2.58), which

takes into account the molecular rarefaction e�ects at low bearing clearances, is used to

model the air lubrication,

d

ds
(h3p

dp

ds
) + 6�aPa

d

ds
(h2

dp

ds
) = 6�aVx

d

ds
(ph) + 12�a

d

dt
(ph) (6:1)

2The beam equation is valid for de
ections less than the thickness of the beam. When the displace-
ment becomes large the middle surface of the beam stretches and the beam behaves additionally sti�,
[65]
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In this equation p is the air pressure, h is the distance between the two lubricated surfaces,

s is the spatial coordinate on the rigid guide in the circumferential direction, t is time,

Pa is the ambient air pressure, �a is the mean free length for the air molcules, �a is the

viscosity of air, and Vx is the tape velocity. See Figure 2-3.

The equation of motion of a thin cylindrical shell is used to model the tape displace-

ment. As the side 
ow of air in the Reynolds equation is neglected, we also neglect the

axial variation of the tape de
ection. Thus the equation of motion of the tape, (2.34),

reduces to beam formulation that we mentioned above,

D
@4w

@x4
+Kw + (�aV

2
� Tx)

@2w

@x2
+ 2�aVx

@2w

@x@t
+ �a

@2w

@t2
= p(x; t)� Pa � PBW (6:2)

where, D is the bending rigidity (see Table 2.1), w is the displacement perpendicular

to tape's surface, x is the longitudinal spatial coordinate, �a is areal mass density, Tx is

the externally applied tension per unit width. The shell stifness, K, and the belt wrap

pressure, PBW , are de�ned in Equations (2.43, 2.44).

The two media are coupled through the gap height, h, as follows:

h(x; t) = w(x; t) + �(x) (6:3)

See Section 2.3 for the de�nition of the tape geometry.

6.3 Boundary Conditions and Initial Conditions

The tape is assumed to be \simply supported" at the guide pins located at ( �X; �Y ) = (0; 0)

and ( �X; �Y ) = (0; L) as shown in Figure 2-3. Granzow and Lebeck showed that moving

these supports to the edges of the guide does not a�ect the steady state solution of the

problem [24]. We follow their choice of location, but keep the simple support conditions

as opposed to their �xed end conditions. In this case, the boundary conditions given by

Equations (2.36,2.37) become,

w(0; t) = wL w(0; t);xx = 0

w(Lx; t) = wR w(Lx; t);xx = 0 (6.4)
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where, wL and wR are the displacements that the left and right supports experience when

the tape is displaced by an amount ho in the wrap region. See \Detail A" in Figure 2-3.

The boundary condition for the Reynolds equation is as follows:

p = Pa at s = 0; Ls (6.5)

The initial conditions for the tape are given as follows:

w(x; 0) = wo (6.6)

d

dt
(w(x; 0)) = 0 (6.7)

The initial displacementwo is de�ned by using Equation (6.3) and the foil bearing height,

ho, obtained from the perfectly 
exible, in�nitely wide, incompressible foil bearing theory

[27],

ho = 0:643R(
6�aVx
Tx

)2=3 (6:8)

This is applied between Lx1 and Lx2. Outside this region the tape is connected to the

far edge simple supports with straight lines. The initial pressure distribution is denoted

by Po, and it is given by,

Po =

8>>>>><
>>>>>:

0; 0 � s � Ls1

Tx
R
; Ls1 � s � Ls2

0; Ls2 � s � Ls

(6:9)

See Figure 2-3 for the locations of Ls1; Ls2 and Ls.

6.4 Solution Method

The tape equation and the Reynolds equation are solved by using the �nite di�erence

technique. We modi�ed the method used by Stahl et al. [58] to include the shell sti�ness

and belt wrap pressure. We also allowed non-uniform spacing in the �nite di�erence mesh

for the Reynolds equation. The discretized forms of the equations involved are given in

the following sections.
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6.4.1 Discretization of the Tape Equation

The tape equation is discretized by using central �nite di�erence formulas as Stahl et al.

The system of equations turn out to be,

dwj+1
i+2 + cwj+1

i+1 + bwj+1
i + awj+1

i�1 + dwj+1
i�2 = f j+1i (6:10)

where, the superscript on w refers to the time step, and the subscripts refer to the spatial

node numbers. The coe�cients appearing in the above equation are time invariant and

they are given as follows:

a = � 4D
�x4

+ �aV 2
x�Tx
�x2

� �aVx
�t�x (6.11)

b = 6D
�x4

� 2�aV
2
x�Tx
�x2

+ �a
�t2

+Ki (6.12)

c = � 4D
�x4

+ �aV 2
x�Tx
�x2

+ �aVx
�t�x

(6.13)

d = D
�x4

(6.14)

where, �x = Lx

Nt�1
is the spatial node spacing. Lx is the total tape length between the

guides as shown in Figure 2-3. The time step size is �t = �
NT

. In this de�nition � is

the total duration of simulated motion, NT is the number of time steps, and Nt is the

number of spatial nodes. The right hand side of Equation (6.10) consists of the currently

applied force, P j+1
i , displacements from the previous time steps, and a time invariant

force, fBCi
, which arises from the treatment of boundary conditions in Equation (6.4),

f j+1i = P j+1
i �

�a
�t2

(wj�1
i � 2wj

i )�
�aVx
2�t�x

(wj�1
i�1 �wj�1

i+1 ) + fBCi
(6:15)

Ki is de�ned in Equation (2.43) and P j+1
i is as follows:

P j+1
i = pj+1i � Pa� PBW (6:16)
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where, PBW is the belt wrap pressure given by Equation (2.44). The time invariant force,

fBCi
, is as follows:

fBCi
=

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�(a+ 2d)wL i = 1

�dwL i = 2

0 3 � i � Nt�3

�dwR i = Nt�2

�(a+ 2d)wR i = Nt�1

(6:17)

Combining the discretized boundary conditions (6.4-b) and (6.4-d) with Equation (6.10)

for nodes 1; 2; Nt�2 and Nt�1 the system of equations can be put into the following matrix

equation,

[K]fwj+1g = ff j+1g (6:18)

As [K] is independent of time, this equation is factorized by using the LU decomposition,

[56], once, before the time integration is started. Then, the displacements for the next

time step fwj+1g are obtained by the matrix multiplication of the factorized [K] with

ff j+1g.

6.4.2 Discretization of the Reynolds Equation

The method of linearization of the Reynolds equation is as described by Stahl et al. [58].

However, as the discretized spatial coordinates for the Reynolds equation are not equally

spaced, the regular central �nite di�erence formulas are replaced by the following,

p;x � Api�1 +Bpi + Cpi+1 (6.19)

p;xx � 2[ pi�1
D2X0 +

pi
D2X1 +

pi+1
D2X2] (6.20)

h;x � Ahi�1 +Bhi + Chi+1 (6.21)

ht �
hj
i
�hj�1

i

�t (6.22)

pt �
p
j+1
i �p

j
i

�t
(6.23)

where, A;B and C are

A = 1
D2X0(si � si+1) (6.24)
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B = 1
D2X1(2si � si+1 � si�1) (6.25)

C = 1
D2X2

(si � si�1) (6.26)

and,

D2X0 = (si � si�1)(si+1 � si�1) (6.27)

D2X1 = (si � si�1)(si � si+1) (6.28)

D2X2 = (si+1 � si)(si+1 � si�1) (6.29)

The Reynolds equation is discretized by substitution of the above equations into (6.1).

The linearization is achieved by replacing pj+1 with pj in the terms that have products

of p and its derivatives. With these substitutions the Reynolds equation reduces to the

following set of linear equations,

�pj+1i�1 + �pj+1i + �pj+1i+1 = Gj+1
i (6:30)

At the entry and exit boundaries where the pressure is ambient Equation (6.30) becomes,

�pj+1i + �pj+1i+1 = Gj+1
i � �Pa; at s = 0 (6.31)

�pj+1i�1 + �pj+1i = Gj+1
i � �Pa; at s = Ls (6.32)

This system of equations can be put in a matrix form,

[S]fpj+1g = fGj+1g (6:33)

The matrix [S] is populated only on the main diagonal and the adjacent upper and lower

diagonals. This system of equations can, therefore, be solved by using the three diagonal

matrix algorithm [56].

The coe�cients appearing in Equation (6.30) are given as follows:

� = (hji )
2[A(3pji (Ah

j
i�1 +Bhji + Chji+1) + hji (Ap

j
i�1 +Bpji + Cpji+1)) +

2

D2X0
(pjih

j
i + 6�apa)] + 6Ahji [2�apa(Ah

j
i�1 +Bhji + Chji+1)� �aVx] (6.34)
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BEGIN, j=1

Initial displacements and pressure distribution

{h} = {w} + {δ}

Update previous displacements, pressures, and time step

END, j=N

Solve for {P} using equation (6.33)

Solve for {w} using equation (6.18)

Figure 6-1: The time stepping algorithm for the foil bearing problem as given by Stahl
et al.

� = (hji )
2[B(3pji (Ah

j
i�1 +Bhji + Chji+1) + hji (Ap

j
i�1 +Bpji + Cpji+1)) +

2

D2X1
(pjih

j
i + 6�aPa)] + 6Bhji [2�aPa(Ah

j
i�1 +Bhji + Chji+1)� �aVx]�

6�aV (Ah
j
i�1 +Bhji + Chji+1)�

12�ah
j
i

�t
� 12�a

hji � hj�1i

�t
(6.35)

� = (hji )
2[C(3pji (Ah

j
i�1 +Bhji + Chji+1) + hji (Ap

j
i�1 +Bpji + Cpji+1)) +

2

D2X2
(pjih

j
i + 6�aPa)] + 6Chji [2�aPa(Ah

j
i�1 +Bhji + Chji+1)� �aVx] (6.36)

Gj+1
i = �

12�a
�t

hjip
j
i (6.37)
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6.4.3 The Solution Algorithm

The system is coupled by solving the Reynolds equation, (6.33), with hj and P j known

from the previous time step. The pressure distribution obtained is used to calculate the

corresponding tape displacement from Equation (6.18). Using this displacement the foil

bearing height, hj+1 is calculated, displacements of the previous time steps are updated

and a new pressure calculation is started. This process, summarized in Figure 6-1, is

repeated until the last time step, NT .

6.5 Convergence Studies

In this section the e�ects of time step size, �t and spatial step size, �x, on the steady

state tape 
ying height are presented. The case studied is given by Stahl et al. [58]. The

speci�cations of this case are listed in Table 6.1. This geometry has been used in many

studies as a bench mark test problem [1, 2, 24, 29, 30].

In this simulation the location where the 
at part of the tape connects to

the curved part requires special attention. We found that a node should

be placed at the junction point, x = Lx1, when the tape is discretized.

Discretization schemes that do not satisfy this restriction show prob-

lematic convergence characteristics.

The e�ect of time step size and the spatial step size on the convergence of the problem

is shown in Figure 6-2. The convergence study was done by running the simulation with

di�erent �t and �x values for � = 0:0115s3. We compared the steady state 
ying height,

hss = h(Lx

2 ; tN), for the convergence study, as we changed �x and �t.

The time step size was chosen from the following range, 0:25 � �t � 1:25�s. In our

study, convergence was unsatisfactory for �t values that are greater than 1:25�s. For

the other �t values (0:25; 0:5; 0:75; 1:0; �s) the convergence curves are almost identical

as can be seen from Figure 6-2.

3This is the time required for the tape to travel twice the bearing region's length as suggested by
Eshel [17].
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Figure 6-2: Convergence study for 20�m thick tape, as a function of �t and �x. Plotted
are the results of the program for �t = 0:25; 0:5; 1:125�s for a range of node numbers.
The 0:5�s case was run with 5, and the other two cases were run with 50 node number
increments.
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Figure 6-3: Comparing the 
ying heights for the experimental case fromVogel and Groom
with the two approaches to the foil bearing problem. The o�set is due to the de�nition
of x-coordinate.

The spatial step size, �x, has a more pronounced e�ect on hss than the time step size.

The convergence to the steady state 
ying height as a function of number of nodes is a

smoothly varying curve. Increasing the number of spatial nodes, Nt, clearly improves the

convergence. For this example problem Figure 6-2 shows that between the two extremes

of the number of nodes, 100 and 800, the predicted steady state 
ying height changes

roughly 15%. Plotting the hss as a function of �x = Lx=(Nt� 1) as shown in Figure 6-6

shows that the convergence is almost linear. In fact, by extrapolating the lines shown

on this �gure we can get the solutions that the algorithm would predict for an in�nite

number of nodes.

6.6 Results and Conclusions

In order to check the validity of the model, the geometry from Vogel and Groom [67]
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Figure 6-4: Comparison of the air pressure at steady state for the Vogel and Groom's
geometry. The o�set is due to the de�nition of x-coordinate.

is analyzed using the new approach4. Vogel and Groom's study is published together

with Stahl et al.'s, [58], and contains experimental veri�cation of the numerical method

used in that study. We also recreated the solution algorithm of Stahl et al. Our ap-

proach is compared to the results of Stahl et al.'s approach, in Figures 6-3 and 6-4. The

speci�cations of the problem are given in Table 6.2. Even though, our approach simu-

lates the tape's behavior at the entry and exit zones better than Stahl et al.'s approach

it converged to a roughly 20% higher steady state spacing in the constant gap region

compared to the experimental values. The pressure values corresponding to this steady

state are given in Figure 6-4. This �gure shows that the pressure converges to a slightly

higher value in our approach. It also shows that the spikes predicted at the entry and

exit zones by the beam formulation of Stahl et al. are smoother in our approach.

The e�ect of tape thickness on the steady state 
ying height of the Stahl et al.'s

4We couldn't make direct comparisons with the Stahl et al.'s study because the tape thickness, c, is
not reported in that work.
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Nt Number of nodes for tape 100,150, ... ,800
NP Number of nodes for air bearing Nt � 2
�t Time step 0.25,0.5,0.75,1,1.125,1.25 �s

�a=c Volumetric mass density of the tape 1400 kg=m3

V Speed of the tape 2.54 m=s

T Tension in the tape 277 N=m

E Young's modulus of the tape 4.0 GPa

� Poisson's ratio 0.3
c Tape thickness 5,10,20,34.62 �m

R Radius of the Guide 2.04 cm

Lx Distance between far end supports 8.44 cm

�L LHS wrap angle 8:89�

�R RHS wrap angle 8:89�

�e1 LHS entry angle 12�

�e2 RHS exit angle 12�

Pa Ambient pressure 84.1 kPa
�a Viscosity of air 1:81 � 10�5 N=m2s

�a Mean free path lenght of air 0.0635 �m

Table 6.1: Speci�cations for example problem for the Stahl et al.case.

geometry and parameters as function of node numbers, Nt are given in Figures 6-5 and

6-6. We see that the convergence trend is similar for all of the tape thickness values

considered, c = 5; 10; 20; and 34:6�m. We also note that thinner tapes tend to settle

to lower 
ying heights. In Figure 6-6 we plot the steady state gap height as a function

of spatial step size, �x. This shows us that the convergence to the steady state 
ying

height is almost a linear function of �x. We can obtain the steady state 
ying height for

�x! 0 by extrapolating the lines given in Figure 6-6.

The slightly higher pressure that can be seen in Figure 6-4, in the constant gap zone,

is the result of higher 
ying height predicted by our approach. However, we can not

explain why the pressure is higher in our approach. In the next chapter, we use the tape

displacement and air pressure values at the steady state obtained from the 1D study as

the intial conditions for reaching the steady state for the 2D problem.
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Nt Number of nodes for tape 800
NP Number of nodes for air bearing Nt � 2
�t Time step size 0.5 �as

Vx Speed of the tape 1.27 m=s

Tx Tension in the tape 276.7 N=m

c Tape thickness 38.1 �am

E Young's modulus 4.0 GPa
�a=c Volumetric mass density of the tape 1400 kg=m3

� Poisson's ratio 0.35
R Radius of the Guide 2.0 cm

�L Wrap angle (See Fig.5) 5:2995�

�R Wrap angle 5:2295�

�e1 Entry angle 16:7248�

�e2 Exit angle 16:7248�

Lx Distance between far end supports 8.44 cm

Pa Ambient pressure 1.013 kPa

�a Viscosity of air 1:81� 10�5 N=m2s

�a Mean free path lenght of air 0.0635 �am

Table 6.2: Speci�cations of the test case for Vogel and Groom.
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nesses as a function of number of nodes, Nt, used to solve the problem.
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Chapter 7

The 2D Foil Bearing Problem

7.1 Introduction

In this chapter we present the results of our model for the �nite width (2D) foil bearing

problem. There are several reasons to study this problem. Imperfections in a tape

system's parameters, such as axial tension variations, cause cross-width asymmetry in

the tape. In linear recording, increasing demands on increasing the bit density will

eventually necessitate the use of unused bands on the sides of the tape. These bands

can not be modeled by a 1D analysis. Continuing trends to use smaller form factors in

recording will show the emergence of narrower tapes for linear recording. However, as

the tape is made narrower the displacement boundary layers on the free edges of the

tape merge1. This can not be modeled by a 1D analysis, either. In helical scan recording

there is no longitudinal symmetry, therefore, the analysis of this type of recording should

consider the width e�ects. These factors motivated the study presented in this chapter.

In modeling the �nite width foil bearing problem, investigators who published on this

�eld use varying formulations. The two major assumptions used by some investigators

are the incompressibility of air, and/or leaving the high Knudsen number e�ects out of

the analysis. For 
ying heights that are in the order of 0:5�m or less the compressibility

1See [22] for more on the displacement boundaries layers in thin bent plates.
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of air is important. Also in this region the e�ects of molecular rarefaction of air becomes

important. Therefore, these e�ects are kept in our study.

The tape models have been subject to more variations. Some studies, [4, 29, 39, 47,

57, 72], consider only the out-of-plane displacement, w, in the derivation of the equation

of equilibrium, whereas others, [21, 25, 36, 73], consider also the in-plane displacements

u and v. Except for [72], all of these studies consider the bending sti�ness of the tape.

The orthotropy of the tape is considered by [47]. In establishing strain-displacement

relations some investigators use linear relationships [4, 25, 47, 36] and others consider

the non-linear terms [21, 57]. The linear strain-displacement assumption is suitable for

modeling longitudinal recording, whereas non-linear strain-displacement relations and

in-plane displacements should be employed in modeling helical scan recording where the

head penetration causes large rotations, and friction forces cause in-plane loading. The

selection of the equation of motion of the tape in this thesis is made from a practical

point of view. We use a linear, uncoupled tape model, (2.34), because compared to other

models, it is less time consuming to solve this equation on the computer in a transient

solution. Nonlinear tape models can be incorporated into the time algorithm given in

Chapter 2, with a cost of increased simulation time.

The underlying equations, (2.34) (2.58) and (2.64), for our model are derived in

Chapter 2. The numericalmethods used to solve these equations, are given in Sections 3.2

and 3.5, and the transient coupling algorithm is given in Section 3.6. In the following

we review the governing equations. Then, we present the boundary layers that occur in

the air 
ow, and their e�ects on the solution of the problem2. In Section 7.3 we present

the results of several case studies in which we demonstrate the e�ects of axial variations

of several problem parameters on the steady state tape-guide spacing. In Section 7.4

we give the results of the simulations in the transient domain for linear and helical-scan

recording applications.

2Please note that we also mention a boundary layer e�ect on the tape. The two are related but one
of them is not the only cause of the other.
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7.2 Problem Formulation

The governing equation of motion for the out-of-plane displacements, w, of a thin elastic

tape with thickness, c, and bending sti�ness, D, is given as follows:

Dr4w +Kw � Tx
@2w

@x2
+ �a(V

2
x

@2w

@x2
+ 2Vx

@2w

@x@t
+
@2w

@t2
) = p + Pc � Pa � PBW (7:1)

In this equation x is the circumferential direction, y is the axial direction, and t is time.

The shell sti�ness, K, and the belt wrap pressure, PBW , take di�erent values on di�erent

locations of the tape,

K =

8>>>>><
>>>>>:

0; 0 � x � Lx1

Ec
R2(1��2)

; Lx1 � x � Lx2

0; Lx2 � x � Lx

(7:2)

PBW =

8>>>>><
>>>>>:

0; 0 � x � Lx1

Tx
R
; Lx1 � x � Lx2

0; Lx2 � x � Lx

(7:3)

The tape fallows the curvature of the guide only where, Lx1 � x � Lx2. The tape lengths

Lx1 and Lx2 mark the locations of connections between the 
at and curved regions of the

tape as shown in Figure 2-3. In Equation (7.1) the tape is assumed to be under tension,

Tx, and moving longitudinally with speed Vx. The loading on the tape is provided by

the air pressure, p � Pa, the contact pressure, Pc, and the belt wrap pressure. Ambient

pressure is Pa. The contact pressure is de�ned in Section 2.6. The boundary conditions

and the initial conditions for the tape equation are as follows:

Simply Supported Sides:

Mx = D[@
2w
@x2

+ � @
2w
@y2

] = 0 x = 0; Lx; and 0 � y � Ly (7.4)

w = 0 x = 0; Lx; and 0 � y � Ly (7.5)

Free Edges :

My = D[@
2w
@y2

+ � @
2w
@x2

] = 0; at y = 0; Ly; and 0 � x � Lx (7.6)

Qeq
y = D[@

3w
@y3

+ (2� �) @
3w

@x2y
] = 0; at y = 0; Ly; and 0 � x � Lx (7.7)
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where,Mx;My and Qeq
y are the bending moment resultants in x and y directions and the

equivalent shear force resultant in the y direction, respectively. The length of the tape

between the supports, as described in Section 6.3, is Lx and the width of the tape is Ly.

Initial Conditions :

Initial displacement, w(x; y; 0) = wo(x; y) (7.8)

Initial displacement velocity, @w(x;y;0)
@t

= vo(x; y) (7.9)

The initial condition, wo, vo, are de�ned below by Equations (7.24) and (7.25).

The air lubrication is modeled by using the modi�ed Reynolds equation,

@
@s
[h3p@p

@s
(1 + 6�a

h
)] + @

@y
[h3p@p

@y
(1 + 6�a

h
)] =

12�a
@ph
@t

+ 6�a(Vx + V G
x )@ph

@s
+ 6�a(Vy + V G

y )@ph
@y

(7:10)

where, p, is the air pressure, h, is the tape guide separation, �a, is the molecular mean

free path length of air, �a is the viscosity of air and s is the spatial coordinate on the

guide surface in the circumferential direction. Tape velocity components are denoted by

Vx and Vy and the guide velocity components are denoted by V G
x and V G

y . The boundary

conditions for the Reynolds equation are,

p(0; y) = p(Lx; y) = p(x; 0) = p(x;Ly) = Pa (7:11)

The initial condition for the Reynolds equation is,

p(x; y; 0) = po (7:12)

where, po is given below by Equation (7.26).

The tape guide separation, h, couples the equations governing the two media,

h(x; y; t) = w(x; y; t) + �(x; y) (7:13)

The guide shape is de�ned by a function, �(x; y). The x-direction de�nition of this

function is identical to the de�nition in Equation (2.45). See Figure 2-3. In the 2D

foil bearing problem we allow for variation on the guide surface in the axial direction,
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Figure 7-1: The guide shape in the y (axial) direction. Note that the shape variation
may be due to production tolerances or a deliberate design preference.

as shown Figure 7-13. However, unless otherwise stated all of the cases studied in this

thesis assume a 
at guide surface, without any axial variation.

7.2.1 The Pressure Boundary Layers

The side 
ow of air in a foil bearing is con�ned to a narrow band on the sides of the

bearing. In the middle part of the tape air 
ow is in the direction of the tape velocity,

and the pressure distribution is similar to that of an in�nitely wide bearing. At the two

free edges of the tape, the side 
ow is signi�cant, and the air pressure drops from its

value in the middle to the ambient pressure in a narrow boundary layer.

We are not aware of any study which predicts the side boundary layer width for a foil

bearing. However, for a slider bearing asymptotic studies show that the side boundary

layer width is,

Wside / ��1=2 (7:14)

3See Section 7.3.
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where, the bearing number is de�ned as follows:

� =
6�VxLy

h2mPa
(7:15)

In this equation, hm is the minimum bearing clearance. Similarly, at the trailing edge

(exit side) of a slider bearing the pressure drops to ambient value within a boundary layer

width,Wexit, proportional to ��1 [27, page 172]. However, for an in�nitely wide, perfectly


exible, and incompressible foil bearing an estimate for Wexit exists. This estimate shows

that,

Wexit / ho(Tx=(6�Vx))
1=3 (7:16)

[27, chapter 6], where ho is the foil bearing height in the constant gap region.

In any case these relations suggest that for higher tape speeds, Vx, the boundary

layers are expected to be narrower. In the next section we elaborate on the e�ects of

narrow boundary layers on the numerical solution of the problem.

7.2.2 Interpolation

As shown in Chapter 4, the accuracy of the tape equation depends on the the spatial

mesh size, �, and as noted by Hughes, on the time integration scheme that one uses

[34]. Similar claims can be made for the solution of the Reynolds equation [16]. In the

previous section we mentioned that narrow boundary layers form on the lateral edges

and the exit side of the foil bearing. In order to adequately resolve the pressure changes,

using a discretized solution method, one needs to place a large number of nodes in

these boundary layers. However, using the same nodal spacing in the boundary layer

regions, and the other parts of the pressure solution domain, as well as in the tape

mesh is computationally ine�cient. For this reason we wrote our simulation to handle

varying mesh sizes in the tape and Reynolds equation domains. This situation requires

interpolation of the variables from one mesh type to the other.

As the meshes used in both domains are rectangular we borrowed an interpolation

idea used extensively by a distant cousin of the �nite di�erence method; the �nite element
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method. We used the interpolation provided by the isoparametric bilinear elements to

interpolate a function on a four-noded rectangular element. Knowing the values of a

variable P at the four corners of a rectangle, its values anywhere inside the rectangle can

be interpolated by,

P (�; �) =
4X
i=1

NiPi (7:17)

where, Pi are the known values of the variable at the four corners. See Figure 7-2. The

shape functions, Ni, are given as follows:

N1 = (1� �)(1 � �) (7.18)

N2 = (1 + �)(1 � �) (7.19)

N3 = (1 + �)(1 + �) (7.20)

N4 = (1 � �)(1 + �) (7.21)

The nondimensional coordinates of the interpolation element, � and � can be expressed

in terms of the coordinates of the four corners, (xi; yi) and the coordinates of the point

at which interpolation is sought, (x; y), as follows:

� = x�0:5(x1+x4)
0:5(x4�x1)

(7.22)

� = y�0:5(y1+y2)
0:5(y2�y1)

(7.23)
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Figure 7-2: Isoparametric, bilinear interpolation element used in interpolating the vari-
ables between the pressure and tape domains.

Tape Mesh
Pressure Mesh

Tape Element, and 
Pressure Node

Pressure Element, and
Tape Node

Simple Support BoundarySimple Support Boundary

Simple Support Boundary

Figure 7-3: The tape and pressure solution domains, and the tape and pressure interpo-
lation elements.
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The pressures, p(x; y; t), obtained from the Reynolds equation solver are interpolated

to the pressures used by tape equation solver. To do this, the nodes of the pressure

mesh to are grouped as �ctitious four noded pressure elements. Then each tape node is

located with respect to these elements. See Figure 7-3 for this arrangement. For each

tape node we make a list establishing the tape-node-to-pressure-element relation. We,

then, calculate the shape functions for that particular pressure element and that node

using Equations (7.18-7.21). This information needs to be calculated only once before

the time integration is started. The interpolation from the pressure domain to the tape

domain is performed by applying Equation (7.17) at every node.

We also need to interpolate the tape guide spacing, h(x; y; t), from the tape mesh to

the pressure mesh. Note that this interpolation is in the opposite direction as the one

described in the above paragraph. In this case we set up �ctitious tape elements and

proceed as before. These �ctitious elements are shown in Figure 7-3.

7.3 The Steady State in Linear Recording

In order to �nd the steady state of a given problem we trace the transient solution to

steady state while keeping its parameters constant. To reach a steady state we run the

simulation for a duration of � = 2Lx

Vx
as suggested by Eshel's study, [17]. We also trace

the mid-point tape-guide separation, h(Lx

2 ;
Ly

2 ). The initial conditions of the 2D problem

are obtained from the solution of the 1D problem,

wo(x; y; 0) = w1D
o (x) (7.24)

vo(x; y; 0) = 0 (7.25)

po(x; y; 0) = Pa + (p1Do (x)� Pa)
4
Ly
(y � y2

Ly
) (7.26)

where, w1D
o (x) denotes the displacement distribution, and p1Do (x) denotes pressure distri-

bution of the 1D problem at the steady state. In Equation (7.26) we impose a parabolic

variation in the y-direction onto the pressure solution of the 1D problem. Unless we

make the pressure variation smoother as described here, initially, the pressure gradient
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on the side boundaries becomes unrealistically large. In fact, the algorithm will not run

successfully without this type of initialization. We also note that the displacement distri-

bution given by Equation (7.24) is unequilibriated4, because of the nature of the moment

boundary condition, (2.38), on the free edges of the tape. For the linear recording prob-

lem the only non-zero velocity component that is used for the Reynolds equation solution

is the tape transport speed, Vx.

In Figure 7-5 we show the \snapshots" of the gap height and pressure distribution

at the initial stages of the simulation. The parameters for this simulation are given in

Table 7.4. The frames marked as t = 0 denote the initial conditions of the gap height,

h, and the air pressure, p, that are given by Equations (7.24) and (7.26). Since the free

edges of the tape are exposed to the atmosphere, air pressure does not support the tape

at these edges at any time. This situation, combined with the e�ect of tape's initial 
at

displacement causes the free edges of the tape to \drop" as shown in Figure 7-5. As these

edges drop to lower 
ying heights, the air reacts by rapidly increasing the pressure at this

region. See frames marked t = 2 and 4�s in Figure 7-5. The wave action, seen in this

�gure, in the pressure and tape domains are primarily caused by the initial conditions and

are not physical. Most of the higher harmonics are damped out by the time, t = 300�s,

however the steady state in tape displacement is not observed before t = 2ms.

The conditions of the tape guide spacing, h, the air pressure p, and the contact

pressure, Pc at the steady state are presented in Figure 7-6. As expected, we notice that

the contact pressure at the free edges of the tape are non-zero, supporting our earlier

claim that air pressure does not support the tape here. This �gure agrees well with

the results of Heinrich and Conelly [29], except for the contact pressure which is not

mentioned in that study . The minimum displacement occurs on the free edges of the

exit side of the tape. The presence of this high contact pressure makes the sides of a guide

most vulnerable locations for wear. The air pressure is, in general higher, close to the

4In the case of a thin shell wrapped around a cylindrical surface, the only way to obtain a perfectly

at surface in the thin shell, as shown in t = 0 of Figure 7-5, would be to apply moments, on the y = 0
and y = Ly sides of the shell.
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free edges of the tape due to lower tape gap there. In the exit side air pressure boundary

layer, the air pressure dips below ambient, and it shows spikes at the free edges, where

the maximum and minimum pressures are located near each other. Mixing of the side

and exit pressure boundary layers cause the spikes in the pressure.

7.3.1 Tape Width E�ects in Linear Recording

In this section we study the e�ect of tape width on the steady state tape guide spacing,

h. The widths considered are, Ly = 2; 4; 8 and 12mm. Other tape parameters are as

indicated in the respective �gure captions, and can be found in Tables 7.3 or 7.4.

The �rst picture of Figure 7-6 shows the cross section of the tape guide spacing, h,

and air pressure, p, in the axial direction at x = Lx=2 for a 6:35mm wide tape. We

observe, from this �gure that the tape displacement boundary layers near the lateral

edges of the tape cover nearly half of the total tape width, Ly = 6:35mm. The pressure

boundary layers are slightly narrower compared to the displacement boundary layers,

but they are comparable. We also note that the minimum tape displacement is close to

the tape roughness value that we used, �t = 93:4nm.

The e�ects of some other tape widths, Ly = 2; 4; 8; 12mm, on the cross-tape dis-

placement of the tape in steady state are shown in Figure 7-7. For the 2mm wide tape,

the displacement boundary layers are mixed, and the constant gap region in the width

direction is lost. This is better observed in the cross sectional views given in Figures 7-8

and 7-10. Looking at the 4mm wide tape, we see, in Figures 7-7 and 7-10, that the

displacement boundary layers are almost separated. For wider tapes, Ly = 6:35mm in

Figure 7-6, and Ly = 8 and 12mm in Figures 7-7 - 7-10, we see a bigger cross-tape con-

stant gap region. Close inspection of Figure 7-8 shows that the width of the displacement

boundary layer at the sides of the tape is independent of the total tape width, except for

the 2mm case where the two boundary layers are mixed. The width of this displacement

boundary layer is approximately 2:5mm.

Figures 7-9 and 7-11 show the e�ect of the tape width on the steady state air pressure
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pro�les. Similar observations are made about these pressure boundary layers. From these

�gures we conclude that a distinction should be made between the narrow and wide

tapes because the results obtained for a narrow tape, Ly < 5mm, would not adequately

represent the results for a wide one.

These results also lead to question the e�ect of the side air leakage on the steady state


ying height. In the previous studies it was expected that the air loss from the sides of the

tape would cause a lower tape-guide separation [58] [67]. Heinrich and Connely reported

that this, in fact, is the situation for the Stahl et al. example [29]. What we observed

from our numerical experiments is that the tape guide separation is also a�ected by the

asperity height, the tape speed, and the amount of wrap. The separation, h, shown in

Figure 7-8 is for 2:54m=s tape speed, (Table 7.3), whereas the one in 7-10 is for 1:27m=s,

(Table 7.4). The 
at lines on these �gures denote the predictions of the 1D problem. For

the faster tape speed, and larger wrap angle the 2D solution 
ies at a lower separation,

whereas for the slower tape speed, and smaller wrap angle the predictions of the 1D and

2D cases are nearly the same. Adding to these the fact that the free edges of the tape

are elevated by an amount equal to the surface asperity size5, in our simulations, any

conclusions about the comparison of the 1D and the 2D cases becomes vague.

7.3.2 The E�ect of Axial Tension Variation

In a magnetic recording application the tape tension, Tx, is rarely uniform across the

width of the tape. Among the common causes of the this non-uniformity is the imper-

fections in the alignment of guide pins. Another cause of non-uniform axial tension is

the driving belts that are used in some tape systems.

In this section we analyze two hypothetical axial tension variation cases. In the �rst

case the tension variation is given as follows:

Tx(y) = (0:6
y

Ly
+ 0:7) �Tx (7:27)

5�t = 93:4nm



127

where �Tx = 276:7N=m. This equation provides a 60% linear tension increase between the

two free edges of the tape. Other parameters of the problem are as given in Table 7.4.

The steady state tape guide separation, and the corresponding air pressure are shown on

the left-hand-side column of Figure 7-12. As expected, we observe in this �gure that the

separation, h, is smaller on the high tension side of the tape. The air responds to this

smaller separation by a considerable increase in the pressure at the low 
ying side.

The second case of tension variation is given by the following equation,

Tx(y) =

8><
>:

(�1:2 y
Ly

+ 0:7) �Tx; for 0 � y � Ly

2

(1:2 y
Ly

+ 0:7) �Tx; for Ly

2 � y � Ly

(7:28)

where �Tx = 276:7N=m. This function represents 60% tension decrease between the edge

of the tape and the middle of the tape, followed by an increase of the same amount from

the middle to the other edge. The steady state results of this simulation are given on

the right-hand-side column of Figure 7-12. As before the separation, h, is largest where

the tension is lowest. The 
at region in the middle of the tape is completely lost. The

pressure response is also similar.

7.3.3 The E�ect of Guide Surface Shape

In many tape pack systems a rigid guide is placed on the tape path to make the tape

turn a corner. If the conditions of the system are right -in other words if the radius of the

guide is large and/or the tape tension is low and/or the tape speed is high- the tape will

experience self air lubrication and lift away from the guide surface. This e�ect is desirable

in some tape steering applications because it reduces the driving torque requirements,

but it may be regarded as entirely unsatisfactory in other applications because it makes

the tape alignment di�cult.

Regardless of the intended purpose of the guide, its surface is seldom perfectly straight.

In this section we show the e�ects of four di�erent surface shapes on the tape-guide

spacing at steady state. The surface imperfection that we introduce is a sinusoidal

variation in the axial direction, although other shapes can be analyzed by our approach.
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h[�m]
A [�m] Protrusion Dent

1 0.763 0.806
3 0.725 0.854

Table 7.1: Steady state tape-guide separation values at (Lx=2; Ly=2) when there is a
sinusoidal dent or protrusion on the guide surface

In the presence of the surface imperfection the head tape spacing, h, de�nition, (7.13),

becomes,

h(x; y; t) = w(x; y; t) + �(x) +A sin(
�y

Ly
) (7:29)

where, �(x) is as given by Equation (2.45) and A is the amplitude of the function. The

sign of the amplitude, A, is positive when we want to model a dent on the surface, as

shown in Figure 7-1, and it is negative when we want to model a protrusion. The y

direction derivatives of the Reynolds equation are evaluated on the guide surface.

In Figure 7.13 we show four tape-guide spacings at steady state. The two pictures on

the left hand side column show two surface protrusions with 1 and 3�m amplitudes, and

the other two pictures on the right hand side column show two cases of dented surfaces

with the same amplitudes. The guide surfaces are also drawn beneath the sketches of the

tapes to enable better visualization of the situation. For the parameters that we used

in this analysis (Table 7.4) A = 3�m is the biggest amplitude that can be simulated

by our model. This suggests that for bigger amplitudes the support of the tape due

to air bearing becomes harder. The head tape separations at (Lx=2; Ly=2) are given in

Table 7.1. We notice that the 
ying height is generally higher for dented surfaces. For

these parameters the 
ying height for a 
at guide surface is 0:785�m.

7.4 Transient E�ects

In magnetic recording applications system parameters such as the tape tension, and

the tape speed are seldom stationary. Quick starts and stops of the tape are required



129

to increase the data access rates. Some systems such as the 3M Data Cartridge have

inherent transient tension characteristics while the tape is wound from one spool to the

other. In helical-scan recording applications the interaction between the magnetic head

which is rotating at a high rate and the tape which is being transported slowly, can cause

undesirable wave propagation in the tape. Severe signal drop-outs occur if an asperity

or a tape imperfection enters the head tape interface. Considering all of these e�ects, it

is important to understand the implications of these transient phenomena on the tape

behavior in the interface. Therefore, in this section we study some of these transient

e�ects encountered in the 2D foil bearing problem.

The literature of the transient foil bearing problem is given in Section 1.1.3. To the

best of our knowledge, the tape inertia and squeeze �lm e�ects of the air bearing are not

combined in a 2D study except for Heinrich and Connelly's paper [29].

7.4.1 Transient E�ects in Linear Recording

In this section we present several case studies for the transient e�ects in linear recording.

The parameters of this analysis are given in Table 7-2. The analysis is started from the

steady state solution of the 2D problem.

Tension Reduction

In Figures 7-15 and 7-16 a case in which the tape tension is reduced from 276:7N=m

to 193:7N=m in 1ms is shown. Figure 7-15 shows snap shots of the tape's reaction to

this reduction. Note that as the tape tension is decreased the distance between the tape

and the guide increases. This increase starts to take place from the entry side of the

tape, and propagates toward the exit side. Due to the e�ective cushioning provided by

the air bearing the e�ect of the tension change propagates mildly through the interface.

The �nal 
ying height is 0:54�m and it is reached in roughly 9ms. This is roughly 20%

longer than the time required for the tape to travel the length of the lubrication zone

between points Lx1 and Lx2
6. For clarity we show two cross sections of this transient

6j Lx2 � Lx1 j= 3:7mm
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motion in Figure 7-16. The column on the left shows the cross section in the running

direction, (x;Ly=2) and the column on the right shows the cross section in the axial

direction, (Lx=2; y). From this �gure we notice that the major wave action is in the

running direction of the tape. The foil bearing reaction to the tension change is not

immediate. In the (1ms) duration of tension variation the separation shows hardly any

change.

Tension Increase

In Figures 7-18 and 7-17 we show the transient tape displacement in a case that is the

opposite of the previous case study. Here, we allow the tension to increase to 359:7N=m

in the same length of time. As in the tension decrease case the e�ect moves from the

entry side to the exit side with a smooth motion in approximately 9ms. The steady state


ying height is 0:33�m. These results show that the same amount of tension increase

and decrease do not correspond to the same amount of 
ying height change. However,

besides this result, there is not a fundamental di�erence between the tension decrease

and increase situations.

Figure 7-14 shows the steady state 
ying height of the three di�erent uniform tension

cases, Tx = 193:69; 276:7 and 359:71N=m. The decrease in the tape guide separation, h,

is non-linear even though the tension is reduced 30% at each case. We also note that the

minimum 
ying height stays at the asperity level, for all of the three cases.

Tape Speed Reduction

Figures 7-19 - 7-20 show a case where the tape transport speed, Vx, is reduced from

0:5m=s to 0:35m=s in 1ms. As a result of this, the steady state 
ying height reduces to

0:31�m. Similar to the previous two cases the tape displacement reduction propagates as

a slowly moving axial wave. Total time to reach the steady state is 12�s. This suggests

that the time to reach steady state is a function of the tape speed as predicted by Eshel

[17] and as observed by Stahl et al. [58]. The tape response is similar to the cases in

which tension is varied.

One of the observations common for all of the above three cases is that the displace-
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Figure 7-4: A schematic view of the tape-guide separation, h.

ment wave propagation is in the running direction of the tape. We also see that the

minimum 
ying height is limited approximately by the back surface roughness of the

tape and does not change with changing tape tension or speed. Another common �nding

is that the foil bearing reaction to the tension and speed changes is not immediate. In

fact in the duration of the change, (1ms), the tape-guide separation stays nearly station-

ary. We attribute the robustness of the behavior in the interface to the damping created

by the air lubrication. Had it not been for the air bearing these transient changes would

have caused much di�erent results.

Moving Asperity in the Interface

Asperities going into the head-tape interface cause signal dropouts. These asperities

may be stuck on the back surface of the tape as in the case of tape surface imperfections, or

they may be dust particles that get caught in the air 
ow toward the interface. Prediction

of the tape behavior when an asperity gets into the interface is useful in designing an

optimal tape recording system.

In Figure 7-21 the tape's reaction to an asperity going through the interface is shown.
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In this �gure the asperity moves with the same speed as the tape. Its path is linear

and located at the middle of the tape. This case represents an asperity that is stuck to

the back side of the tape. We assume that this asperity is rigid, and model it with the

following sinusoidal function,

��(x; y; t) =

8>>>>>>>><
>>>>>>>>:

A sin (y�(yo(t)�aLy=2))�
aLy

sin (x�(xo(t)�aLy=2))�
aLy

; if xo � aLy=2 � x � xo + aLy=2;

and

yo � aLy=2 � y � yo + aLy=2

0 otherwise

(7:30)

where, A is the magnitude of the asperity, the point (xo(t); yo(t)) is the center of the

asperity and a is a constant used to determine width and the length of the asperity. The

value of a is between zero and one. Note that the function given in Equation (7.30) is

valid only for the asperity aspect ratio7 of one. Similar to Equation (5.1), the asperity

center is given the following linear motion,

xo(t) = VL cos(�)t+ xi

yo(t) = VL sin(�)t+ yi
(7:31)

where, VL is the speed of the asperity, � is the slope of the asperity's path, and (xi; yi)

is the initial location of the asperity.

The tape-guide spacing in the presence of the asperity is shown schematically in

Figure 7-4. This variable is given as,

h(x; y; t) = w(x; y; t) + �(x; y)� ��(x; y; t) (7:32)

The height of the asperity in Figure 7-21 is 2�m whereas the initial 
ying height of

the tape is 0:785�m. The width of the asperity is 1:27mm. This �gure reveals several

interesting phenomena, �rst of which is the observation that an asperity whose amplitude

is considerably higher than the steady state head tape spacing can move through the

7The ratio of the asperity's length to its width.
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head tape interface without crash. In fact we were able to simulate an asperity with 6�m

amplitude move through this interface. As the distance between the asperity and the

tape becomes lower than the mean roughness value of the tape, �t, the contact pressure

supplies most of the loading near the tip of the asperity. The contact pressure increases

with increasing asperity height.

Close inspection of the pressure pro�les given in Figure 7-21 shows that the pressure

solution has a spike on the upstream side and a dip on the downstream side of the

asperity. This can be better seen in the cross sectional view given in Figure 7-22. Note

that the tape-guide spacing, h, is extremely small near the asperity tip and that the

maximum air pressure is located slightly toward the upstream side of the tip. The spike

occurs because the tape-guide spacing has a converging wedge shape on the upstream

side. The dip is caused by the diverging wedge shape on the downstream side. The tape

displacement is not greatly a�ected by the subambient pressures on the downstream side

of the asperity because of the tent-pole shape that the tape deforms into.

7.4.2 Transient E�ects in a Helical-Scan Application

In Figure 7.23 we show the simulation of the transient e�ects in a helical-scan like ap-

plication. The tape speed, Vx, is 1m=s and initially the drum is stationary. We �rst

�nd the steady state solution of the case with uniform transport speed of 1m=s. Once

we obtain that solution, we let t = 0, and the left half of the drum starts to rotate.

The surface speed of the drum, V G
x reaches 5m=s in 1ms. In the mean time a doubly

sinusoidal surface protrusion also strats to move with the rotating part of the drum. The

center of the protrusion is initially located at (xi; yi) = (0; 4:4)mm, and it moves with

the same speed as the drum. The protrusion height, A, is 6�m and the width parameter

a is 0:1. For this application we used unequal nodal spacing on the pressure solution

domain. The nodal density was increased on the free edges and the exit side of the foil

bearing as well as around the path of the protrusion. The nodal spacing used for this

case is given in Table 7.2



134

y range Node �y x range Node �x
0:5� 10�3 9 0:625 � 10�4 1:7� 10�2 171 1:0� 10�4

4:0� 10�3 43 1:02941 � 10�4 1:85 � 10�2 201 5:0� 10�5

5:0� 10�3 63 5� 10�5 1:922807 � 10�2 208 1:04 � 10�4

7:5� 10�3 88 1� 10�4

8:0� 10�3 96 5:8863 � 10�4

Table 7.2: Node spacing for the pressure domain for helical-scan simulation

The y components of the tape, Vy and the drum, V G
y , velocities as well as the helix

angle, �, are zero. The protrusion shape, and motion are given by Equations (7.30), and

(7.31). The parameters of the tape are given in Table 7.5.

The tape-drum spacing is shown in Figure 7.23 and corresponding pressure pro�le is

given in Figure 7.24. We see that the tape-drum spacing, h, is higher over the rotating

drum where the higher shear rate causes higher air pressures. We see that this zone

propagates in the downstream direction faster than the protrusion. The protrusion, at

the same time, creates a tent-pole like displacement which is localized around itself. This

is similar to the asperity case shown before. The pressure pro�le near the protrusion is

also similar to before; it has a spike at the upstream side of the protrusion due to the

converging spacing, and it has a dip on the downstream side due to diverging spacing, h.

The drum and the protrusion are moving rather slowly compared to the load speeds we

considered in Chapter 5, for that reason the tape inertia and subsequent wave propagation

are insigni�cant in this simulation. Note that at the drum speed of 5m=s the air bearing

is very e�ective in damping out the dynamic changes in the tape. The e�ects are localized

near the protrusion.

7.5 Summary and Conclusions

In this chapter we analyzed the foil bearing problem in magnetic recording applications.

We considered the e�ects of the �nite tape width as well as transient e�ects on the tape
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displacements in the tape-guide interface.

For the parameters that we studied, we observed that as we consider narrower tapes

the displacement boundary layers forming on the lateral edges of the tape mix and the


at zone in the the cross-tape direction diminishes. Non-uniform tension variations in the

cross-width direction also a�ect the 
atness of the mid-section of the tape. These non-

uniformities of the 
ying height could have an important impact on the multi-channel

recording since the quality of the magnetic signal depends on the head-tape gap.

Our simulations showed that the tape is supported by rigid body contact on the lateral

edges. We saw no evidence of air bearing support, moreover our numerical scheme fails

to converge if we neglect the rigid body contact. The maximum rigid body contact

occurs at the exit side of the tape. The 
ying height at the lateral edges, in the constant

gap zone, is near the surface asperity height used in modeling the contact pressure. We

observed that this 
ying height stays the same for all of the tape speeds, tape tensions

and recording modes we considered. The existence of relatively high contact pressures at

the lateral edges make both the tape and the guides vulnerable to wear at these locations.

When we studied the transient changes in the system parameters such as tape speed

and tension, we see that the coupled system is e�ective to damp out the excessive dynamic

action. We observed that the changes propagate with a speed close to one half of the

tape transport speed8.

Simulation of an asperity going through the tape-guide interface showed that the

tape would lift on an air layer above the moving asperity and allow it to go through

the interface with minimal contact with the back side of the tape. We were able to

simulate this with asperity heights nearly ten times bigger than the undisturbed tape-

guide spacing.

Our simulations also showed that the air pressure on the downstream side of the as-

perity has a subambient dip and on the upstream side of the asperity it has superambient

8Our simulations suggest that this propagation speed is actually higher than the half of the tape
transport speed.
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spike. For the tape speeds that we considered the e�ect of the moving asperity was seen

to be localized due to strong damping provided by air.

We also studied a split-drum recording case. We showed the stages of pressure built-

up as the drum starts to rotate and as the head simulated by a doubly sinusoidal function

enters the interface. We were able to simulate drum speeds up to 10m=s. Mixing of the

air 
ow becomes complicated near a moving protrusion and requires a very �nely resolved

mesh. An adaptive meshing algorithm for the Reynolds equation solution should be used,

to resolve the steep pressure gradients occurring at higher drum speeds.



137

N No. of nodes for tape (y-dir.) 71
M No. of nodes for tape (x-dir.) 172
Np No. of nodes for air bearing (y-dir.) 71
Mp No. of nodes for air bearing (x-dir.) 172
�t Time step size 0.1 �s
� Integration parameter 0
� Integration parameter 1/4

 Integration parameter 1/2

Vx Tape speed 2.54 m=s
Tx Tape tension 278 N=m
c Tape thickness 20 �m
Lx Tape length (appr.) 15 mm
Ly Tape width 6.35 mm
E Young's modulus 4.0 GPa
�a=c Volumetric mass density of the tape 1400 kg=m3

� Poisson's ratio 0.3
R Guide radius 2.04 cm
�L Wrap angle (See Fig.2-3) 8:89�

�R Wrap angle 8:89�

�e1 Entry angle 12�

�e2 Exit angle 12�

�L Distance between far end supports 8.44 cm

Pa Ambient pressure 84.1 kPa
�a Air viscosity 1:81� 10�5 N=m2s
�a Mean free path length of air 63.5 nm

Table 7.3: Speci�cations for test case from Stahl et al.
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N No. of nodes for tape (y-dir.) 71
M No. of nodes for tape (x-dir.) 172
Np No. of nodes for air bearing (y-dir.) 71
Mp No. of nodes for air bearing (x-dir.) 172
�t Time step size 0.1 �s
� Integration parameter 0
� Integration parameter 1/4

 Integration parameter 1/2

Vx Tape speed 1.27 m=s
Tx Tape tension 276.7 N=m
c Tape thickness 38.1 �m
Lx Tape length (appr.) 15 mm
Ly Tape width 6.35 mm
E Young's modulus 4.0 GPa
�a=c Volumetric mass density of the tape 1400 kg=m3

� Poisson's ratio 0.35
R Guide Radius 2.0 cm
�L Wrap angle (See Fig.2-3) 5:2734�

�R Wrap angle 5:2734�

�e1 Entry angle 16:6654�

�e2 Exit angle 16:7647�

�L Distance between far end supports 8.44 cm

Pa Ambient pressure 101.3 kPa
�a Viscosity of air 1:81� 10�5 N=m2s
�a Mean free path length of air 63.5 nm

Table 7.4: Speci�cations for test case from Vogel and Groom.
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N No. of nodes for tape (y-dir.) 115
M No. of nodes for tape (x-dir.) 274
Np No. of nodes for air bearing (y-dir.) 96
Mp No. of nodes for air bearing (x-dir.) 208
�t Time step size 0.1 �s
� Integration parameter 0
� Integration parameter 1/4

 Integration parameter 1/2

Vx Tape speed 1.0 m=s
Tx Tape tension 90.0 N=m
c Tape thickness 20.0 �m
Lx Tape length (appr.) 19.2 mm
Ly Tape width 8.0 mm
E Young's modulus 4.0 GPa
�a=c Volumetric mass density of the tape 1400 kg=m3

� Poisson's ratio 0.3
R Guide Radius 1.0 cm
�L Wrap angle (See Fig.2-3) 45�

�R Wrap angle 45�

�e1 Entry angle 9:6480�

�e2 Exit angle 10:1598�

�L Distance between far end supports N/A

Pa Ambient pressure 101.3 kPa
�a Viscosity of air 1:81� 10�5 N=m2s
�a Mean free path length of air 63.5 nm

Table 7.5: Speci�cations for the helical scan case.
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Figure 7-5: The initial stages of the transient analysis. Due to the state of the initial

conditions the wave action in the tape and the pressure domains is not physical. See

Table 7.4 for problem parameters.
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Figure 7-5: ctd.
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Figure 7-5: ctd.
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Figure 7-6: The tape-guide spacing, h, air pressure, p, and the contact pressure, pc at

steady state. The tape speed and tension are, Vx = 1:27m=s, and Tx = 276:7N=m. The

mid point 
ying height is ho = 0:785�m. See Table 7.4 for problem parameters.
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Figure 7-7: Steady state tape-guide spacing, h, for di�erent tape widths, Ly. The mid-

point 
ying heights, ho, are 1:342; 1:217 and 1:207�m, respectively. The tape speed and

tension are, Vx = 2:54m=s, and Tx = 278N=m, tape thickness is c = 20�m. See Table 7.3

for problem parameters.



145

0

5e-07

1e-06

1.5e-06

2e-06

0 0.002 0.004 0.006 0.008 0.01 0.012

T
ap

e 
G

ui
de

 S
ep

ar
at

io
n,

 (
m

)

Axial direction, y (m)

Ly= 2mm
Ly =4mm
Ly =8mm

Ly=12mm
1D sol.

Figure 7-8: Cross section of the steady state tape-guide spacing, h, for di�erent tape

widths at x = Lx=2. The mid-point 
ying heights, ho, are 1:342; 1:217 and 1:207�m,

respectively. See Table 7.3 for problem parameters.
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x = Lx=2. See Table 7.3 for problem parameters.
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Figure 7-10: Cross section of the steady state tape-guide spacing, h, for di�erent tape
widths at x = Lx=2. See Table 7.4 for problem parameters.
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Figure 7-12: The e�ect of axial tension variation on steady state tape-guide spacing,
h. Nominal tape tension is Tx = 276:7N=m, with 30% variations as shown. The tape
speed and thickness are, Vx = 0:5m=s, and c = 38:2�m. See Table 7.4 for other problem
parameters.
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0:33�m from top to bottom. See Table 7.4 for other problem parameters.
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Figure 7-15: Transient e�ects while tension is reduced 30%, from 276:7N=m, in 1ms.
The 
ying height increases to 0:54�m from 0:39�m. The steady state is reached in
approximately 9ms. Tape transport speed is 0:5m=s. See Table 7.4 for other problem
parameters.
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Figure 7-16: The cross sections at (x;Ly=2) and (x;Ly=2) for Figure 7-15.
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Figure 7-17: Transient e�ects while tension is increased 30%, from 276:7N=m, in 1ms.
The 
ying height reduces to 0:33�m from 0:39�m. The steady state is reached in approx-
imately 9ms. The tape transport speed is 0:5m=s. See Table 7.4 for problem parameters.
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Figure 7-18: The cross sections at (x;Ly=2) and (x;Ly=2) for Figure 7-17
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Figure 7-19: Transient e�ects while tape speed is decreased 30%, from 0:5m=s, in 1ms.
The 
ying height reduces to 0:31�m from 0:39�m. The steady state is reached in ap-
proximately 12ms. See Table 7.4 for other problem parameters.
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Figure 7-20: The cross sections at (x;Ly=2) and (x;Ly=2) for Figure 7-19



156

Figure 7-21: Transient e�ects while an asperity moves under the tape. The asperity is
de�ned by Equation (7.29) where asperity height, A = 2�m, and a = 0:1. The asperity
moves with the same same speed as the tape. See Table 7.4 for the tape parameters.
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Figure 7-21: ctd.
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Figure 7-22: Tape displacement and pressure pro�les at the cross section (x;Ly=2) for
the case given in Figure 7-21. Note that the node numbering is insu�cient to resolve the
pressure spike.
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Chapter 8

Summary and Conclusions

In this thesis we analyzed the transient e�ects in the foil bearing problem applied to the

magnetic recording applications. We included characteristics arising from tape inertia

and �nite tape width. The compressibility of air and �rst order slip-
ow corrections are

also included in our analysis.

We introduced a segmented model for the out-of-plane tape displacements. In this

model the tape is modeled as a cylindrical shell in the wrap zone and as a plate in the

straight segments between the guide pins and the tangency points. This choice allows us

to analyze problems in which the angle of wrap is large. The air lubrication is modeled

with the modi�ed Reynolds equation.

We analyzed the foil bearing problem in the transient domain. The tape equation is

discretized with central �nite di�erence formulas in the spatial domain. The �-method is

used for integration in the time domain. We used explicit time integration in solving the

coupled problem to decrease the simulation time. The Reynolds equation is solved with

ADI method. We investigated the e�ects of �nite tape width, axial tension variations

and tape inertia on the tape's displacement in the self lubrication zone for linear and

split-drum formats.

We also analyzed the wave propagation in a circumferentially moving thin cylindrical

shell due to a point load moving relative to the shell in the absence of air lubrication.
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This analysis lead us to study the dispersive nature of the wave propagation in the thin

shells.

Our conclusions are summarized below.

� The Foil Bearing Problem

{ For the parameters that we studied, we observed that as we consider narrower

tapes the displacement boundary layers forming on the lateral edges of the

tape mix and the 
at zone in the the cross-tape direction diminishes. We saw

that the non-uniform tension variations in the cross-width direction also a�ect

the 
atness of the mid-section of the tape. These non-uniformities of the 
ying

height could have an important impact on the multi-channel recording since

the quality of the magnetic signal depends on the head-tape gap.

{ Our simulations showed that the tape is supported by rigid body contact on

the lateral edges. We saw no evidence of air bearing support. Moreover, our

numerical scheme fails to converge if we neglect the rigid body contact. We

found that the maximum rigid body contact occurs at the exit side of the

tape. The 
ying height at the lateral edges in the constant gap zone was seen

to be close to the value of the surface asperity height used in modeling the

contact pressure. We observed that this 
ying height stays the same for all of

the tape speeds, tape tensions and recording modes considered. The existence

of relatively high contact pressures at the lateral edges make both the tape

and the guides vulnerable to wear at these locations.

{ When we studied the transient changes in the system parameters such as tape

speed and tension, we saw that the coupled system is e�ective to damp out

the excessive dynamic action. We observed that the changes propagate with

a speed close to one half of the tape transport speed1.

1Our simulations suggest that this propagation speed is actually higher than the half of the tape

transport speed.
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{ Simulation of an asperity going through the tape-guide interface showed that

the tape would lift on an air layer above the moving asperity and allow it to

go through the interface without damage due to contact with the back side of

the tape. We were able to simulate this with asperity heights nearly ten times

bigger than the undisturbed tape-guide spacing.

{ Our simulations also showed that the air pressure on the downstream side of

the asperity has a subambient dip and on the upstream side of the asperity it

has superambient spike. For the tape speeds that we considered the e�ect of

the moving asperity was seen to be localized due to damping by the air.

{ We also studied a split-drum recording case. We showed the stages of pressure

built-up as the drum starts to rotate and as the head simulated by a doubly

sinusoidal function enters the interface. We were able to simulate drum speeds

up to 10m=s. Mixing of the air 
ow became complicated near a moving

protrusion and required a very �nely resolved mesh. An adaptive meshing

algorithm for the Reynolds equation solution should be used, to resolve the

steep pressure gradients occurring at higher drum speeds.

� Wave propagation in a Cylindrical Shell

{ We observed that the displacement wave caused by a point load applied in

the step function manner propagates symmetrically around the load point.

However, when the tape was put in a circumferential motion the symmetry

was lost and the wavelength became longer in the direction of the shell's

motion.

{ We also observed that the waves emanating from the load point re
ect from

the free edges as well as the pinned boundaries, and return back to the load

point. Superposition of these waves was thought as the cause of the quasi-

periodic motion at the load point. Increasing the tape transport speed resulted

in large displacements.
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{ In the case of a moving point load the waves that occur on the tape and the

load were seen to compete with each other. A critical load speed was identi�ed

at which the load penetrates the wave front in the tape.

{ This critical speed became lower with increasing tape thickness, tape transport

speed, and tape tension. We also observed the evidence of more edge 
utter

in thicker tapes.

� Frequency Analysis of Wave propagation in a Cylindrical Shell

{ We showed that the wave propagation in a circumferentiallymoving thin cylin-

drical shell is dispersive. The long waves encountered in this medium are dom-

inated by the shell sti�ness term,K, and the short wavelengths are dominated

by a combination of the bending rigidity, tension and transport speed.

{ We also showed that the spatial step size e�ects the short wavelength behavior

of the solution. In order to prevent the occurrence of incorrect wave speeds

at short wavelengths, a safe rule is to use a step size that is 1/10th of the

shortest wave length of interest.

In the future, adaptive mesh re�nementmay be applied to the solution of the Reynolds

equation in order to resolve the abrupt pressure changes that occur near a moving pro-

trusion. This would allow simulation of faster drum speeds in split-drum applications.

The Reynolds equation solver that we used can be modi�ed in such a way that it would

handle atmospheric pressure boundary conditions under the tape. This would enable

proper modeling of the atmospheric boundary conditions at the head window, and at the

junction of the split drum in helical-scan models. A more complete tape model consid-

ering the e�ects of in-plane tape displacements and stresses can be used in modeling the

helical-scan tape. This would open the way for understanding the e�ects of friction on

the tape tension. A more comprehensive study of the tape parameters such as thickness

and tension should be made to determine the e�ects of tape inertia in helical scan.
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