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ADHESION IN THE CONTACT OF A SPHERICAL 
INDENTER WITH A LAYERED MEDIUM 
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where f(r) is the shape of the indenter. Harmonic Papkovich-
Neuber potentials are chosen: 
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 Displacements and stresses calculated from these potentials 

satisfy the equations of elasticity – equilibrium, compatibility, 
and stress-strain laws. 

ABSTRACT 
With the emergence of micro- and nano-technology, the contact 
mechanics of MEMS & NEMS devices and components is 
becoming more important.  The motivation for this work is to 
gain a better understanding of the role of coatings and thin 
films on micro- and nano-scale contact phenomena, and to 
understand the interactions of measurement devices, such as an 
Atomic Force Microscope (AFM), with layered media. 

The effect of the adhesion is included using Maugis model. 
A uniform tensile stress (σ0) is assumed to exist between the 
contacting asperities just outside the contact zone, a < r < c, 
where the surfaces separate by a distance less than h0. The 
maximum stress and the work of adhesion are chosen to match 
those of the Lennard-Jones potential, which gives h0 = 0.97 z0, 
where z0 is the equilibrium separation. Including adhesion, the 
final equation becomes a singular integral equation with a 
Cauchy-type singularity which can be solved numerically 
(Erdogan et al., 1972): 

The frictionless contact between a rigid spherical indenter 
and an elastic layered medium is the subject of this research.  
This configuration can be viewed as either a single asperity 
contact or as a building block of a multi-asperity rough surface 
contact model. As the scale decreases to the nano level, 
adhesion becomes an important issue in this contact problem.  
The presence of adhesion affects the relationships among the 
applied force, the penetration of the indenter and the size of the 
contact area. This axisymmetric problem includes the effect of 
adhesion using the Maugis model. This model spans the range 
of the Tabor parameter between the JKR and DMT regions. 
Key parameters have been identified which are the elastic 
moduli ratio of the layer and the substrate, the Poisson’s ratios, 
the dimensionless contact radius, the dimensionless layer 
thickness, and the adhesion parameter λ.  
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where the kernels k1(ε, r) and k2(ε, r) depend on the shear 
moduli ratio (µ1/µ2), and the Poisson’s ratios ν1 and ν2. 

Using the following normalizations, the parameters in the 
Sergici-Adams-Müftü (SAM) model become A, H, λ, (µ1/µ2), ν1 
and ν2:  
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 INTRODUCTION 
The axisymmetric contact problem with an elastic layer 
(Civelek et al., 1974) and the effect of coatings on contact 
(Chen et al., 1972) are well-investigated.  Recently Johnson and 
Sridhar (2001) used a JKR type of formulation for the finite 
element analysis of the adhesion of a sphere on a layered elastic 
medium.  In the present investigation, the Maugis (1992) 
adhesion model is applied to the contact of a spherical indenter 
with a layered elastic half-space. The configuration is shown in 
Figure 1. An elastic layer (1) of thickness h is perfectly bonded 
to an elastic substrate (2). It is indented by a rigid sphere of 
radius R with a load P. The penetration depth is denoted by δ. 
Contact between the indenter and the surface is assumed to be 
frictionless.  

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
1

1

13
8

ν
µK  and  00 hw σ= . 

 
RESULTS 
Results are given for the dimensionless contact radius vs. the 
dimensionless normal force, and the dimensionless normal 
force vs. the dimensionless penetration depth for a wide range 
of parameters. Figures 2 and 3 reflect the effect of the elastic 
moduli ratio, covering the range 0.05 < (µ1/µ2) < 10. Figures 4 
and 5 show the results for different adhesion parameters, 0.05 < 
λ < 5. 

 
FORMULATION 
Boundary conditions at the interface are perfectly bonded and 
at the free surface ( z = - h ) are: 
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Figure 1. Indentation of an elastic layered media. 
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Figure 2.  Variation of the dimensionless contact radius with 
the dimensionless normal force for various µ1/µ2 values, with H 
= 0.2, λ = 1, and ν1 = ν2 = 1/3. 
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Figure 4.  Variation of the dimensionless contact radius with 
the dimensionless normal force for various λ values, with H = 
0.2, µ1/µ2 = 2, and ν1 = ν2 = 1/3. 
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Figure 5.  Variation of the dimensionless normal force with the 
dimensionless penetration depth for various λ values, with H = 
0.2, µ1/µ2 = 2, and ν1 = ν2 = 1/3. 
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