

Figure 1. Contact width (2a) and the adhesion width (2c) for the contact of a cylinder with a half-space.



**Figure 2.** The variation of the dimensionless applied normal load (F/Eh) with the dimensionless contact half-width (a/R) for a dimensionless cylinder radii R/h=100.



**Figure 3.** The variation of the dimensionless applied normal load (F/Eh) with the dimensionless contact half-width (a/R) for a dimensionless cylinder radii R/h=200.



**Figure 4.** The variation of the dimensionless adhesion half-width (c/R) with the dimensionless contact half-width (a/R) for a dimensionless cylinder radii R/h=100.



**Figure 5.** The variation of the dimensionless adhesion half-width (c/R) with the dimensionless contact half-width (a/R) for a dimensionless cylinder radii R/h=200.



**Figure 6.** The variation of the dimensionless "zero contact length force" (*F/Eh*) with the dimensionless adhesion stress ( $s_0/E$ ).



**Figure 7.** The variation of the dimensionless tangential force (T/Ea) with the nondimensional half-length of the stick zone (d/a) inside the contact region during the initiation of sliding.



Figure 8. Contact width (2a) and the adhesion widths in trailing and leading edges for the contact of a cylinder with a half-space in the presence of sliding motion.



**Figure 9.** The difference between the dimensionless adhesion half-widths of trailing and leading edges vs. dimensionless contact half-width (*a/R*) for  $R/h_2=100$  and  $s_0/E=0.01$ .



Figure 10. The difference between the dimensionless adhesion half-widths of trailing and leading edges vs. dimensionless contact half-width (a/R) for  $R/h_2=100$  and  $s_0/E=0.04$ .



**Figure 11.** The dimensionless resultant moment ( $M/ER^2$ ) vs. dimensionless contact halfwidth (a/R) for  $R/h_2=100$  and  $s_0/E=0.01$ .



**Figure 12.** The dimensionless resultant moment ( $M/ER^2$ ) vs. dimensionless contact halfwidth (a/R) for  $R/h_2=100$  and  $s_0/E=0.04$ .



Figure 13. The variation of the dimensionless stick zone parameter (d/a) with dimensionless tangential force applied (T/Ea) during rolling motion.



**Figure 14.** The variation of the creep dimensionless velocity  $(\dot{C}/V)$  with the dimensionless stick zone parameter (d/a) during rolling motion.