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1 ABSTRACT 
 
 
The achievement of level 5 autonomous vehicles on urban roads requires performance 
equal to that of a human driver in every scenario. In order to achieve this level of autonomy 
many challenging obstacles must be overcome. In this paper, we will address the specific 
challenges bicycles pose for self-driving cars in urban environments. One of the most 
prevalent challenges is detection and tracking of bicycles. Their relatively transparent 
profile, which changes as the bicycle moves, and their slight frames make detection a 
difficult problem. Furthermore, their ability to quickly maneuver in cluttered urban 
environments can generate inaccurate tracking models and faulty prediction estimates. 
Significant work has been done in sensor and algorithm development to solve the bicycle 
detection, tracking, and prediction problem, yet problems remain as datasets and 
algorithm analysis are not accessible to academic researchers. This information is instead 
considered proprietary. Of the published work in this field, most approaches use idealistic 
datasets that do not accurately represent real world conditions in order to improve the 
quality of their results.  
 
To further the development of LiDAR sensors and algorithms this thesis introduces the 
first open LiDAR dataset, collected in real world environments. Algorithms from various 
papers and publications are combined to create a unique implementation that performs in 
real world scenarios. The author presents realistic datasets taken with affordable sensors, 
along with qualitative performance results of leading algorithms. Easy access to this 
dataset and analysis allows researchers and developers to create systems and algorithms 
that perform in real world scenarios. 
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2 INTRODUCTION 

 As autonomous vehicles become increasingly prevalent in society, they need to 

be able to perform as equals to that of a human driver. Current autonomous driving 

technology is pushing past level 2 autonomy towards level 5 [1]. In level 2 autonomy, at 

least one critical driver assisted system is automated, however, the driver must always be 

ready to take over control of the vehicle. Alternatively, Level 5 autonomy requires driving 

performance equal to that of a human driver, while operating in all driving conditions. A 

description of levels zero through five can be seen in figure 1. Presently, many car 

manufacturers have implemented level 2 autonomy as cruise control and lane-centering; 

where steering, acceleration, and deceleration are automated using information about the 

driving environment.  

 

Figure 1. Descriptions of levels 0 through 5 of autonomy. 
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However, there are companies, such as Tesla, that are already expanding 

automation to include complete steering control and parking assistance [2]. Most of these 

level 2 autonomy implementations are done using cheap sensors, such as cameras and 

radars, as seen in figure 2. While these systems greatly decrease the amount of 

intervention required by the driver, they still fail in many non-ideal driving conditions 

including urban environments.  

 

Figure 2. Each sensor and its maximum sensing distance used in Tesla’s autopilot 
hardware. 

 Many obstacles have been overcome towards the goal of achieving level 4 or 5 

autonomy, however the challenges presented by bicycles in urban environments still pose 

a significant problem [3]. A bicycle’s relatively transparent profile, small frame, and quick 

maneuverability pose challenges to the relatively cheap sensors used in most level 2 

autonomous cars. Because of this, industry and researchers are investigating other 

potential sensors that could be used to help accomplish the task.  
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Figure 3. Bicycles traveling on an urban road in downtown Boston. 

One sensor identified as desirable in helping to accomplish this goal is a laser light 

distance and ranging sensor, known as LiDAR. The current leading LiDAR sensor is the 

Velodyne HDL-64E which can collect 1,300,000 points per second in a 360-degree field 

of view [4]. In recent years data collected by this sensor has been the go-to for object 

detection, classification, and tracking algorithm development across all stakeholders, 

including research institutes, universities, and industry.  
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Figure 4. Velodyne HDL-64E LiDAR Sensor. 

While these sensors collect high resolution data, the ability to use them for 

research and in consumer markets is challenging, due to high costs (approximately 

$75,000), power (60 watts), and size/weight requirements (28 pounds) [4]. With limited 

access to these sensors, the engineering development cycle that would normally increase 

sensor performance and reduce the cost of LiDAR has been slowed. This becomes a 

cyclical problem, as until LiDAR becomes commonly used it will retain its high cost, which 

is what currently keeps it from being commonly used, Because of this many autonomous 

car companies are beginning to move towards employing multiple lower priced and poorer 

performing sensors, in place of a single expensive sensor.  

Additionally, due to the competitiveness of the autonomous robotics field, a 

majority of the datasets and algorithms developed using this sensor are not accessible to 

the general public but are instead developed as proprietary assets. For example, 

companies like Google have claimed that they can identify and track multiple bicycles 

traveling around a vehicle simultaneously however, they only provide images like figure 5 

but no software or datasets to back up their claims [5]. This lack of knowledge sharing 

coupled with the lack of technology access creates a significant problem for researchers 

trying to further sensor, system, and algorithm development.  
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Figure 5. Google's claim towards bicycle and pedestrian detection and tracking. 

Although most implementations of LiDAR in autonomous systems are proprietary 

there are a few published sources for datasets and algorithms [6] [7] [8] [9] [10] [11] [12]. 

This work exists mainly in the university research space, and while this work does contain 

insight into the challenges of autonomous driving and sensing, it has significant issues. All 

of the existing published and public data is taken in idealistic environments, where multiple 

variables of the test setup are controlled. These variables include background, clutter, 

number of objects, sensor states, etc. While these idealistic datasets can be useful for 

theoretical insight into LiDAR and algorithm development, they do not represent an 

accurate depiction of real world environments. In order for true level 5 autonomy to be 

reached, datasets and algorithms containing real world environments and applied 

algorithms must be collaboratively shared. 

To further the development of LiDAR sensors and algorithms this paper introduces 

the first open LiDAR dataset collected in real world environments. The author presents 

realistic datasets drawn from affordable sensors, along with qualitative performance 



6 
 

results of leading algorithms.  We first discuss the hardware and describe the scenarios 

in which data was collected. Next, we analyze a custom variation of leading object 

detection, classification, and tracking algorithms on simplistic data. We then implement 

the discussed algorithms on multiple real-world scenarios to qualitatively judge the 

performance. Lastly, we review the strengths and weaknesses of current LiDAR system 

and discuss future work to improve them. 
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3 DATA COLLECTION 

The Robotic Operating System (ROS) was used for integration as well as data 

collection for all the sensors [13]. Descriptions of these different sensors and the collection 

environment setup are described in the following sections. Additionally, samples of each 

dataset are displayed. All of the datasets are freely available at the GitHub link provided 

in the appendix.  

3.1 Method of Collection  

 For the following data collections, a sensor setup incorporating Velodyne LiDAR 

sensors, cameras, and DataSpeed Incorporated advanced driver assistance systems 

(ADAS) development kit are utilized. The final vehicle setup can be seen in figure 6. 

Detailed descriptions of the LiDAR sensor as well as the vehicle are present in the 

following section. Additionally, various mechanical setups where experimented with to find 

the optimal mounting location for the LiDAR sensor. Descriptions of these mechanical 

setups are present in the following sections. 

 

Figure 6. Northeastern University’s Autonomous Car. A Lincoln MKZ with an ADAS kit 
modified by DataSpeed Inc. 
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3.1.1 LIDAR 

 Data was collected using Velodyne Puck (VLP16) LiDAR sensors, as shown in 

Table 1. It consists of a column of 16 single lasers, covering a pitch range of approximately 

30 degrees. It rotates at a rate of 10 Hz, sweeping the complete horizontal ground plane 

and producing approximately 30000 points per turn [14]. These are currently the most 

commonly used low cost LiDAR sensors. These sensors are currently present in many 

self-driving car systems, including Ford’s, Apple’s, Nutonomy’s, GM’s, and various other 

autonomous platforms. This sensor costs significantly less than the HDL-64E model, 

priced at $8000 compared to $75,000, while maintaining similar performance quality. A 

table of the sensor’s performance can be seen below in Table 1 [14]. 

Table 1. Velodyne Puck (VLP16) LiDAR Sensor and Performance. 

 

VLP16 

Range Up to 100 m 

Accuracy ±3 cm 

Horizontal/Azimuth 
Angular Resolution 

0.1° - 0.4° 

Vertical Angular 
Resolution 

2.0° 

Vertical Field of 
View (FOV) 

±15° 

Horizontal Field of 
View (FOV) 

360° 

Laser Channels 16 

Points per Second 300,000 

Update Rate 5 Hz – 20 Hz 
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 During all of our data recordings the update rate of the VLP16 was set to 10 Hz 

and the horizontal and azimuth angular resolution were set to 0.2 degrees. The data was 

recorded in ROS using Velodyne’s built in drivers. The ROS topic recorded for the sensor 

was “velodyne_points”. For the initial data collection, we incorporated a single Velodyne 

Puck (VLP16) LiDAR sensor on a tripod directly connected to a laptop running ROS. This 

configuration allowed for easy setup and fine tuning of experiments. 

3.1.2 Autonomous Car 

For our field data collections, we used a VLP16 LiDAR sensor mounted on the roof 

bar of a Lincoln MKZ Hybrid advanced driver-assistance systems (ADAS) kit provided by 

DataSpeed Inc [15]. The ADAS kit provides a software development kit for integrating the 

car’s various sensor with ROS (IMU, GPS, etc.). However, this mounting scheme posed 

geometrical issues. With the sensor mounted in the middle of the roof bar the bar itself 

along with other cameras interfered with the field of view of the LiDAR sensor.  

 

 

Figure 7. Vehicle Camera and LiDAR Sensor Setup v1.0. The top image is a photograph 
of the physical setup. The bottom image is a depiction of the blocking caused by the 

cameras.  
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The location of the LiDAR sensor in this setup caused the field of view to be 

blocked by the neighboring cameras. Because of this, objects directly to the left and right 

of the sensor were occluded in the data. In order to work around this issue, we utilized two 

Velodyne Puck (VLP16) LiDAR sensors. This setup allows the overlapping data from the 

two sensors to completely cover the 360-degree field of view around the car. In this 

configuration the sensors are blocking each other's respective view, however the area is 

covered by the blocking sensor.  

 

 

Figure 8. Vehicle Camera and LiDAR Sensor Setup v2.0. The top image is a photograph 
of the physical setup. The bottom image is a depiction of the blocking caused by the 

cameras. 

3.2 Single Bicycle Data 

The first set of data was taken with a stationary VLP16 mounted on a tripod in an 

empty parking lot. The sensor and laptop were connected and powered by a car which is 

approximately 1.6 meters from the sensor. For this dataset, a single bicycle traveled in a 

circle around the sensor at various distances and directions while maintaining an 

approximately constant velocity. First, clockwise and counterclockwise routes were 

traversed with the sensor centered in the circle at approximately 1.6 meters in distance. 
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Second, the bicycle traveled clockwise and counterclockwise with the sensor off of the 

circle’s center point. This made the bicycle appear close (approximately 1.6 meters away) 

at one end of the circle and 10 meters away at the other end.  

           

Figure 9. Bicycle Paths (Left: 1.6-meter circles around center, Right: circle with max 
distance of 10 meters and minimum of 1.6 meters). Not to Scale. 

Additionally, data was taken with a stationary bicycle placed in multiple orientations 

relative to the LiDAR. Left, right, front, and rear viewpoints of the bicycle were recorded at 

1.6 meters with a person seated on the bicycle. These datasets were used in the early 

stages of our data processing to better identify and track the bicycle before it moved 

relatively longer ranges. We can see the overall point cloud as well as side profiles of the 

bicycle in both the long distance and close-range datasets in figure 10 and figure 11. 

 

 

 

VLP16 

VLP16 
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Figure 10. Single bicycle data collection in an empty parking lot.  

In the left image below, we can see that when the bicycle is five meters away, all 

16 lines of the Velodyne sensor are reflected by the bicycle. However, we also notice that 

due to the close proximity of the target, some of the desired profile is missing. At this 

specific viewpoint we are missing the head of the bicycler and the bottom half of the 

bicycle.  

 

Figure 11. Bicycle Profiles – The left image shows the bicycle traveling in a 1.6 meters 
counter clockwise circle around the sensor. The right image shows the bicycle traveling 

at 6.2 meters clockwise around the circle. 

Conversely, the data collected with the bicycle at longer ranges (shown in the right 

image), has significantly less points. Only 8 of the 16 total lines are present on the bicycle 

at a distance of approximately 6.2 meters. Although the density of the point cloud is 
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significantly lower the entire profile of the bicycle is seen, including the rider's head and 

the bottom of the bicycle. Links to videos of the data collected along with raw datasets are 

detailed in the appendix. 

3.3 Multi-Bicycle Data 

The two-sensor setup on the Lincoln MKZ was utilized for this data collection. The 

purpose of this data collection was to test the ability to identify and track multiple bicycles 

in a cluttered environment. The car was parked in the center of a parking lot and 5 bicycles 

were driven around the car in various directions, distances, and speeds. The bicycles 

would also periodically synchronize their routes around the car so as to test the ability to 

identify individual bicycles clustered in a group.  

 

Figure 12. Multi-bicycle data collection. A single frame shows the bicycles traveling in 
various directions at various distances from the sensor. 
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In Figure 12, we can clearly see 4 bicycles, outlined in red, within the field of view 

of the two LiDAR sensors (circled in red). In actuality there are 5 bicycles traversing around 

the sensor. One bicycle is located just to the left of the car and its proximity is so close 

that only the head of the bicycler is visible. Figure 13 shows another frame from the same 

dataset. In this point cloud frame the bicycles have traversed around the car and their 

direction has changed as well.  

 

Figure 13. Multi-bicycle data collection. A single frame shows three bicycles traveling 
together as a group (cyan) around the vehicle and a single bicycle (red) traveling alone. 

 In this frame three of the bicycles (highlighted in cyan) are significantly closer 

together while one of the bicycle (highlighted in red) is traveling by itself. If we observe the 

same frame from a more acute viewing angle we can see the difference in the profiles of 

each bicycle. 
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Figure 14. Multi-bicycle data collection. A zoomed in single frame from LiDAR data 
shows 4 bicycles traveling in various direction around the car. The group of bicycles are 
individually labeled with red arrows. The single bicycle is outlined in a red square. The 

effect of distance from the sensor to the number of points on target is evident when 
comparing the bicycles. 

 The bicycle that is traveling alone (furthest from the car) has a limited number of 

data points. This coincides with figure 11 from the single bicycle data collection. 

Additionally, we can see the effects of bicycles that travel close together in the data 

product. Of the 3 bicycles traveling together, the first shows up with the densest collection 

of points. However, since that bicycle is closest to the car it also has the smallest visible 

profile. Looking at the second bicycle in the group we can see that its entire profile is 

visible with points distributed evenly. While the third bicycle in the group is farthest from 

the car it is still missing a significant amount of points from its profile. This is due to the 

first bicycle in the group blocking the LiDAR sensors ability to see the entirety of the third 

bicycle. This situation is extremely common in LiDAR sensors and creates difficulties in 

distinguishing groups of targets from their individual components. Links to videos of the 

data collected along with raw datasets are detailed in the appendix.  
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3.4 Driving Data 

 The two-sensor setup on the Lincoln MKZ was utilized for this data collection. The 

purpose of this data collection set was to collect data in real world urban environments. 

Data was recorded during commuter hours (5-7pm) in the Roxbury and South End 

communities of Boston.  

The first route was 0.8 miles, starting near Ruggles Station and ending on Botolph 

Street. The drive started going East down Columbus Avenue. This route has 2 traffic lanes 

in each direction with street parking on both sides as well as bicycle lanes. There is also 

a considerable amount of foot traffic across the road. The route then took a left through 

the major intersection of Columbus Avenue and continued North down Massachusetts 

Avenue. This road is also a two-lane street with street parking and bicycle lanes. The drive 

then ended after taking a left going west on Botolph Street.  

 

Figure 15. Driving Route A. Recorded between 5-7pm. Total length of 0.8 miles. Starting 
location at 805 Columbus Ave and ending at 284 Botoloph Street. 
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The second route again started near Ruggles station and continued east down 

Columbus Avenue, turning around at the intersection of Broadway street and returning 

Westbound on Columbus Avenue towards Ruggles station. This route was 1.2 miles long, 

containing 2 traffic lanes in each direction with street parking as well as bicycle lanes on 

both sides of the road.  

 

Figure 16. Driving Route B. Recorded from 5-7pm. Total length of 1.2 miles. Starting 
location at 805 Columbus Ave and ending at 242 Columbus Ave. This route was 

repeated multiple times while traveling in both directions.  

 If we look at a random frame from the second route we can see parked cars on 

both sides of the road, cars traveling in our lane, cars traveling in the opposite direction, 

and a bicyclist (highlighted in red).  
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Figure 17. Driving route B data collection. The passing bicycle is highlighted in red. 

If we take a closer look at the bicycle in this frame we can see that most of the 

points fall on its rear profile. There are only 5 lines present on the bicycle in figure 18 and 

figure 19. Links to videos of the data collected along with raw datasets are detailed in the 

appendix. 

 

Figure 18. Rear view profile of a bicycle from driving route B. Only 5 lines of data points 
fall on the bicycle. 
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Figure 19. Side view profile of a bicycle from driving route B. Only 5 lines of data points 
fall on the bicycle.  
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4 BICYCLE DETECTION (METHODS) 

 For processing of the data, we utilized a general detection, classification, and 

tracking approach proposed by Azim [6]. We combine this approach with other detection 

techniques and a unique implementation to support our sensor setup, development 

environment, and real-world scenarios. We first take the point clouds from each sensor 

and calibrate them to align them to each other. We then break down the point cloud into 

voxels using an Octree data structure. Once the tree structure is created the volume and 

occupancy of each voxel is calculated to find movers. The moving voxels are then merged 

to better represent the points the encompass. These voxels can then be classified based 

on various properties. Lastly, we track the location of these voxels over time. Each 

processing step is described in detail in the sections below. Links to the software 

developed for this thesis as well as documentation are detailed in the appendix. 

4.1 Calibration 

 Once data from both sensors is recorded, the next step is fusing the data. In order 

to register the two-point clouds, we use a translational and rotational transform, referenced 

from the base-link of the car. In the ROS environment a three-dimensional model of the 

car and its components are represented (including the doors, wheel, etc.) in reference to 

a base-link. The base-link of the car is fixed to the center of the rear wheel axle. From this 

reference point, we measured the translation and rotation offsets to the two Velodyne 

sensors and inputted them into a static transform function in ROS. The resulting product 

is a single fused point cloud that encompasses all the points of the two separate LiDAR 

sensors.  
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Figure 20. Calibration setup. The field of view of both LiDAR sensors overlap with the 
calibration target. Port sensor is red and starboard sensor is green. 

In order to calibrate the effectiveness of our transform, we set up a man-made 

object that would allow us to accurately align the two point clouds. The object used was a 

tall rectangular box with one of its corner edges pointed directly between the sensors. We 

would then use this edge to accurately fuse the point clouds in X and Y dimensions while 

using the top of the box to fuse the data in the Z dimension.   

 For clarity, the point clouds for the port and starboard LiDAR sensors have been 

colored red and green respectively. In the left image we can see the combination of the 

two points clouds with no transform. Both sensor’s point clouds have their data points 

originating from the 0,0,0 coordinate in XYZ space. Because of this the calibration target 

(box) is seen twice in XYZ space; once for the port sensor (red) and once for the starboard 

sensor (green).  

  

  

 

VLP16 VLP16 
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Figure 21. Calibration applied to LiDAR sensor data (Left: Unregistered or transformed 
point clouds, Right: point clouds after calibration transformation and registration). The 

transformations computed by the calibration processes align the data in both point 
clouds.  

In the right image we can see the product of fusing the two point clouds using the 

measured translational and rotational transforms. The centers of each sensor have now 

moved to their respective sides and the calibration target is only visible in one place in 

XYZ space. In order to perfect the transformation, we iteratively adjusted the values of the 

transform so that the points reflected from the calibration target from both LiDAR sensors 

is reduced to less than the accuracy of the sensor’s themselves. This iterative process 

gives us a transform that produces nearly accurate fused point clouds. After this rough 

transform has been computed we use an iterative closest point algorithm to calculate any 

further transformations to align the point clouds [16] [17] [18]. 

4.2 Octrees 

 After the data is fused, we break the point cloud into smaller section for simpler 

manipulation. In order to efficiently break down the point cloud we use a method called 

octrees. An octree is a data structure in which each internal node has eight children and 
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is recursively divided into eight children [19]. This three-dimensional partitioning is 

continued through the data structure until a minimum voxel size or point density is 

achieved as seen in figure 22. These smaller cubic volumes are called voxels and will be 

referred to as such for the remainder of this paper. 

 

Figure 22. Generic standard Octree structure representation. 

 Additionally, these tree structures can be broken down equally or with weights. If 

broken down equally, each voxel will have the same cubic volume as the other children 

within its subtree. Conversely, if the weighted division is used, then the size of the voxel 

within one subtree can vary in cubic volume [19]. One section of the cubic volume could 

contain mode points and therefore be a larger voxel than its neighboring children, while 

other areas could have less points and therefore contain smaller voxels. We can see an 

example of this in figure 23. Even though one voxel is significantly larger than its neighbors 

the division still equates to eight total voxels in the subtree. 
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Figure 23. Generic weighted Octree structure representation. The subdivision no longer 
maintains the same size. 

 After the voxels are created we perform a shrinking function. This reduces the size 

of the bounding box for each voxel to tightly encompass the points within it [20]. This 

operation creates gaps in the final space not covered by a voxel as seen in figure 24. 

However, this is advantageous, as it removes areas with either zero or an insignificant 

amount of points. Additionally, this reduces the overall size of the octree structure, making 

computation easier. 

 

Figure 24. Generic weighted and shrunk Octree structure representation. Empty spaces 
are present in the three-dimensional structure.  
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We can look at a real octree as an example of the equally weighted mode as seen 

in figure 25. We view the 3-dimensional voxel plot as a 2-dimensional plot for simplification. 

In this example all of the voxels within a subtree are of equal size.  In some areas the 

voxel is not broken down into sub-voxels; this is because the algorithm determines that 

the voxel has either reached its minimum size or it does not have enough data to justify 

breaking down. Additionally, the voxels line up perfectly across any single axis because 

they are weighted equally. 

 

Figure 25. Standard Octree of single bicycle dataset. Two-dimensional representation of 
dataset. 

 If we then weight the octree based on the data within it, the resulting graph is 

significantly different, as seen in figure 26. From this we can denote that some voxels are 

significantly larger than those in the equally weighted tree, while other voxels are 

significantly smaller. Additionally, voxels look to be overlapping or crossing in this figure. 

This is due to the fact that the size of the voxels in X, Y, and Z can be different and 

therefore the voxels might not line up when observing them from a specific angle. 
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Figure 26. Weighted Octree of single bicycle dataset. Two-dimensional representation of 
dataset. 

Lastly, we can look at the effects of shrinking the octree so that each voxel tightly 

encompasses the data points within it. From figure 27 we can see that voxels are now 

“floating” in space instead of bordering their neighbor voxels. This drastically reduces the 

time required to analyze each voxel, but it also creates gaps in the data where no voxel 

can reach. While this might be a detriment in some cases, for our scenario this removes 

most if not all the empty space of our point cloud. 

 

Figure 27. Weighted and shrunk Octree structure for single bicycle dataset. Two-
dimensional representation of dataset. 
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4.3 State Estimation 

Once all the voxels have been calculated for the current frame we compute the 

point volume for each of these voxels. We then compute the point volume of those voxel 

locations in the previous LiDAR frame. If the volume of the voxel is above a threshold then 

we mark that voxel as occupied, otherwise we mark the voxel as free. This builds a basic 

SLAM map for the current frame [21].  

𝑆𝑡,(𝑥,𝑦,𝑧) = {
𝐹𝑟𝑒𝑒

𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑
 

Next, we compare the point volumes of the two corresponding voxels from each 

frame and determine whether or not the voxel is considered a moving object [6]. Let us 

denote the current state as St and the previous voxel state St-1. If the previous state of a 

voxel is marked as free and the current state is marked as occupied then this is the case 

where a moving object is possibly present. If the previous voxel state St-1 is considered 

occupied and the current voxel state St is free then we can’t determine anything about the 

presence of a moving object. If the voxel state between any two frames is continuous then 

we can assume the area is either free of movers or the object is not moving. This method 

generates a large number of false positives, but they are filtered out and removed in the 

following sections. 

Once the voxels are calculated, we run them through a density and state 

estimation algorithm using the previous frame [6] [21]. Figure 28 is the output of that step. 

Red points correspond to movement and grey points are the background.  
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Figure 28. State estimation map for single bicycle dataset. Grey identifies non-occupied 
stationary points. Red identifies moving occupied points.  

4.4 Merging Voxels 

 The next step is to reduce the massive number of voxels determined to be movers 

by ruling out the false positives. We accomplish this by combining moving voxels that 

belong to the same object [6]. In order to determine if the moving voxels belong to the 

same object we calculate their Euclidean distance from each other as well as and overlap 

between the areas in three-dimensional space in which they occupy. The Euclidean 

distance between the voxels is computed using their centers as seen in the following 

equation. 

𝐷𝑖,𝑖+1 =  √(𝑉𝑖+1,𝑋  −  𝑉𝑖,𝑋)
2

+ (𝑉𝑖+1,𝑌  −  𝑉𝑖,𝑌)
2

+ (𝑉𝑖+1,𝑍  −  𝑉𝑖,𝑍)
2
 

If the distance calculated is less than a threshold then the moving voxels are 

combined into a larger voxel encompassing the entirety of the smaller voxels. While this 

works well for most cases there is a failure case when two voxels encompass each other 

but the center of one of the voxels is farther away than the threshold.  
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Figure 29. Euclidean Distance of the centers of two neighboring voxels. 

To compensate for this, we calculate if the voxel has overlapping areas. If their 

areas overlap then we check to ensure that their distances are not at an unrealistic 

distance and combine them as well. 

 

Figure 30. Overlapping voxels merged if the distance between there centers is within a 
threshold. 

 This process of merging voxels is repeated until the nearest voxel is outside of the 

determined threshold. We then move to the next voxel and check its neighboring voxels. 

The merging process is repeated until all voxels have been combined appropriately. If we 

now look at the voxels that encompass these points we can see that some sets of data 

points which look to be from the same object are actually split into different voxels as seen 

in figure 31.  
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Figure 31. Unmerged voxels of a single bicycle. 

 A real-world dataset of a similar situation can be seen below in figure 32. On the 

left we see a car with multiple voxels covering front. On the right we can see a bicycle 

cover in a large number of voxels that are both neighboring or intersecting.  

 

Figure 32. Unmerged voxels from single bicycle dataset. 
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 The points within these neighboring and intersecting voxels are most likely from 

the same object and therefore their respective voxels should be combined. Figure 33 

shows the merging of two voxels from figure 31. After the voxels have been merged a 

bicycle profile becomes more apparent than in either of the individual voxels shown above. 

This is important when we move to the classification step in the next section. 

 

Figure 33. Merged voxels of a single bicycle. 

 In figure 34 we can see that the voxels that composed the bicycle have been 

combined into one voxel that accurately represents the bicycle inside it. Additionally, the 

voxels that encompassed the car have been combined into two voxels. The yellow voxel 

was not combined with the green voxel because it contained points relatively far from the 

center of the green voxel and therefore did not meet the merging criteria. Additionally, 

these voxels are need to be removed in the classification step as they don’t represent a 

moving object. 
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Figure 34. Merged voxels from single bicycle dataset. 

4.5 Classification 

After the moving voxels have been merged appropriately we classify the voxels 

based on a set of parameters. We first remove any voxels that are too large or too small 

to be real objects of interest. This removes a majority of the noise produced by the state 

estimation and voxel merging sections of the algorithm.   

Classification is then performed on the properties of the bounding box of each 

remaining moving object. Labels are determined based on the width and height of the 

bounding box and the ratio between them as an indicator for its class [6]. We have defined 

these parameters for cars, buses/trucks, bicycles/motorbikes, pedestrian, and groups. 

The classification designated as groups is specifically used for multiple bicycles or 

pedestrians traveling together or in proximity of each other.  An example of a bicycle, car, 

and group class are visible below. 
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Figure 35. Object classification from single bicycle dataset. Red represents bicycles and 
cyan represents groups. 

Once the classification occurs most of the unwanted boxes are removed and only 

objects of interest remain. Red is used to depict bicycles, blue for cars, green for people, 

and cyan for groups or unknown objects. In figure 35 we see that the majority of the bicycle 

is classified correctly however there are two errors. First, part of the rear wheel and cyclists 

head are not included in the classification. Secondly, the car not moving and is incorrectly 

classified as a group.  

4.6 Tracking 

The final step is to track all moving objects over multiple frames. To accomplish 

this, we implemented a Hungarian particle tracking filter [22]. The filter operates on the 

same principle as a global nearest neighbor filter however, it utilizes combinatorial 

optimization to solve the assignment problem. The algorithm creates a matching score 

matrix S for each tracker and detection (denoted tr and d respectively) [22]. This matching 

score is calculated from function s(tr,d) which evaluates the distance between detection d 
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and each particle p of tracker tr [22]. This function employs a classifier 𝑐𝑡𝑟(𝑑), a gating 

function 𝑔(𝑡𝑟, 𝑑), and a Normal distribution evaluated for the distance between d and p 

represented by 𝑝𝑁(𝑑 − 𝑝) described in [22]. 

𝑠(𝑡𝑟, 𝑑) = 𝑔(𝑡𝑟, 𝑑) ∗ (𝑐𝑡𝑟(𝑑) + 𝛼 ∗ ∑ 𝑝𝑁(𝑑 − 𝑝)

𝑁

𝑝∈𝑡𝑟

) 

The pair (tr,d) with the highest score is iteratively selected until every detection is 

assigned to a tracker. The associated detections are then filtered for a matching score 

above a threshold, ensuring that a selected detection actually is a good match to a target 

[22]. In our implementation the detection is actually a set of points X, Y, and Z 

corresponding to the center point of a particular voxel. The filter takes in the center points 

of the moving voxels as X, Y, and Z coordinates and outputs the corresponding track ID. 

A two-dimensional example of the Hungarian particle filter is given in figure 36. 

 

Figure 36. Two-dimensional simulation of Hungarian particle tracking filter.  

After the all of the points have been assigned to tracks we filter them to remove 

any tracks shorter than a predetermined length. This helps remove any tracks that belong 

to false positive moving voxels. Additionally, as the list of tracks increases frame to frame 



35 
 

our filter removes tracks that cross between objects, ensuring all points on a track 

correspond to the same voxel object. Additionally, we hold on to the tracks for a 

predetermined amount of time to help accurately predict the next location of the track. An 

example of this operating on our datasets can be seen in figure 37. 

 

Figure 37. Hungarian particle tracking on a single bicycle, without smoothing. 

5 RESULTS 

 We then analyze the effectiveness of the method proposed in the previous chapter. 

We tested these methods on all of the real data collected by a Velodyne VLP-16 Lidar 

scanner mounted on top of an experimental vehicle as described in section 2. There is no 

ground truth information available, therefore we have performed a qualitative evaluation 

of the performance. The results of this method on our various data collections are shown 

in the following sections.  

5.1 Single Bicycle Data 

We first applied our method to the single bicycle scenario to test the results of our 

methods without confusers. The first dataset we will look at is a single bicycle traveling 
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clockwise around the Velodyne LiDAR sensor at a maximum distance of 10 meters and a 

minimum of 1.6 meters for 45.5 seconds. If we grab a random frame from this dataset we 

can see that the algorithm accurately acquired the bicycle, as seen in figure 38. We can 

also see that the algorithm has been tracking the bicycle for multiple frames, as depicted 

by the cyan line.  

 

Figure 38. Hungarian particle tracking on a single bicycle, with smoothing. 

However, the output still has errors. The car which is not moving has been 

identified as a moving object and incorrectly classifies it as a bicycle. To analyze how 

these errors, propagate over the entire dataset we can plot all of the tracks from this 

dataset onto the point cloud as seen in figure 39.  
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Figure 39. Single bicycle with persistent plot of tracks. Clockwise direction. 

 From this we can see that the tracks follow the path of the bicycle around the 

sensor very well. However, there are a significant number of tracks corresponding to the 

stationary car. This means that the algorithm is detecting moving objects at the location of 

the car and those objects are consistent over multiple frames. If we break this down into 

individual frames we can see what is causing the tracks and boxes near the parked car. 
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Figure 40. Clockwise single bicycle frames A to J. The bicycles pass directly in front of a 
parked car.  
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As we move down the individual frames in figure 40 we can see the bicycle passing 

by the car on its path. We can see in image A the bicycle is accurately identified. As we 

look from images B through E we can see that as the bicycle comes closer to the parked 

car the algorithm still identifies that the object is moving but is unable to correctly classify 

it. In images F through I we can see that the bicycle moves away from the car and is again 

correctly identified. In the last image J, we can see the bicycle is still being tracked but is 

incorrectly identified as a car. This is due to data points from the ground being included 

as the moving object. We can also see that as the bicycle passes past the car there are 

points that become occluded and then reappear in the point cloud. The movement of these 

points from occlusion is what causes the algorithm to incorrectly identify and classify them 

as moving objects.  

5.2 Multi-Bicycle Data 

After we applied these algorithms to the single bicycle data we moved to the multi-

bicycle datasets. This dataset included five bicycles traveling around the parked vehicle 

in multiple directions, speeds, and distance for 202 seconds. In addition, the bicycles 

randomly stop and start their movement throughout the data collection. The bicycles would 

also periodically synchronize their routes around the car as to test the ability to identify 

individual bicycles clustered in a group. If we grab a random frame from this dataset we 

can see that a group of bicycles and a single bicycle are correctly identified, as seen in 

figure 41. We can also see that the algorithm has been tracking the bicycles for multiple 

frames, as depicted by the red line.  
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Figure 41. Detection, classification, and tracking on multiple bicycles. Three bicycles are 
classified correctly as a group (cyan) in the center of the image. A single bicycle is also 

identified (red) on the far-right side of the image. 

Three bicycles are present in the group (cyan) but the algorithm is unable to 

differentiate them into single bicycles. This is most likely due to the limited number of 

points on each of the bicycles. 

 

Figure 42. Detection, classification, and tracking on multiple bicycles with persistent plot 
of tracks. Four bicycles have been classified. Two correctly as individual bicycles labeled 

in red and two incorrectly labeled as groups in cyan. 
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From this we can see that the tracks follow the path of the bicycles around the 

sensor very well. However, there are a significant number of tracks displayed around the 

location of the parked cars (bottom center). These are most likely caused by obscuration. 

When a bicycle passes in front of a parked car the group of points directly behind the 

bicycle are blocked. When the bicycles move away from that area the points appear again. 

When the algorithm is computing the change in voxel states it may see this appearance 

of points are an object. We can see this effect more clearly by looking at multiple frames. 

 

 

 
 

Figure 43. Multi-Bicycle Frames A to F. Four bicycles are tracked over time. 
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As we move down the individual frames in figure 43 we can see the bicycles 

passing by the parked cars. In image A, a group and a single bicycle are correctly 

classified. As the bicycles start to separate from each other in image B they are classified 

as individual bicycles. However, this is only temporary; in image C we can see that the 

algorithm has regrouped the bicycles and also incorrectly classified the single bicycle as 

a car. As we saw in the previous section the inclusion of points from the ground bias the 

classification process. As we move to image D we can see that the algorithm correctly 

identified two of the bicycles however, the two center bicycles are grouped into the same 

voxel and incorrectly identified as a single bicycle. In image E the bicycles are grouped 

together but since they are slightly further away from each other than normal they are 

classified as a car. The singular bicycle classified as a car in this image is also due to the 

inclusion of points on the ground. In frame F we can see that the bicycles are once again 

correctly classified. In images D and F, we can see that a voxel appears on the parked 

cars as the bicycles travel past them. Similar to the previous section this false movement 

effect is due to occlusion. 

5.3 Driving Data 

Lastly, we applied these algorithms to driving dataset. This dataset included over 

20 bicycles that traveling perpendicular and parallel to the car while traveling down 

Columbus Avenue for 16 minutes and 47 seconds. In the dataset the same bicycle is seen 

multiple times as it passes the car and then the car passes the bicycle. Additionally, there 

are other moving cars traveling both directions down the road as well as pedestrians 

walking on the sidewalk and crossing the street. If we grab a random frame from this 

dataset we can see a single bicycle passing the car on the right. 
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Figure 44. Detection, classification, and tracking on all moving objects in driving route B. 
A single bicycle is correctly identified in red. Three cars are correctly identified in blue. 

The passing bicycle has been correctly classified as a bicycle. In addition, the cars 

to the right of our test vehicle as well as the car passing on the other side of the street are 

correctly identified. However, the output still has errors. One of the cars (center top) is 

identified as a group instead of a car. This object is also grouped with the tree above it. 

Additionally, a truck that is passing on the left of our test vehicle is incorrectly classified as 

two objects, a car and a group.  
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Figure 45. Driving route B - Frames A to D. The bicycle approaches the car from the 
rear. 

 In image A the bicycle is still over six meters from the test vehicle. In this frame the 

bicycle is not detected by the algorithm. This is due to the fact that there are not enough 

points on target in order to detect a moving object. As the bicycle approaches closer in 

image B the algorithm detects and incorrectly classifies it as a group with the car to its 

right. As the bicycle continues to move in image C it is correctly classified as a bike and 

the car is also classified correctly. When we move to image D the bicycle is again classified 

incorrectly, but this time as a car. However, the algorithm still holds the tracks from the 

previous correct classifications as shown by the cyan line in image D. 

A B 

C D 
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Figure 46. Driving route B - Frames E to H. The bicycles passed directly by the car. 

If we continue through the next few frames we can see the bicycle approach and 

pass the test vehicle. In image E the bicycle is reclassified correctly as a bicycle, but the 

car to the right is now incorrectly classified as a bike. In image F, the bicycle and car are 

again classified correctly. However, there is a break in the tracks. This is due to the moving 

object not being identified for two frames. In image G the bicycle has moved significantly 

further away from the test vehicle while being correctly identified and tracked. In image H 

the bicycle is over four meters away from the test vehicle and the object can no longer be 

identified. 

E F 

G H 
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6 CONCLUSION AND FUTURE WORK 

The challenges created by a bicycle’s relatively transparent profile, small frame, 

and quick maneuverability present a serious issue for autonomous cars in urban 

environments. However, with further development of LiDAR sensors and algorithms these 

obstacles might be overcome. We have presented a realistic dataset that accurately 

depicts the problematic challenges with detecting, tracking, and classification of moving 

objects in LiDAR data. To further the development of LiDAR sensors and algorithms this 

paper introduces an open LiDAR dataset. The authors present realistic datasets from 

affordable sensors along with qualitative performance results of leading algorithms. This 

dataset and analysis allow easier access for researchers and developers to create 

systems and algorithms that perform in real world scenarios. 

 

Figure 47. Driving route bicycle track. A single bicycle is accurately classified and 
tracked across multiple frames. 

We have implemented a variation of one of the leading algorithms in object 

detection, classification, and tracking of moving objects, qualitatively showing its 
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performance as seen in figure 47. Experimental results have shown that downgrading to 

an affordable LiDAR sensor can greatly decrease the performance of these algorithms. In 

order to make LiDAR truly useful a sensor that can perform on par with expensive ones 

like the Velodyne HDL-64E. Cheaper sensor simply cannot produce dense enough point 

clouds for algorithms to perform well. In addition to improving the sensor itself significant 

advances can be made in algorithms. In our implementation one of the leading causes of 

errors was incorrectly classifying objects. Upgrading from a simplistic model to a machine 

learning technique for feature-based classification can prove better. Methods that fuses 

multiple sensors together might increase the classification success rate as well [23]. 

Another flaw in our algorithm implementation was the movement of points behind an 

object. Using a simplistic algorithm leveraging ray tracing we may be able to predict points 

that move behind objects and eliminate them from being tracked. Lastly, we need to 

implement a technique for compensating with motion. A simplistic version of this would be 

using an inertial measurement unit (IMU) for motion detection and offsetting that motion 

in the raw point clouds. This would remove a majority of buildings and parked cars 

detected as objects, however it would also eliminate any object traveling at near identical 

speeds to the sensor. Some of the errors that propagate through the algorithm are caused 

by the rings on the ground being included as moving objects. Removing these errors would 

increase classification accuracy as well [24]. Implementing the algorithm described in this 

thesis in python or C++ using the Point Cloud Library would serve useful for 

implementation in real time systems [25]. 

 Lastly, the combination of the algorithms described in this thesis with light field 

arrays from [26] can create a system to greatly increase an autonomous car’s ability to 

detect and classify targets of interest. Light field processing can be used to remove 

occlusion from scenes. However, in order to accurately do so, the surface along which to 
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render a light field image must be known. In figure 48, we see an example of image 

reconstruction on an occluded sign.  

 
Figure 48. Light field based occlusion removal. The left is a raw image from one camera 
of an occluded sign. The right is a rendered using a light field array and median ray color 

selection. 

In order for the light field algorithms to perform this operation the desired surface 

must be fully parameterized. For this example, the distance and orientation of the surface 

are measured and recorded manually. However, in real world scenarios this information 

is unknown beforehand. Trying to process all possible surfaces would be computationally 

intensive and therefore occlusions such as this would never be removed. In order to 

increase the usability of this technology we propose the combination of light fields and 

LiDAR. Using the algorithms described in this thesis distance and orientation of surfaces 

corresponding to objects of interest can be fed into light field algorithms in order to remove 

occlusions and obtain better classification of objects. 
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8 APPENDIX 

 
 
Software and documentation can be found online at the link below. 

https://github.com/arufo/LiDARUrbanBikeDetection.git 

The contents of this link are described below. 

1. Code – All MATLAB code is stored in this directory. 

2. Videos – Videos of raw data and output products are stored and labeled by 

scenario. 

3. Images – Images of raw data and products are stores and labeled by scenario. 

https://github.com/arufo/LiDARUrbanBikeDetection.git

